

CDF Run II Silicon Tracking Projects

8th INTERNATIONAL WORKSHOP ON VERTEX DETECTORS Texel, Netherlands 20-25 JUNE 1999

Presented by Alan Sill Department of Physics Texas Tech University

Alan Sill, Texas Tech University

490 physicists from **41** institutions representing **8** countries

Alan Sill, Texas Tech University

Goals for CDF Run II Silicon

- Increase acceptance and coverage of luminous region along beam
 - Previous CDF vertex detectors covered interactions within |z| < 0.27 m, New silicon detectors designed to cover |z| < 0.43 m</p>
 - Interaction region expected to be more concentrated in z in Run II
 - > Increase silicon angular acceptance to cover approximately $\eta \leq$ 2.
 - Overall effect should be approximately a factor of 2 increase in acceptance for particles with good tracking and vertexing
- Improve top tagging for high-p_T physics:

	Single tag eff. (%)	Double tag eff.(%)
SVX + CTC (Run 1)	37.6 ± 1.0	$6.9\pm~0.5$
SVXII + COT	46.7 ± 1.1	$8.7\pm\ 0.6$
SVXII + ISL + COT	60.1 ± 1.0	15.1 ± 0.8

• Improve B physics capability of the experiment

Quadrant of CDF II Tracker

Alan Sill, Texas Tech University

Fermilab Run II Silicon

		ATTA		DØ	6 Barrels	F Disks	H Disks	Totals
			AA	Layers/planes	4	12	4	
				Δ_{Z}	77 cm	48 cm	10 cm	
		THE VI	V Č	Channels	387120	258000	147456	792576
		Borr.		Modules	432	144	192	768
				Readout Length	12 cm	7.5 cm	14.9 cm	
	~			Inner Radius	2.7 cm	2.6 cm	9.5 cm	2.6 cm
				Outer Radius	9.4 cm	10.5 cm	26 cm	26 cm
CDF	Layer 00	SVX II	ISL	Totals]			Layer
CDF	Layer 00	SVX II	ISL	Totals]			Layer
CDF Layers	Layer 00 1	SVX II 5	ISL 2	Totals 8				Layer
CDF Layers Length	Layer 00 1 0.9 m	SVX II 5 0.9 m	ISL 2 1.9 m	Totals 8				Layer
CDF Layers Length Channels	Layer 00 1 0.9 m 13824	SVX II 5 0.9 m 405504	ISL 2 1.9 m 303104	Totals 8 1 722432				Layer
CDF Layers Length Channels Modules	Layer 00 1 0.9 m 13824 48 SS	SVX II 5 0.9 m 405504 360 DS	ISL 2 1.9 m 303104 296 DS	Totals 8 4 722432 5	ISL			Layer
CDF Layers Length Channels Modules Readout Length	Layer 00 1 0.9 m 13824 48 SS 14.8 cm	SVX II 5 0.9 m 405504 360 DS 14.5 cm	ISL 2 1.9 m 303104 296 DS 21.5 cr	Totals 8 4 722432 5 704 n	ISL			Layer
CDF Layers Length Channels Modules Readout Length Inner Radius	Layer 00 1 0.9 m 13824 48 SS 14.8 cm 1.35 cm	SVX II 5 0.9 m 405504 360 DS 14.5 cm 2.5 cm	ISL 2 1.9 m 303104 296 DS 21.5 cr 20 cm	Totals 8 4 722432 5 704 n 1.35 cm	ISL			Layer
CDF Layers Length Channels Modules Readout Length Inner Radius Outer Radius	Layer 00 1 0.9 m 13824 48 SS 14.8 cm 1.35 cm 1.65 cm	SVX II 5 0.9 m 405504 360 DS 14.5 cm 2.5 cm 10.6 cm	ISL 2 1.9 m 303104 296 DS 21.5 cr 20 cm 28 cm	Totals 8 4 722432 5 704 n 1.35 cm 28 cm	ISL			Layer

Alan Sill, Texas Tech University

CDFII Silicon Tracker: Layer 00 + SVXII + ISL

Goals and Features:

