
1. Introduction

Adaptive grid refinement has been shown to be an
effective tool for reducing the size of the grid (and con-
sequently the linear system) required for a given accu-
racy when numerically solving partial differential equa-
tions. Problems involving singularities or multi-scale
behavior practically require adaptive refinement. When
implemented for parallel computers, dynamic load
balancing is required to keep all of the processors busy.
This involves partitioning the grid into equal sized
pieces (in some measure), and distributing the data
among the processors accordingly. Many of the meth-
ods for computing a partition are based on a lineariza-
tion of the elements (or path through the elements) in a
two-dimensional or three-dimensional grid, and then
cutting the linear sequence into pieces of equal size.
Some of the methods that fall into this category are the
space filling curves [1], OCTREE [2], and refinement-
tree [3] methods. Further information on partitioning
methods can be found in Ref. [4].

The space filling curve and OCTREE methods are
not guaranteed to create connected partitions, which
may be a desirable property. The refinement-tree
method is guaranteed to give connected partitions
provided that an appropriate linearization of the initial
coarse grid is given. Such a linearization would be a
Hamiltonian path, i.e., a path which passes from an
element to a neighboring element and goes through
each element exactly once. Heber et al. [5] proved that,
for grids consisting of triangles, a Hamiltonian path
always exists under very mild conditions. Moreover,
the proof is a constructive proof which leads to an
efficient algorithm to find a Hamiltonian path.
However, the refinement-tree partitioning algorithm
requires a stronger result in which the Hamiltonian
path always passes through vertices when moving
from one element to the next (as opposed to passing
through edges), and does not go out the same vertex
through which it came in. We call this a through-vertex
Hamiltonian path. Heber’s algorithm produces
Hamiltonian paths that pass through both vertices and
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edges. Additionally, Ref. [5] only addresses triangles,
not the other elements considered in this paper.

The main result of this paper is the proof that there
always exists a through-vertex Hamiltonian path in
grids consisting of triangles or tetrahedra, under very
mild conditions. The proof is constructive, which leads
to an algorithm to construct such a path. We do not
explicitly give the algorithm in this paper, but it follows
easily from the proofs of the main theorems. Little is
known about the conditions under which a Hamiltonian
path exists in grids consisting of quadrilaterals or hexa-
hedra. An algorithm is given that might find a through-
vertex Hamiltonian path in a quadrilateral or hexa-
hedral grid, if one exists, and is likely to give a
broken path with a small number of discontinuities,
i.e., something close to a through-vertex Hamiltonian
path.

The remainder of the paper is organized as follows.
In Sec. 2 we introduce the notation and define the terms
used in this paper. Section 3 addresses triangles and
tetrahedra. It reviews previously known results and
presents the main results of this paper. In Sec. 4 we
discuss quadrilaterals and hexahedra. Section 5 con-
tains the conclusions.

2. Definitions

For the purposes of this paper, an element, E, is a tri-
angle, quadrilateral, tetrahedron, or hexahedron. An
element contains vertices, v, and edges, e, with the
obvious definitions, and three-dimensional elements
contain faces, f.

A grid, G, is the union of a collection of elements,
{Ei}, all of the same kind, such that G = ∪Ei is a con-
nected, bounded region in ℜ2 or ℜ3, and E°i ∩ E°j = φ,
i ≠ j, where E° denotes the interior of element E, and φ
is the empty set. We say that Ei is an element of G,
Ei ∈ G. A vertex of Ei is a boundary vertex if it lies on
the boundary of G, and an interior vertex if it is not a
boundary vertex. We say the size of G, G, is N if there
are N elements in G. A triangular grid, quadrilateral
grid, tetrahedral grid, and hexahedral grid is a grid
consisting entirely of triangles, quadrilaterals, tetrahedra
and hexahedra, respectively.

A grid is said to be conforming if Ei ∩ Ej, i ≠ j, is a
common vertex, common edge, common face or empty.
A vertex of an element is called a hanging node if it lies
in the interior of an edge or face of another element. It
follows immediately from the definition that a con-
forming grid has no hanging nodes. A grid is said to be 

1-nonconforming if there is at least one hanging node in
the grid, all edges contain at most one hanging node,
the interior of all faces contain at most one hanging
node, and the intersection of two elements is a vertex,
edge or face of one of the elements, or empty. See Fig. 1
for examples of conforming and 1-nonconforming grids.
This paper will primarily consider triangular and
tetrahedral grids that are conforming, and quadrilateral
and hexahedral grids that are conforming or 1-noncon-
forming.

