
Using Ontological Information to Accelerate Path-Finding in Large Semantic
Graphs: A Probabilistic Approach

Tina Eliassi-Rad and Edmond Chow
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Box 808, L-560, Livermore, CA 94551
{eliassi, echow }@llnl.gov

Abstract

Many real-world graphs containsemantics. That is, they rep-
resentmeaningfulentities and relationships as vertices and
directed edges, respectively. Moreover, such graphs (called
semantic graphs) have meaningful types associated with their
vertices and edges. These types produce anontology graph,
which specifies the types of vertices that may be connected
via a given edge type. Path-finding in large real-world se-
mantic graphs can be a non-trivial task since such graphs
typically exhibit small-world properties. In this paper, we
use ontological information, probability theory, and heuristic
search algorithms to reduce and prioritize the search space be-
tween a source vertex and a destination vertex. Specifically,
we introduce two probabilistic heuristics that utilize a seman-
tic graph’s ontological information. We embed our heuris-
tics into A* and compare their performances to breadth-first
search and A* with a simple non-probabilistic heuristic. We
test our heuristics on both unidirectional and bidirectional
search algorithms. Our experimental results on two real-
world semantic graphs illustrate the merits of our approach.

Keywords: large semantic graphs, ontologies, path finding,
probability theory, search, uncertainty

Introduction
Many real-world graphs contain bothsemanticaland topo-
logical information. Semantical information are given
as human-understandable attributes on vertices and edges.
Topological information capture structure and connectivity.
Such real-world graphs are known assemantic graphs(or
attributed relational graphs). Semantic graphs are efficient
structures for the detection of relationships within large col-
lections of seemingly disjoint and heterogeneous entities
(Coffman, Greenblatt, & Marcus 2004). Figure 1 illustrates
a semantic graph corresponding to a small portion of the
Internet Movies Database (IMDB) (http://imdb.org).
Other examples include citation networks of authors, papers,
journals, institutions and biological networks of genes, pro-
teins, and molecules. In addition to meaningful attributes,
semantic graphs havetypeinformation on their vertices and
edges, which defines permissible relationships among the
specified entities (i.e., edge types that may connect two
given vertex types). By utilizing such information, we can

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Philadelphia Catch Me
If You Can

Cast
Away

Band of
Brothers

Road to
Perdition

Sleepless
in Seattle

That Thing
You Do

Tom
Hanks

DreamWorks

TriStar

Rita
Wilson

produced

produced produced

acted in
acted in acted in

wrote,
directed,
acted in

married to

20th

Century Fox

Philadelphia Catch Me
If You Can

Cast
Away

Band of
Brothers

Road to
Perdition

Sleepless
in Seattle

That Thing
You Do

Tom
Hanks

DreamWorks

TriStar

Rita
Wilson

produced

produced produced

acted in
acted in acted in

wrote,
directed,
acted in

married to

20th

Century Fox

Figure 1: A small portion of the Internet Movies Database
(IMDB) Semantic Graph.

construct anontology graph(a.k.a., a schema) whose ver-
tices and edges are, respectively, the vertex types and edges
types of one or more semantic graphs. Since the numbers
of vertex types and edge types are small compared to the
numbers of vertices and edges, ontology graphs provide ef-
ficient structures for representing the information contained
in semantic graphs albeit at their type levels. In other words,
a semantic graph contains instantiations of the vertex and
edge types that are defined in its ontology. Figure 2 shows
the ontology for the semantic graph depicted in Figure 1. A
task well-suited to semantic graphs is the detection of rela-
tionships among a large collection of seemingly disjoint en-
tities. In its simplest form, the task of relationship detection
reduces to these two problems:

• Q1(G, s, d): Find a shortest path (i.e., the fewest possible
number of edges) between two vertices,s andd, in the
semantic graphG.

• Q2(G, s, d): Find the subgraph consisting of all the short-
est paths between two vertices,s andd, in the semantic
graphG.