- Precise 3D track impact parameters
 - B tagging: top, SUSY, Higgs
 - B Physics
- Improved forward coverage
 ► 0 ≤ |η| ≤ 2
- Level II displaced-track trigger (SVT)
 - Hadronic B decays
 - Calibration triggers
- Improved p_T resolution
- High tracking efficiency with good purity

Alan Sill, Texas Tech University

SVX3D R/O Chip

- Rad-hard 0.8 um Honeywell CMOS
- Tested to ~ 4 MRad
- Deadtimeless

- Dynamic pedestal subtraction
- Common to all Run II CDF silicon projects

SVX3D R/O Chip

Readout Chip Specifications

Specification	Description	Value or Range
GENERAL		
Power	Power dissipation depends on L1 rate	350 mW-450 mW
Noise	ENC versus cap. at min and max BW	500 e + 21 e/pF 750 e + 53 e/pF
Radiation hardness	Meet operating specs after dose	1.5 MRad
PREAMPLIFIER		
Input channels	Charge to voltage amplifier	128 parallel channels
Polarity	Polarity of the input signal	Selectable at initialization
Gain	Preamplifier gain	5.0 mV/fC
Gain variation	Channel to channel gain variation	< 0.5 mV/fC
Dynamic range	Linear range of preamplifier	≥ 450 fC
Rise time	10-90% rise time @ 22 pF	10ns-62ns
Maximum rise time	Maximum rise time versus capacitance	≤ 2.8 ns/pF
Reset time	Preamplifier reset time	≤ 1.6 μs
PIPELINE		
Length	Analog dual ported pipeline length	42 cells-length selectable at initialization
Buffer	Number of cells for L1 accept	4 cells
Speed	Variable depending on clock speed	100ns-400ns
Gain	Pipeline read/write amplifier gain	3.0 V/V
Gain variation	Variation in pipeline gain	≤ 1 mV
Reset time	Time to clear old and setup for new	25 ns
ADC		
Principle feature	Digitization of 128 channels in parallel	NA
Bits	Number of bits utilized	7 bits
Gain	Selectable with external resistor	300-4000 e/count
Pedestal	Selectable with external resistor	0-63 counts
Threshold	Selectable	0-127 counts
Threshold variation	Channel to channel threshold variation	≤ 1000 e
Time	Time to digitize 7 bits	≤ 1.2 μs
Sparse	Sparsification of data an option	Yes with nearest neighbor option
Speed	Readout of digitized data	≥ 53 Mbytes/s
INPUT/OUTPUT	Ŭ	,
Differential	Protocol for differential signals	LCDS 2.5 V \pm 0.1 V swing
Single ended	Protocol for single ended signals	0-5 V CMOS

Alan Sill, Texas Tech University

SVX II Collaboration

Academia Sinica, Taiwan Fermilab Harvard University Hiroshima University The Johns Hopkins University Lawrence Berkeley National Laboratory University of New Mexico University of Padua University of Pittsburgh Purdue University University of Rochester Rutgers University Texas A&M University Texas Tech University Toronto University Yale University

SVX II: 3 Barrels, 5 Layers

SVX II vs. Previous Detector

	SVX'	SVX II
Readout Coor	r-φ	r- ϕ , z
# of Barrels	2	3
# of layers / barrel	4	5
# of wedges / barrel	12	12
Ladder length	25.5 cm	29.0 cm
Barrel length	51 cm	87 cm
Layer geometry	3 ⁰ tilt	staggered radii
Radius inner layer	3.0 cm	2.44 cm
Radius outer layer	7.8 cm	10.6 cm
r-	60;60;60;55 μm	60;62;60;60;65 μm
r-z readout pitch	absent	141;125.5;60;141;65 μm
Length readout channel (r-q)	25.5 cm	14.5 cm
r–¢ chips / ladder	2;3;4;6	4;6;10;12;14
r-z chips /ladder	absent	4;6;10;8;14
r–¢ channels	46,080	211,968
r-z channels	absent	193,536
Total channels	46,080	405,504
Total chips	360	3168
Total detectors	288	720
Total Ladders	96	180