A path with length n in a grid G is a sequence
of elements, E1E2 . . . En, Ei ∈ G, i = 1, n , with
Ei ∩ Ei + 1 ≠ φ, and Ei ≠ Ei + 1, i = 1, n – 1. A cycle of
length n is a path of length n + 1 in which E1 = En + 1. A
Hamiltonian path is a path in which every element in G
appears exactly once. A Hamiltonian cycle is a cycle
in which every element in G appears exactly once
except for  E1 = En + 1, which appears exactly twice.

A sequence of elements E1E2 . . . En for which there
exists an i with Ei ∩ Ei + 1 = φ is called a broken path, and
the sequence Ei Ei + 1 is called a discontinuity in the path.

A through-vertex path (through-vertex cycle) is a
path (cycle) in which the passage from one element to
the next is specified as a common vertex, and the path
does not pass through the same vertex when entering
and exiting an element. Specifically, it is E1v1E2v2 . . .
vn – 1 En where vi ⊆ Ei ∩ Ei + 1, i = 1, n – 1, vi ≠ vi + 1, i = 1,
n – 2, and E1E2 . . . En is a path (cycle). We say that the
path passes through vi when going from Ei to Ei + 1, and
that we come into Ei through the in-vertex vi – 1 and
leave Ei through the out-vertex vi. A through-edge path
and cycle, and through-face path and cycle are defined
similarly. A through-vertex Hamiltonian path is a
through-vertex path that is also a Hamiltonian path, and
the definitions of the obvious similar terms are similar.
An unconstrained path is one that may pass through
any of vertices, edges or faces. Although the term is
redundant, we will use it when we want to emphasize
that the path is not constrained to pass through only
vertices, edges or faces.

A vertex, v, is called a cut vertex if G \ v is discon-
nected. See Fig. 2. A local cut vertex is a vertex whose
removal causes G to become disconnected locally.
Formally, v is a local cut vertex if there exists an R > 0
such that for all 0 < ∈ < R, (G ∩ B (v, ∈)) \ v is discon-
nected, where B (v, ∈) is the ball of radius ∈ centered at
v. Note that a cut vertex is also a local cut vertex. Figure
2(b) illustrates a local cut vertex that is not a cut vertex.
In three dimensions, the terms cut edge and local cut
edge are defined similarly.
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3. Triangles and Tetrahedra

In this section we present what is known about the
existence of the different types of Hamiltonian paths
and cycles for conforming triangular and tetrahedral
grids. We begin with a review of previously published
results. We then give the main results of this paper,
which are the existence of through-vertex Hamiltonian
cycles under very mild conditions. Counterexamples
are presented throughout to show conditions under
which Hamiltonian cycles and paths do not exist, and to
show that the conditions in the hypotheses of the
theorems are essential.

Note that the existence of a cycle implies the exis-
tence of a path. Therefore most of the existence state-
ments are made for cycles, and it is understood that the
same statement holds for paths.

Conversely, non-existence statements are usually
made about paths, and it is understood that the same
statement holds for cycles. The exceptions to this are
when quoting statements from other papers and when a
path exists but a cycle does not.

The following theorem is due to Heber et al. [5].

Theorem 1 There exists a Hamiltonian path for any
conforming triangular grid that contains no local cut
vertices.

The statement of the theorem in Ref. [5] does not
mention the absence of local cut vertices or that the grid
must be conforming, however the definition of a grid in
that paper is that it be a “simplicial complex coming
from the simplicial decomposition of a connected 2D

manifold” which implies these conditions. The theorem
also holds for Hamiltonian cycles, simply by starting
the base case in Heber’s inductive proof with a
Hamiltonian cycle between two triangles. The hypo-
theses of the theorem need to be extended slightly
because the definition of a cycle assumes at least two
elements.

Corollary 1 There exists a Hamiltonian cycle for any
conforming triangular grid, of size at least 2, that con-
tains no local cut vertices.

Hamiltonian paths and cycles also exist for tetrahe-
dral grids under similar conditions. This follows imme-
diately from Theorem 2 later in this section.