Depending on the size and topology of a semantic graph,
the search space forQ1(G, s, d) and Q2(G, s, d) can be
quite large. A popular approach for reducing search space
(and consequently accelerating search) is to prioritize differ-
ent path options between a source vertex and a destination

Movie

Production
Company

Personmarried to,
related to,

child of

wrote,
directed,
acted in

produced

Award

nominated,
won

nominated,
won

Movie

Production
Company

Personmarried to,
related to,

child of

wrote,
directed,
acted in

produced

Award

nominated,
won

nominated,
won

Figure 2: An Ontology for the IMDB Semantic Graph. Ver-
tices and edges in the ontology graph are a superset of the
vertex and edge types appearing in the semantic graph (see
Fig 1).

vertex. Path-finding algorithms that use this approach are
called heuristic (or informed) search algorithms. Such al-
gorithms typically use a cost function, whose value depends
on a heuristic measure that estimates the cost of reaching the
destination from a given vertex.

In order to prioritize different path options for semantic
graphs, we use frequency statistics about vertex types and
edge types to define a probability model for measuring the
uncertainty of an edge’s occurrence in the semantic graph.
In particular, our heuristics are based on (1) thelikelihood
of a path existing from the current vertex to the destination
vertex and (2) theposterior probabilityof a path existing
from the current vertex to the destination vertex.

We test our probabilistic heuristics by embedding them
into the A* search algorithm and compare their perfor-
mances with a simple non-probabilistic heuristic. This
simple heuristic uses the connectivity information avail-
able in the ontology graph to estimate the existence of
a path from the current vertexc to the destination ver-
tex d in the semantic graph. We also compare A* with
our heuristics to breadth-first search, which is an unin-
formed search algorithm. We test our heuristics on two
real semantic graphs, namely a version of IMDB graph
(at http://kdd.ics.uci.edu/) and a terrorism data
graph (athttp://teknowledge.com). In addition, we
illustrate how these heuristics perform in bidirectional A*
and compare the results to bidirectional breadth-first search.

We use the following notation throughout the remainder
of this paper:
• V denotes a set of vertices in the semantic graph.

• E denotes a set of edges in the semantic graph.

• TV = {t1, . . . , tn} is a set ofn vertex types.

• TE ∈ {(ti, tj), whereti, tj ∈ TV } is a set of edge types.

• vt denotes a mapping fromV to TV that associates a ver-
tex type with each vertex. Ifs is a vertex in a semantic
graph,vts denotes the type for vertexs.

• et denotes a mapping fromE to TE that associates an
edge type to each edge. Ifk is an edge in a semantic
graph,etk denotes the type for edgek.

• s, d, andc, respectively, represent the source, destination,
and current vertices. The current vertex refers to the ver-
tex being examined by the search algorithm.

We define a semantic graph asG = (V,E, vt, et) and its
ontology graph asT = (TV , TE). It is important to note that
a semantic graph does not have vertices and edges with types
that are not present in its associated ontology graph. In other
words,TV andTE are, respectively, supersets of the vertex
and edge types that occur in the semantic graphG.

Related Work
To our knowledge, no one has developed heuristics for path-
fining in semantic graphs. For social networks, Faloutsoset
al (2004) have developed an algorithm for detecting “con-
nection subgraphs.” Their approach regards a social network
with weighted undirected edges as an electrical circuit with
a network of resistors and a “connection” between two ver-
tices as a path with the most units of electrical current. Their
algorithm does not apply to semantic graphs, which are se-
mantically much richer than social networks.

There is a small community machine learning researchers
that have used semantic graphs with heterogeneous types of
vertices and edges (Getoor 2003; McGovernet al. 2003;
Neville, Adler, & Jensen 2003). Their algorithms are typi-
cally designed for learning probabilistic models on vertices
and/or edges for subsequent inference. For example, Mc-
Govern and Jensen (2003) learn models that identify predic-
tive structures in semantic graphs (such as learning relational
structures that predict academy award nominees).