Alan Sill, Texas Tech University

SVXII Parameters

SVX II Parameters						
Number of Barrels	3					
Active length per barrel	29 cm					
Number of layers	5					
Readout coordinates per layer	Φ+z / Φ+Φ'					
Radius of inner and outer layers	2.45 cm, 10.6 cm					
Ladders per barrel-layer = Φ sectors	12					
Each 1/2 ladder is one electrical unit of length	14.5 cm					
Total number of electrical Φ sector wedges	72					
Readout channels: Φ	211,968					
Readout channels: z	193,536					
Total	405,504					

parameters per layer	Φ readout (inner to outer radius)					Z (inner t	reado o outer	ut radius)		
z, Φ ' angle (deg)	0	0	0	0	0	90	90	1.2	90	-1.2
readout pitch pitch (µm)	60	62	60	60	65	141	126	60	141	65
Readout chips (128 channel) per 1/2 ladder	2	3	5	6	7	2	3	5	4	7

Alan Sill, Texas Tech University

Silicon Specifications

SVX II silicon sensor specifications for Hamamatsu (90° layers 0,1, 3) and Micron (1.2° layers 2, 4)

Table 1. Electrical specifications of the sensors							
Specifications:	Description:	Hamamatsu:	Micron:				
I _{leakage}	current from bulk, surface, and edge	<50nA/cm ² 100V , 20 C	<100nA/cm ² at 80 V , 20 C				
dI _{leakage/dV}	change in leakage current	<0.12nA/V/cm ² ?					
$V_{depletion}$	depletion voltage	45V <v<sub>dep<80V</v<sub>					
rho	bulk resistivity		Approx.=3KOhmem				
$v_{junction_break}$	junction breakdown with open readout	>2007	>150V				
V _{m.isro_dissharge}	onset voltage of micro-discharge (balanced bias, readout grounded, n & p side)	>150V	>150V				
V _{break}	breakdown of voltage of coupling capacitor	>100V	>120V				
R _{interstrip}	interstrip resistance	>2 GOhm	>2 GOhm				
R _{biss}	polysilicon resistor value , variation p-side n-side	2.5 <u>+</u> 1.0 MOhm 3.5 <u>+</u> 1.0 MOhm	2.5 <u>+</u> 0.5 MOhm 2.5 <u>+</u> 0.5 MOhm				
R _{implant}	resistivity of implant strip	<100 KOhm/cm					
R _{Al}	resistivity of Al layers	<25 Ohm/cm	<30 Ohm/cm				
c _c	capacitance of coupling capacitor	>10 pF/cm	>12 pF/cm				
C _{total}	total capacitance (full length at bias voltage of 1.2 x Vdepletion) p-side n-side	<(10,10,10) pF <(13,14,15) pF	<10 pF <10 pF				
Bad Strips	number of bad strips	<3% on all, <2% average	<3% on all, <2% on at least half				

Table 2: Mechanical properties and specifications of the sensors.

Property:	Layer 0:	Layer 1:	Layer 2:	Layer 3:	Layer 4:
stereo angle, n-strips (deg.)	90	90	-1.2	90	+1.2
number of production sensors+	144	144	144	144	144
total width (mm)	17.14	25.60	40.300	47.80	60.170
total length (mm)	74.3	74.3	74.3	74.3	74.3
active width (mm)	15.4	23.8	38.340	46.10	58.175
active length (mm)	72.43	72.43	72.38	72.43	72.38
thickness (um)	300 <u>+</u> 15	300 <u>+</u> 15	300 <u>+</u> 25	300 <u>+</u> 15	300 <u>+</u> 25
flatness#	<100	<100	<100	<100	<100
Phi strips	256*	384*	640*	768	896*
Z strips	512*	576*	640	512	896
Phi chips	2	3	5	6	7
Z chips	2	3	5	4	7
Phi strip pitch (um)	60	62	60	60	65
Z strip pitch (um)	141	125.5	60	141	65
2 nd Al layer pitch (um)	58	60		60	
bond pads (um)	60x200	60x200	60x150	60x200	60x150
Phi implant width (um)	14	14	15	14	15
Z implant width (um)	20	20	15	20	15
Al width, n and p (um)	8	8	10	8	8
p-stop width, common (um)	21	21	28	21	30
p-stop width, individual (um)	15	15		15	
implant to p-stop (um)	10	10	9	10	10
implant depth (um)	1.5 <u>+</u> 0.3	1.5 <u>+</u> 0.3	>0.75	1.5 <u>+</u> 0.3	>0.75
p-stop implant (boron/cm ²)	≥1x10 ¹⁴	≥1x10 ¹⁴	>5x10 ¹³	≥1x10 ¹⁴	>5x10 ¹³
SiO ₂ passivation, p-side (um)	3.0	3.0	1.0	3.0	1.0
SiO ₂ passivation, n-side (um)	0.5-0.8	0.5-0.8	1.0	0.5-0.8	1.0
C _{coupling} dielectric (um)	0.22\$iO ₂ +0.1\$i ₃ N ₄	0.22\$iO ₂ +0.1\$i ₃ N ₄		0.22SiO ₂ +0.1Si ₃ N ₄	
double metal SiO ₂ (um)	5	5		5	