The following counterexamples show that the
absence of cut vertices is an essential condition for
Theorem 1, and the absence of local cut vertices is an
essential condition for Corollary 1. However, it is not
known whether the absence of local cut vertices is
essential for the Hamiltonian path.

Counterexample 1 There exists a triangular grid
containing cut vertices for which there is no
Hamiltonian path. See Fig. 3.

Counterexample 2 There exists a triangular grid
containing local cut vertices (but no cut vertices) for
which there is no Hamiltonian cycle. See Fig. 4.

Corollary 1 says that, under very mild conditions, we
can always find a Hamiltonian cycle (and hence a
Hamiltonian path) in a triangular grid. This is an uncon-
strained Hamiltonian cycle, i.e., it does not say whether
the passage from one element to the next is through a
vertex or edge. Indeed, the recursive algorithm implied
by the proof of Theorem 1 in Ref. [5] will usually result
in passages through both vertices and edges. The
obvious question is whether or not through-vertex
Hamiltonian cycles or paths and through-edge
Hamiltonian cycles or paths exist. The following well-
known counterexample shows that we cannot expect to
find a through-edge Hamiltonian path in a triangular
grid. In fact, determining whether or not a through-edge
Hamiltonian cycle exists in a triangular grid is known
to be NP-complete [6]. A similar counterexample can
be constructed for through-face Hamiltonian paths in
tetrahedral grids.

Counterexample 3 There exists a conforming trian-
gular grid with no local cut vertices for which there is
no through-edge Hamiltonian path. See Fig. 5.
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Fig. 1. (a) A conforming triangular grid. (b) A 1-nonconforming
quadrilateral grid. (c) A grid that is neither conforming nor 1-noncon-
forming, because an element edge contains more than one hanging
node.

Fig. 2. (a) A grid containing a cut vertex. (b) A grid containing a
local cut vertex. In each case, the vertex is shown as a large dot.



The situation is less grim for through-vertex
Hamiltonian cycles. The main result of this paper is that
through-vertex Hamiltonian cycles exist for triangular
and tetrahedral grids under conditions similar to those
for the existence of an unconstrained Hamiltonian
cycle. They again require a conforming grid with no
local cut vertices. Triangular grids also require that
there be at least one interior vertex, and tetrahedral
grids also require that there be no local cut edges.

The following lemma says that, under conditions that
will arise in the proofs of the main theorems, we can
always find two triangles that share a edge, or two tetra-
hedra that share a face.

Lemma 1 Let G be a conforming triangular (tetra-
hedral) grid with |G| ≥ 2, no local cut vertices and no
local cut edges. Let G1 ⊂ G contain no local cut ver-
tices and no local cut edges, G2 = G \ G1, |G1| ≥ 1, and
|G2| ≥ 1. Then

1. there exists E1, E2 ∈ G such that E1 ∩ E2 is a
common edge (face), and

2. there exists E1 ∈ G1 and E2 ∈ G2 such that
E1 ∩ E2 is a common edge (face).

Proof: For part 1, suppose there are no elements that
share an edge (face). Then all connections between
elements are vertices (or edges), which must then be
local cut vertices (or local cut edges) contradicting the
hypothesis that there are no local cut vertices or local
cut edges. 

For part 2, suppose there is no element in G2 that
shares an edge (face) with an element in G1. Then G1

and G2 are connected by only vertices (and edges),
which must then be local cut vertices (or local cut
edges).

We first give the main result for tetrahedral grids,
where the proof is shorter.

Theorem 2 Let G be a conforming tetrahedral grid
with |G| ≥ 2. If G contains no local cut vertices and no
local cut edges then there exists a through-vertex
Hamiltonian cycle for G.

Proof: We prove this by induction on |G1| where
G1 ⊆ G, G1 satisfies the hypotheses of the theorem, and
we can exhibit a through-vertex Hamiltonian cycle for
G1.

For |G1| = 2, let G1 = {E1, E2} where E1 and E2 are
any two elements that share a common face. Lemma 1
insures the existence of these elements. Let v1 and v2 be
two of the vertices that they share. Then E1v1E2v2 E1 is
a through-vertex Hamiltonian cycle for this subgrid.

By induction, let k = |G1| and suppose we have G1 ⊂ G,
k ≥ 2, G1 satisfies the hypotheses of the theorem, and
E1v1E2v2 . . . EkvkE1 is a through-vertex Hamiltonian
cycle for G1. The grid and cycle can be extended to size
k + 1 as follows.