Cost and Heuristic Functions
Most heuristic search algorithms contain a variant of the fol-
lowing cost function:f(s, d) = g(s, c) + h(c, d), where
f(s, d) is the total cost of exploring a path from the source
vertexs to the destination vertexd, g(s, c) is the cost en-
countered so far, andh(c, d) is the estimated cost to reach
the destination vertexd from the current vertexc. The pre-
cise definitions ofg(s, c) andh(c, d) depend on the notion
of what constitutes an “optimal” path for the task at hand.

In this paper, our notion of an optimal path between two
vertices is the path with the fewest number of edges (a.k.a.
a shortest path). Thus, the cost of a path is the number of
edges on that path. In particular, we define the following
cost function:

f(s, c, d) = g(s, c) + h(vtc, vtd) (1)

whereg(s, c) is the cost of the shortest path froms to c in
the semantic graph andh(vtc, vtd) is the cost of the short-
est path fromc’s vertex type tod’s vertex type in the on-
tology graph. The functionh(vtc, vtd) is our simple non-
probabilistic heuristic.

Not all heuristic functions are created equal. In particular,
heuristic functions that areadmissibleare desirable because
they guarantee that a search algorithm will return an optimal
solution whenever one exists. Namely, a heuristic function
is admissibleif it never overestimatesthe cost of reaching
the destination vertex.

Our standard non-probabilistic heuristic,h(vtc, vtd), is
admissible. The reasoning is as follows. Since the ontology
graph is an abstraction of the semantic graph (with respect
to its types), the minimum length of the shortest path be-
tweenvtc andvtd in the ontology graph is always less than

or equal to the minimum length of the shortest path between
c andd in the semantic graph. This condition is true for any
c andd.

Our probabilistic heuristics use a variant ofdynamic
weighting (Pohl 1973). The main idea behind dynamic
weighting is that as the search nears the destination vertex,
the heuristic functionh should have less of an influence on
the value off . Keeping this in mind, we define the following
cost function for path-finding in semantic graphs:

f ′(s, c, d) = g(s, c) + h′(vtc, vtd) = (2)

g(s, c) + h(vtc, vtd) +
(

w(vtc, vtd)×
h(vtc, vtd)

hmin(vtc, vtd)

)
wherehmin(vtc, vtd) is the minimum heuristic value tovtd
among all the neighbors of vertex typevtc andw(vtc, vtd) is
a weight function measuring the uncertainty ofh(vtc, vtd).
The uncertainty associated withh(vtc, vtd) stems from the
fact that the ontology graph (on whichh(vtc, vtd) is com-
puted) is an abstraction of the semantic graph. That is, a
permissible path according to the ontology graph may not
exist in the semantic graph.

Our two probabilistic approaches define different choices
for w. As long asw is between 0 (i.e., no uncertainty) and 1
(i.e., complete uncertainty), our new probabilistic heuristic
functionh′(vtc, vtd) is 1-admissible(Pearl 1984). In other
words,h′(vtc, vtd) never overestimates the cost of reaching
the destination vertex by more than a factor of two. The
proof is as follows. The upper bound forh′(vtc, vtd) is
h(vtc, vtd) + h(vtc, vtd) = 2 × h(vtc, vtd), which occurs
whenw(vtc, vtd) is one (i.e., there is complete uncertainty)
andhmin(vtc, vtd) is one (i.e., minimum distance to the des-
tination vertex is determined to be one).1

For the dynamic weighting heuristic, we did not choose
the following heuristic:

h′(vtc, vtd) = w(vtc, vtd)× h(vtc, vtd) (3)

because it is not admissible. Here is an example that illus-
trates this point. Suppose we have the following:

• Path 1:w1(vtc, vtd)× h1(vtc, vtd) = 0.5× 5 = 2.5. So,
f1(s, c, d) = g(s, c) + 2.5.

• Path 2:w2(vtc, vtd)× h2(vtc, vtd) = 0.2× 9 = 1.8. So,
f2(s, c, d) = g(s, c) + 1.8.

Sinceg(s, c) ≥ 0 andf2(s, c, d) ≤ f1(s, c, d), path 2 will be
examined before path 1. But,h2(vtc, vtd) ≥ h1(vtc, vtd),
which means that an optimal answer may not be found!