#Each sensor of thickness T must fit between plates seperated by T+100 um.

Alan Sill, Texas Tech University

SVXII Barrel Fabrication

Test assembly with mock aluminum bulkheads and mechanically accurate ladders

Fixture for installing SVX II ladders into barrel (precision aligned bulkhead pair)

Alan Sill, Texas Tech University

SVX II Ladders

Alan Sill, Texas Tech University

FNAL, INFN-Pisa, INFN-Padova, LBNL, Purdue,U.California-Davis, U. Florida, U. Glasgow, U. Liverpool

Layer 00

• Beam pipe layer of 1-Sided Silicon

- Improve IP resolution
 - Better B tagging for higgs, SUSY
- Extend useful lifetime
- Long-term operational experience with LHC rad-hard silicon

Resolution improvements:

Alan Sill, Texas Tech University

Layer 00 Design Values

Layer 00 Mechanical Specifications

General

Property	Value	Tolerance	Status	Notes
# channels	13,824	n/a	final	*
# phi segments	6 wide + 6 narrow	n/a	final	60 degree symmetry
R _{narrow}	1.35 mm	*	+/- 0.5mm	*
R _{wide}	1.62 mm	*	+/- 0.5mm	*
phi overlap	~30 strips	n/a	*	*
# z segments	6	n/a	final	2 sensors/z-segment
gap at z=0	10mm	*	+/-5 mm	*
operating temperature	5C	*	+/- 5C	*

Silicon Sensor Units

Property	Value	Tolerance	Status	Notes
# sensors / sensor unit	2	n/a	final	wirebonded together
sensor unit length	157.0 mm	*	+/- 1mm	2 X 78.4 + 0.2
# wide units	36	n/a	final	*
channels / wide unit	256	n/a	final	*
# narrow units	36	n/a	final	*
channels / narrow unit	128	n/a	final	*

Cabling							
Property	Value	Tolerance	Status	Notes			
# cables (total)	120	n/a	final	*			
# cables / wide segment / end	6	n/a	final	3X(2/sensor unit)			
# cables / narrow segment / end	4	n/a	final	2X(1/sensor unit) + 1X(2/sensor unit)			

Hybrids

Property	Value	Tolerance	Status	Notes
# hybrids (total)	48	n/a	final	12 triplets + 36 doublets
<pre># hybrids / wide segment / end</pre>	3	n/a	final	doublets (2 chips)
# hybrids / narrow segment / end	1	n/a	final	triplets (3 chips)

SVXII Inner Screen

Property	Value	Tolerance	Status	Notes
composition	3-ply pre-preg carbon fiber	n/a	final	0-60-120 layup
length	960 mm	*	final	centered on z=0
outer radius	20.50 mm	*	final	*
inner radius	20.25 mm	*	+/- 0.05 mm	*

Cooling

Property	Value	Tolerance	Status	Notes
# cooling tubes	4	n/a	?	*
coolant	water/glycol	n/a	?	*
coolant temp	0C	*	?	*
tube R _{outer}	0.75mm	*	?	*

*Information not yet available ? = current best guess

Alan Sill, Texas Tech University

Layer 00 in SVX II

Alan Sill, Texas Tech University

FNAL, INFN-Pisa, INFN-Padova, INFN-Bologna, LBNL,Texas A&M, U.California-Davis, U.California-Los Angeles, U. Cassino, U. Florida, U. Karlsruhe, U. Rochester,U. Tsukuba, Osaka City University

Intermediate Si Layers

- CDF ISL: Proposal and Conceptual Design (FNAL). Final Design (Pisa).
 - Emphasis on simplicity and low cost.
- Space frame manufactured in Italy; INFN Pisa & FNAL are the main production sites (roughly half each).