Let Ek + 1 ∈ G \ G1 be an element that shares a face
with some element Ei ∈ G1. The existence of Ek + 1 is
guaranteed by Lemma 1. Without loss of generality,
assume Ei is not E1 (otherwise, just start the numbering
of the cycle with a different element). Since Ei has only
four vertices, one of the three vertices shared by Ei and
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Fig. 3. Example of a triangular grid containing cut vertices for
which there is no Hamiltonian path.

Fig. 4. Example of a triangular grid containing local cut vertices for
which there is no Hamiltonian cycle.

Fig. 5. Example of a conforming triangular grid without local cut
vertices for which there is no through-edge Hamiltonian path.



Ek + 1 must be either Ei’s in-vertex vi – 1 or Ei’s out-vertex
vi. Without loss of generality, suppose it is vi (otherwise,
just reverse the ordering of the cycle). One of the three
shared vertices, say v, must not be vi – 1 or vi. Then a
through-vertex Hamiltonian cycle in G1 ∪ Ek + 1 is
E1 . . . vi – 1 EivEk + 1viEi + 1 . . . E1.

The proof for triangular grids is also a constructive
proof that begins with a cycle through two elements
and inductively extends this cycle to the complete grid.
However, it is a more complicated proof because, in the
notation of Theorem 2, we cannot guarantee that Ek + 1

shares a vertex with Ei that is not vi – 1 or vi. In that case,
a more complicated extension of the cycle must be
performed.

Theorem 3 Let G be a conforming triangular grid
with |G| ≥ 2. If G contains no local cut vertices and has
at least one interior vertex then there exists a through-
vertex Hamiltonian cycle for G.

Proof: As in Theorem 2, we prove this by induction
on |G1|, and the base case with two triangles is trivial.
By induction, suppose we have G1 ⊂ G, |G1| = k ≥ 2, G1

contains no local cut vertices, and E1v1E2v2 . . . EkvkE1 is
a through-vertex Hamiltonian cycle for G1. The grid
and cycle can be extended to a larger size as follows.

Let Ek + 1 ∈ G \ G1 be an element that shares an edge
with some element Ei ∈ G1. The existence of Ek + 1 is
guaranteed by Lemma 1. Without loss of generality,
assume Ei is not E1 (otherwise, just start the numbering
of the cycle with a different element). One of the two
vertices that Ek + 1 shares with Ei must be either Ei’s
in-vertex, vi – 1, or Ei’s out-vertex, vi. Without loss of
generality, assume it shares the out-vertex (otherwise,
just reverse the order of the cycle). There are four cases
to consider.

Case 1. Ek + 1 does not contain vi – 1.
This is the easy case that corresponds to the proof of
Theorem 2. Let v be the other vertex shared by Ek + 1 and
Ei. Then the new cycle is E1 . . . vi – 1EivEk + 1viEi + 1 . . . E1.
This extension is illustrated in Fig. 6. The arrows point-
ing from a vertex to the interior of a triangle or from the
interior of a triangle to a vertex denote the in-vertex and
out-vertex, respectively.

Case 2. Ek + 1 contains vi – 1 and there is another
triangle, Ek + 2, not on the current cycle, that shares an
edge and vi with Ek + 1.
This case is illustrated in Fig. 7. Let v be the other
vertex shared by Ek + 1 and Ek + 2. Then the new cycle is
E1 . . . vi – 1EiviEk + 1vEk + 2viEi + 1 . . . E1.

Case 3. Ek + 1 contains vi – 1 and there is another

triangle, Ek + 2, that is on the current cycle and shares an
edge and vi with Ek + 1.
First note that Ek + 1 must contain both the in-vertex and
out-vertex of Ek + 2, otherwise we could apply case 1
with Ek + 2 as Ei to add Ek + 1 to the cycle. Also note that
whenever a triangle not on the cycle contains both the
in-vertex and out-vertex of a triangle that is on the
cycle, we can “swap” this triangle with the other
triangle by removing the other triangle from the cycle
and inserting the new triangle in its place, as illustrated
in Fig. 8.
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Fig. 6. Extension of the cycle for case 1 in Theorem 3.

Fig. 7. Extension of the cycle for case 2 in Theorem 3.