Setting the Uncertainty Weight,w
The weight w(vtc, vtd) is a normalized range function,
which represents the uncertainty of the path fromc to d in
the semantic graph. In particular, this weight function is de-
fined in terms of minimizing the cost associated with visiting
neighbors ofc in the semantic graph that either do not lead
to d or lead to long path(s). We define this uncertainty cost
to be one minus the certainty of an edge type’s occurrence.

1The lower bound forh′(vtc, vtd) is h(vtc, vtd), which occurs
whenw(vtc, vtd) is zero,i.e., there is no uncertainty.

In other words, an edge type with high certainty in the on-
tology is expected to have a low uncertainty (or cost) in the
semantic graph. Specifically,w(vtc, vtd) equals:2

max(PathUncertainty)−min(PathUncertainty)

max(PathUncertainty))
(4)

The terms max(PathUncertainty) and
min(PathUncertainty), respectively, refer to the
maximum and minimum uncertainty of edges on the path
from vtc to vtd in the ontology graph.3

We measure uncertainty with a probabilistic function that
is based on the frequencies of vertex and edge types.4 In par-
ticular, uncertainty(vtc, vtd) = 1 − certainty(vtc, vtd).
To calculate the certainty of a path, we need to de-
fine the certainty of an edge. In particular, the function
certaintyetk

(vti, vtj) measures theprobability of a given
vertex,i, of typevti having at leastone edge of typeetk =
(vti, vtj). We define this probability to be as follows:

Pr(etk|vti) = Pr(vti − [etk] → vtj |vti) = (5)

Pr(∃ at least one edgeetk : vti − [etk] → vtj |vti) =

1−

((|vti|−1)×|vtj |
|etk|

)(|vti|×|vtj |
|etk|

) = 1−
∏|vtj |−1

l=0 (|vti||vtj | − |etk| − l)∏|vtj |−1
l=0 (|vti||vtj | − l)

The number of elements in the sample space is repre-
sented by the denominator, which is the total number of
all possible graph structures with|vti| vertices of typevti
linked to |vtj | vertices of typevtj by |etk| edges of type
etk. There are two events within the sample space: (i) a
given vertexvti has at least one outgoing edge of typeetk
or (ii) a given vertexvti has no outgoing edge of typeetk.
The numerator of Eq. 5 is the number of graphs in which a
given vertex of type|vti| has at least one outgoing edge of
type etk. Two noteworthy observations about Eq. 5 are (i)
large values for|vtj | make the product term smaller since
each factor is less than 1; consequently the certainty value
increases and (ii) additional factors become important when
|etk| is small compared to|vti| × |vtj |.

The functioncertaintyetk
(vti, vtj) assumes that there

are no redundant edges in the semantic graph. That is, we
depend on the following axiom:

Axiom 1: Let there be no redundant edges in the semantic
graph. Then, for any edge typeetk = (vti, vtj) ∈ TE and
vti, vtj ∈ TV , | etk | ≤ | vti | × | vtj |, where| vti |,
| vtj |, and| etk | are the number of timesvti, vtj , andetk
occur in the semantic graph, respectively.

Axiom 1 states that the number of occurrences of an edge
type in a semantic graph cannot be greater than the product
of the number of occurrences of the vertex types to which it

2If max(PathUncertainty) is zero,w(vtc, vtd) is set to one
and not infinity.

3For paths fromvtc to vtd, max(PathUncertainty) =
max({∀(i, j) ∈ path(vtc, vtd) : (1 − certainty(vti, vtj))})
andmin(PathUncertainty) = min({∀(i, j) ∈ path(vtc, vtd) :
(1− certainty(vti, vtj))}).

4The statistics relating to the number of occurrences of each
vertex and edge types are collected when the semantic graph is
being constructed.

connects. Figure 3 illustrates this point. If a semantic graph
has three instances of the vertex typevti (namely,A, B, and
C) and two instances of the vertex typevtj (namely,D and
E), then their connecting edge typeetk cannot occur more
than six times since redundant edges are prohibited (e.g., two
instances of edge typeetk cannot connectA to D).