Alan Sill, Texas Tech University

ISL Modules

• Overview of Design

- C Fiber substrate
 - All bond pads are accessible from both sides
- > 3 Sensors
 - 112 µm pitch (both sides)
 - Double Sided 1.2° Stereo Angle
- Hybrid mounted off Silicon
 - 8 readout chips per hybrid
- Module Production
 - Mechanical Fabrication:
 - less than 2 hours
 - Wirebonding:
 - 20 minutes per side (roughly 1 hour total w/setup)
 - Testing & Repair
 - Under study

ISL Ladder Assembly

- Pilot production ladders
 - Karslruhe fixtures refined w/use
- Hybrids
 - Expect all substrates end of summer
 - Prototypes operate as expected
 - Final assembly limited by SVX3D availability

Alan Sill, Texas Tech University

CDF Run II DAQ

- Fully pipelined
 DAQ+Trigger architecture (396 -->132 ns)
- Operates "deadtimeless"
- One of our largest subprojects
- Total board count >15,000.
- ~100 different custom boards
 - ~ 35 High volume boards (qty >100)
- For SVX3D, everything up to L1 accept is on the chip
- SVT (not covered here) provides L2 displaced-track trigger

Silicon DAQ

Component	Description		
Hybrid	BeO ceramic circuit glued to silicon sensor surface (both sides). Local bus, bypassing etc for SVX3 chips.		
HDI	Flex cable ladder to portcard: control & data signals, & power		
Portcard	Multiplex controls and power to hybrids, transfer data from HDI (Cu) to DOIM (fiber).		
DOIM	Dense Optical Interface Module: parallel fiber ribbon for data, 53 MHz, with laser diode array driver and pin diode array receiver. 5 DOIM links per portcard.		
Control Link	Cu control signals and clock, and power to the portcard.		
FTM	Fib Transition Module: DOIM receiver daughter board for the FIB.		
FIB	Fiber Interface Board: send control sequences to chips, multiplex data10 DOIMs into 4 GLinks (22.5:1).		
FFO	Fib Fan Out: fan out SRC command signals to FIBs, error handling.		
GLink	Commercial 1.5 GHz fiber link: Controls (SRC to FFO) and data (FIB to VRB [and SVT]).		
Fiber Splitter	Commercial optical splitter: FIB GLink to both VRB and SVT.		
VTM	VRB Transition Module: GLink receiver daughter board for the VRB		
VRB	VME Readout Buffer: data buffer for Level2 readout, data checking		
VFO	VRB Fanout: Distribute commands to VRBs		
SRC	Silicon Readout Controler: Master controller, trigger interface, synchronizes buffers with the rest of CDF, handles errors and recovery.		
Power Supplies	Commercial power supplies for sensor bias and chip power, one per portcard.		

SVXII DAQ

Alan Sill, Texas Tech University

each HDI (and DOIM) has 16 chips — 4 per side on each of two ladder ends

Final Assembly / Installation

Alan Sill, Texas Tech University

Simulation: Run II CDF Si

Open Inventor based

Alan Sill, Texas Tech University

Expected Performance

- Reported previously for SVX II, ISL
- Improvements with L00:

Alan Sill, Texas Tech University

CDF Run II Silicon

Conclusions

- SVXII + ISL + L00 design provides complete silicon tracker that should give robust performance throughout Run II
- Silicon on track for complete delivery by early to mid 2000
- Hybrid substrates complete (SVXII) or will be soon (ISL, L00); population in progress
- SVX3D chip provides rad-hard deadtimeless operation
- **PROBLEMS**:
 - Slow delivery of some silicon has delayed sensor production
 - Yield problems and other difficulties with Honeywell SVX3D
 - Infancy failures of some chips
- <u>SUCCESSES</u>:
 - Overall the projects are on track
 - Many problems solved
 - Installation sometime in 2000 should be possible