Fig. 8. Swapping element Ek + 1 for element Ek + 2 in the cycle.



Case 3a. vi is an interior vertex.
Swap elements around vi until either

1. there are two adjacent elements that are not in the
cycle (then apply case 2), or

2. there are adjacent elements, one on the cycle and
one not on the cycle, where the one not on the
cycle does not contain both the in-vertex and out-
vertex of the one on the cycle (then apply case 1).

Note that if we do not encounter two adjacent elements
that are not in the cycle (the first subcase), then we
must eventually reach the second subcase because the
other triangle adjacent to Ei cannot contain the in-
vertex of Ei, vi – 1. See Fig. 9.

Case 3b. vi is a boundary vertex.
This implies that all three vertices of Ek + 1 are on the
boundary, for if not we could select a different Ei, vi – 1

and vi (possibly reversing the order of the cycle) such
that an interior vertex of Ek + 1 is vi. This leads to a
natural decomposition of G into three components plus
Ek + 1 as illustrated in Fig. 10. The intersection of any
two components is a vertex of Ek + 1. Each component
contains a triangle that shares an edge with Ek + 1

because there are no local cut vertices. One component
contains Ei and a second component contains Ek + 2. If
the third component is not empty, let E be the element
that shares an edge with Ek + 1. If E is not on the cycle,
then apply case 2 (reversing the order of the cycle if
necessary). If E is on the cycle and Ek + 1 does not
contain both the in-vertex and out-vertex of E, then
apply case 1 with E as Ei. Thus we can assume that Ek + 1

contains the in-vertex and out-vertex of all adjacent
triangles, so it can be swapped with any of them.

Pick an interior vertex of G, vint. Swap Ek + 1 with the
neighbor that is in the same component as vint. Apply
case 1, 2 or 3a to reinsert the other element, if appropri-
ate. If not, then consider the decomposition around the 

new element and repeat the process (see Fig. 11). The
component that contains vint has at least lost the
swapped triangle, and thus is smaller in this decompo-
sition. Since the size of the component containing vint

will continue to shrink with each application of this
process, it must eventually lead to vint, at which point
case 3a applies, unless it ends earlier by applying case
1, 2 or 3a.

Case 4. Ek + 1 contains vi – 1 and there is no other
triangle that shares an edge and vi with Ek + 1, i.e., that
edge is on the boundary.
Then there must be another triangle that shares vi and
an edge with Ei, for if that edge of Ei was also on the
boundary, then vi would be a local cut vertex. Swap
Ek + 1 with Ei, and then apply either case 2 or case 3 to
add Ei back into the path.

The inclusion of an interior vertex is an essential
condition for Theorem 3. The same counterexample
can be used as was used in Counterexample 3.
However, this example does contain a through-vertex
Hamiltonian path. It is not known whether or not the
inclusion of an interior vertex is essential for the exis-
tence of a through-vertex Hamiltonian path.

Counterexample 4 There exists a conforming trian-
gular grid with no local cut vertices and no interior
vertices for which there is no through-vertex
Hamiltonian cycle. See Fig. 5.

Since the inclusion of an interior vertex “fixes”
Counterexample 4, a natural question is whether it can
also “fix” Counterexample 3. The following counter-
example says that this is not the case.

Counterexample 5 There exists a conforming trian-
gular grid with no local cut vertices and at least one
interior vertex for which there is no through-edge
Hamiltonian path. See Fig. 12.

Volume 110, Number 2, March-April 2005
Journal of Research of the National Institute of Standards and Technology

132

Fig. 9. A case where swapping around an interior vertex vi continues until
the other triangle adjacent to Ei is reached.



4. Quadrilaterals and Hexahedra

It is not known under what conditions any kind of
Hamiltonian path or cycle is guaranteed to exist for
quadrilateral and hexahedral grids, or even if there is any
characterization. It would certainly be much more strin-
gent conditions than for triangles and tetrahedra, as  the
following counterexample shows. By replacing the
squares with cubes, the same counterexample works for
hexahedral grids.

Counterexample 6 There exists a conforming quadri-
lateral grid with no local cut vertices and at least one
interior vertex for which there is no Hamiltonian path.
See Fig. 13.

The proofs of Theorems 2 and 3 break down when
applied to quadrilaterals and hexahedra because, in the
notation of those theorems, Ek + 1 is not guaranteed to con-
tain either the in-vertex or out-vertex of Ei. Without that
condition, it is more difficult, and in some cases impos-
sible, to modify the cycle in a way that adds Ek + 1 to it.