A
(vti)

B
(vti)

C
(vti)

D
(vtj)

E
(vtj)

etk

etk

etk

A
(vti)

B
(vti)

C
(vti)

D
(vtj)

E
(vtj)

etk

etk

etk

Figure 3: Portion of a semantic graph, which illustrates Ax-
iom 1. Since no redundant edges are allowed, there cannot
be more than six instances ofetk between the three instances
of vti and the two instances ofvtj .

Axiom 1 provides us with a lower-bound for our edge cer-
tainty measure as defined in Eq. 5. In particular, the certainty
of an edge of typeetk existing in a semantic graph is never
less than

| etk |
| vti | × | vtj |

(6)

The certainty measure (as defined in Eq. 5) and its es-
timate (as defined in Eq. 6) allow us to make conclusions
about the semantic graph without having to traverse the large
graph itself. For instance, here are two simple and extreme
scenarios. Suppose we have an ontology graphT contain-
ing verticesvti andvtj that are connected via an edgeetk =
(vti, vtj). In the first scenario, the frequency statistics indi-
cate that the semantic graphG contains only one instance of
etk, vti, andvtj each. Therefore, we can infer with 100%
certainty that a path of length one exists inG from the only
vertex of typevti to the only vertex of typevtj via the edge
of typeetk. In the second scenario, the frequency statistics
indicate that no instance ofetk exists in the semantic graph
G even though multiple instances ofvti andvtj are present
in G. Here we can conclude that a path of length one does
not exist inG from a vertex of typevti to a vertex of type
vtj .

With Axiom 1 and Eq. 5 in mind, we present our two
probabilistic certainty functions in the next subsections.

Certainty as Likelihood Our likelihood certainty mea-
sure,certaintyL(vtc, vtd), estimates the likelihood of each
edge on a path fromvtc to vtd and assigns the max-
imum (edge) likelihood as the certainty value for the
path. Using Eq. 5, we computecertaintyL(vtc, vtd)
according to the following rules. Ifc ≡ d, then
certaintyL(vtc, vtd)=1. Otherwise,certaintyL(vtc, vtd) =
max({∀vtc′ ∈ Neighbors(vtc) : (1 − Pr(vtc → vtc′ |vtc)),
certaintyL(vtc′ , vtd)}).

The functioncertaintyL(vtc, vtd) is biased towards edge
types with high certainties because such edge types are
expected to map back to edges with low costs (or uncer-
tainties) in the semantic graph (recall thatuncertainty =

1 − certainty). In particular, among the neighbors ofvtc
(in the ontology), we choose the neighbor with the highest
certainty of having an edge in the semantic graph.

Certainty as Posterior Probability Our posterior prob-
ability certainty measure,certaintyP (vtc, vtd), computes
the posterior probability of each edge on a path fromvtc to
vtd and assigns the maximum (edge) posterior probability as
the certainty value for the path. We use Bayes’ Theorem and
Eq. 5 to calculatecertaintyP (vtc, vtd) according to the fol-
lowing rules. Ifc ≡ d, thencertaintyP (vtc, vtd)=1. Other-
wise,certaintyP (vtc, vtd) = max({∀vtc′ ∈ Neighbors(vtc) :

(
likelihood(vtc,vtc′)×prior(vtc,vtc′)

marginal(vtc′)
), certaintyP (vtc′ , vtd)}).

We compute the likelihood of an edge type(vtc, vtc′)
occurring at least once in the semantic graph with
likelihood(vtc, vtc′) = 1 − Pr(vtc → vtc′ |vtc). To calculate
the unconditional prior probability of an edge existing be-
tweenvtc andvtc′ , we useprior(vtc, vtc′) =

|(vtc,vtc′)|∑K
i=1|(vtc,vtc′)|

,

where K =| Neighbors(vtc) |. The marginal normal-
ization computes the unconditional probability of a
vertex of typevtc′ occurring in the semantic graph with
marginal(vtc′) =

|vtc′ |∑K
i=1 vti

, whereK =| Neighbors(vtc) |.
The functioncertaintyP (vtc, vtd) is biased towards edge

types with high posterior probability because such edge
types are expected to map back to edges with low costs in
the semantic graph. Specifically, among the neighbors of
vtc (in the ontology), we select the one with the highest pos-
terior probability of having an edge in the semantic graph.

Section Summary
To recap our two probabilistic heuristics utilize the follow-
ing heuristic function:

h′(vtc, vtd) = h(vtc, vtd) + w(vtc, vtd)×
h(vtc, vtd)

hmin(vtc, vtd)

The weightw(vtc, vtd) measures the uncertainty of an edge
type’s occurrence in the semantic graph with the following
formula:

max(1− certainty(vtc, vtd))−min(1− certainty(vtc, vtd))

max(1− certainty(vtc, vtd))

In the Experiments Section, we embed our heuristics into
unidirectional and bidirectional A* (Pearl 1984) to measure
their performances.

Experiments
In this section, we embed our probabilistic heuristics and the
simple non-probabilistic heuristic into A* and compare their
performances to breadth-first search on two large real-world
semantic graphs and their ontologies. Our experiments in-
clude both unidirectional and bidirectional searches. We
utilize standard implementations of A* (with a heap) and
breadth-first search. In the bidirectional searches, we expand
the most promising direction first. Specifically, the order of
expansion is forward search followed by backward search
if g(s, c) in the forward direction is less thang(d, c) in the
backward direction.

Performance Metrics
Our performance metrics are (i) the number of vertices vis-
ited, (ii) the work factor, (iii) the stretch factor, and (iv) the
relative branching factor. The work factor is the ratio of
the number of vertices visited with heuristich versus the
number of vertices visited with breadth-first search. Con-
ceptually, the work factor is an estimate of how much faster
the search algorithm with our heuristic is compared to the
breadth-first search algorithm. On the other hand, the stretch
factor is a quality metric and is the ratio of the path length of
the subgraph returned by heuristich versus the path length
of the subgraph returned by breadth-first search.5 The rel-
ative branching factor is is another measure of how much
work an algorithm is performing and equals the ratio of the
effective branching factor with heuristich versus the effec-
tive branching factor with breadth-first search.

We will use the following notation in reporting our results:

• CTE
: edge connectivity6 in an ontologyT .

• CGE
: edge connectivity in a semantic graphG.

• BST: # of vertices visited by breadth-first search.

• STD: # of vertices visited by A* search with the standard
cost function (i.e., the heuristic function is not weighted).

• LKL: # of vertices visited by A* search with our
likelihood-based heuristic.

• PST: # of vertices visited by A* search with our posterior-
probability-based heuristic.

• N: # of vertices visited,WF: work factor,SF: stretch fac-
tor, andBF: branching factor.

Description of Real Data
We use two real-world semantic graphs to test our heuris-
tics. The first semantic graph is a terrorism graph generated
from data available at the Anti-Defamation League Web site.
The ontology for this graph was generated from the infor-
mation available athttp://www.teknowledge.com .
The second semantic graph is a movie graph generated from
the data available at the IMDB Web site and listed in the
UCI KDD Repository (http://kdd.ics.uci.edu/).
See Barth́elemy, Chow, and Eliassi-Rad (2005) for details
on the ontology for the movies graph. Table 1 summarizes
the information in these two semantic graph and their corre-
sponding ontology.

Results on Real-World Semantic Graphs
For our experiments, we randomly select 100 pairs of source
and destination vertices and average the results. Since the
relative branching factor depends on path length, we report
results on the most common path length for each graph. Ta-
bles 2 and 3, respectively, show the results forQ1 (shortest

5The path length returned by breadth-first search is the ground
truth when the optimal path is defined to be shortest path.

6The edge connectivity on a graphG(V, E) is defined as|E|
|E′| ,

where| E | is the number of edges inG and| E′ | is the number of
edges in a fully connected graph with| V | vertices (i.e., | E′ |=
| V | × | V |).

Table 1: Information on Two Real-World Semantic Graphs
and Their Ontologies (TRSM: Terrorism Data and IMDB:
Movies Data

Data | V | | E | | TV | | TE | CGE CTE

TRSM 2436 25234 59 522 0.0043 0.15
IMDB 42026 528756 8 30 0.0003 0.47

path) andQ2 (shortest subgraph) with unidirectional search
in the terrorism and movies semantic graphs.

Table 2: Average Performance Over 100 Runs for Finding
the Shortest Path with Unidirectional Search

Data BFS STD/BFS LKL/BFS PST/BFS
TRSM N=1902 WF=0.781 WF=0.697 WF=0.666

SF=1.000 SF=1.008 SF=1.004
Path Length=3 BF=0.901 BF=0.816 BF=0.777

IMDB N=32918 WF=0.769 WF=0.720 WF=0.669
SF=1.000 SF=1.017 SF=1.028

Path Length=4 BF=0.908 BF=0.838 BF=0.796

Table 3: Average Performance Over 100 Runs for Finding
the Shortest Subgraph with Unidirectional Search

Data BFS STD/BFS LKL/BFS PST/BFS
TRSM N=2240 WF=1.000 WF=1.000 WF=1.000

SF=1.000 SF=1.000 SF=1.000
Path Length=3 BF=1.000 BF=1.000 BF=1.000

IMDB N=36724 WF=1.000 WF=1.000 WF=0.998
SF=1.000 SF=1.005 SF=1.002

Path Length=4 BF=1.000 BF=0.997 BF=0.998

Tables 4 and 5, respectively, depict the results forQ1

(shortest path) andQ2 (shortest subgraph) with bidirectional
search in the terrorism and movies semantic graphs.

Table 4: Average Performance Over 100 Runs for Finding
the Shortest Path with bidirectional Search

Data BFS STD/BFS LKL/BFS PST/BFS
TRSM N=1777 WF=0.765 WF=0.472 WF=0.531

SF=1.000 SF=1.003 SF=1.004
Path Length=3 BF=0.924 BF=0.567 BF=0.625

IMDB N=31585 WF=0.537 WF=0.376 WF=0.375
SF=1.000 SF=1.000 SF=1.000

Path Length=4 BF=0.790 BF=0.615 BF=0.686

Table 5: Average Performance Over 100 Runs for Finding
the Shortest Subgraph with bidirectional Search

Data BFS STD/BFS LKL/BFS PST/BFS
TRSM N=2188 WF=0.980 WF=0.965 WF=0.953

SF=1.000 SF=1.000 SF=1.000
Path Length=3 BF=0.983 BF=0.984 BF=0.981

IMDB N=36078 WF=0.974 WF=0.674 WF=0.743
SF=1.000 SF=1.000 SF=1.000

Path Length=4 BF=0.978 BF=0.845 BF=0.898

Discussions
Here are some notable observations about our experiments:

• The performances of our heuristics depend on the prop-
erties of the ontology. For example, if the ontology is a
fully connected graph (i.e., a clique) then no additional in-
formation is provided by the heuristic term of the simple
A* cost function. The same issue applies to our proba-
bilistic heuristics when the ontology is a clique andall
vertex types and all edge types appear with the same fre-
quencies in the semantic graph. On the other hand, the
heuristic term of a cost function becomes much more use-
ful when the ontology has a large average path length.
For instance, our heuristics perform better on the movies
domain than on the terrorism data since the average path
length in the movies ontology is larger than that of the ter-
rorism domain. In particular, the average path length for
the movies ontology is 1.5 and for the terrorism ontology
is 0.964. Very small average path lengths in the ontology
graph (especially values less than 1 which indicate discon-
nected components in the graph) reduce the effectiveness
of our heuristics for finding shortest subgraphs more than
for finding shortest paths. This is not surprising since the
former task is harder than the latter.

• Bidirectional search consistently outperforms unidirec-
tional search on both domains because of the small av-
erage path lengths in semantic graphs (which leads to
finding an intersection between the forward and backward
frontiers quicker than finding the destination vertex). For
example, in the terrorism domain the average path length
of the semantic graph is 2.837. In the movies domain the
average path length of the semantic graph is 3.385.

• When finding single shortest paths with either unidirec-
tional or bidirectional search algorithms, A* with our
probabilistic heuristics outperforms (in work factor and
relative branching factor) both A* with the simple non-
probabilistic heuristic and breadth-first search. The pos-
terior probability-based heuristic performs slightly better
then the likelihood-based heuristic since it takes into ac-
count the current vertex’s local neighborhood information
when making choices about vertex exploration.

• For our probabilistic heuristics in A*, all stretch factors
satisfy the 1-admissibility bound. Specifically in our ex-
periments, whenever the stretch factor was not 1, A* with
the probabilistic heuristic missed the shortest path length
by one edge. However, in these cases, the work and
branching factors of the heuristic search were consider-
ably lower than those of breadth-first search or A* with
the simple non-probabilistic heuristic. The stretch factors
were closer to 1 with bidirectional search than with uni-
directional search. This is not surprising since semantic
graphs typically have small average path lengths.

Conclusion
Many real-world graphs fall under the category of semantic
graphs. Such graphs encode human-understandable entities
and relationships. As the sizes of such real-world graphs in-
crease, the need for fast path-finding algorithms grows. In

this paper, we present and examine two probabilistic heuris-
tics for searching large real-world semantic graphs to re-
trieve shortest path or subgraphs between two given ver-
tices. In particular, we utilize both the statistical and the
connectivity information encoded in the ontology graph to
calculate the probability of a path’s existence in the seman-
tic graph. We embed our probabilistic heuristics into A*
and compare their performances to breadth-first search and
A* search with a non-probabilistic heuristic. Our heuris-
tics are based on simple probability calculations and can be
efficiently computed and inserted into any informed search
algorithm. Our experimental results with both unidirectional
and bidirectional search algorithms demonstrate the advan-
tages of our approach on real-world semantic graphs.

Acknowledgements
This work was performed under the auspices of the U.S.
Department of Energy by the University of California
Lawrence Livermore National Laboratory under contract
No. W-7405-ENG-48.1 UCRL-CONF-202002. We thank
Keith Henderson, Branden Fitelson, Bill Hanley, and David
Jensen for their input and assistance.

References
Barth́elemy, M.; Chow, E.; and Eliassi-Rad, T. 2005.
Knowledge representation issues in semantic graphs for re-
lationship detection. InPapers from the 2005 AAAI Spring
Symposium–AI Technologies for Homeland Security.
Coffman, T.; Greenblatt, S.; and Marcus, S. 2004. Graph-
based technologies for intelligence analysis.Communica-
tions of ACM47:45–47.
Faloutsos, C.; McCurley, K.; and Tomkins, A. 2004. Fast
discovery of connection subgraphs. InProc. of the 10th
ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining, 118–127. Seattle, WA, USA: ACM Press.
Getoor, L. 2003. Link mining: A new data mining chal-
lenge.SIGKDD Explorations5(1):84–89.
McGovern, A., and Jensen, D. 2003. Identifying predictive
structures in relational data using multiple instance learn-
ing. In Proc. of the 20th Int’l Conf. on Machine Learning,
528–535. Washington, DC, USA: AAAI Press.
McGovern, A.; Friedland, L.; Hay, M.; Gallagher, B.; Fast,
A.; Neville, J.; and Jensen, D. 2003. Exploiting relational
structure to understand publication patterns in high-energy
physics.SIGKDD Explorations5(2):165–173.
Neville, J.; Adler, M.; and Jensen, D. 2003. Clustering
relational data using attribute and link information. InProc.
of the Text Mining and Link Analysis Workshop, 18th Int’l
Joint Conf. on Artificial Intelligence.
Pearl, J. 1984.Heuristics: Intelligent Search Strategies
for Computer Problem Solving. Reading, Massachusetts:
Addison-Wesley.
Pohl, I. 1973. The avoidance of (relative) catastro-
phe, heuristic competence, genuine dynamic weighting and
computational issues in heuristic problem solving. InProc.
of the 3rd Int’l Joint Conf. on Artificial Intelligence, 20–23.