However, there are some other transformations of the
cycle that can be applied to insert Ek + 1 into the cycle in
some situations. These include some situations where
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Fig. 10. Decomposition of G into three components plus Ek + 1 when
all three vertices of Ek + 1 are on the boundary.

Fig. 11. Second decomposition of G into three components plus a
triangle after swapping Ek + 1 with a neighbor.

Fig. 12. Example of a conforming triangular grid without local cut
vertices, but including an interior vertex, for which there is no
through-edge Hamiltonian path.

Fig. 13. Example of a conforming quadrilateral grid without local
cut vertices, but including an interior vertex, for which there is no
Hamiltonian path.



the grid is 1-nonconforming. Most of these transforma-
tions apply not only to quadrilaterals and hexahedra,
but to any shape of element, including triangles and
tetrahedra, and to mixed elements. Thus one could
write a general program that applies to any grid. The
illustrations will show the application of the trans-
formations to quadrilaterals. They show examples of
the transformations, but are not exhaustive.

An algorithm that attempts to find a through-vertex
Hamiltonian cycle begins by picking two elements that
share an edge (face in three dimensions) and construct-
ing a cycle consisting of these two elements and two
of the vertices they share. Then repeatedly pick an
element that is not in the cycle but shares an edge (face
in three dimensions) with an element in the cycle, and
attempt to add it to the cycle by trying all of the follow-
ing transformations that apply until one succeeds. If
none of them succeed then try another element and
come back to this one later. If there are elements not yet
added to the cycle and none of the transformations
work with any of the remaining elements, then you
must insert a “broken link” creating a discontinuity in
the path, i.e., insert an element such that either it is not
adjacent to the previous or next element in the cycle, or
the in-vertex and out-vertex do not match. When all
elements have been added to the (possibly broken)
cycle, the algorithm finishes.

In the following transformations, the cycle contains
the segment vi – 2Ei – 1vi – 1EiviEi + 1vi + 1 and E is an element
that shares an edge (face in three dimensions) with Ei

and is not in the cycle.

Transformation 1 If E contains vi and shares anoth-
er vertex, u ≠ vi – 1, with Ei, then replace the segment
with vi – 2Ei – 1vi – 1EiuEviEi + 1vi + 1. See Fig. 14.

This is the same transformation that was used in the
proof of Theorem 2.

Transformation 2 If E contains vi – 1 and shares
another vertex, u ≠ vi, with Ei, then replace the segment
with vi – 2Ei – 1vi – 1EuEiviEi + 1vi + 1.

This is like the previous transformation, but using the
in-vertex instead of the out-vertex.

Transformation 3 If E contains both vi – 1 and vi, and
Ei – 1 shares another vertex, u ≠ vi – 2 with Ei, then replace
the segment with vi – 2Ei – 1uEivi – 1EviEi + 1vi + 1. See Fig. 15.

Transformation 4 If E contains both vi – 1 and vi, and
Ei + 1 shares another vertex, u ≠ vi + 1 with Ei, then
replace the segment with vi – 2Ei – 1vi – 1EviEiuEi + 1vi + 1.

This is like the previous transformation, but with the
change occurring at the out-vertex of Ei instead of the
in-vertex.

Transformation 5 If E shares a vertex u1 ≠ vi with Ei,
and shares a vertex u2 with Ei – 1, u2 ≠ u1 and u2 ≠ vi – 2,
then replace the segment with vi – 2Ei – 1u2Eu1EiviEi + 1vi + 1.
See Fig. 16.

This transformation can also handle some forms of
hanging nodes, as shown in Fig. 17.
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Fig. 14. Example of Transformation 1.

Fig. 15. Example of Transformation 3.

Fig. 16. Example of Transformation 5.

Fig. 17. Example of Transformation 5 with hanging node.



Transformation 6 If E shares a vertex u1 ≠ vi – 1 with Ei,
and shares a vertex u2 with Ei+1, u2 ≠ u1 and u2 ≠ vi + 1,
then replace the segment with vi – 2Ei – 1vi – 1Eiu1Eu2

Ei + 1vi + 1.

This is like the previous transformation, but with the
changes occurring at Ei + 1 instead of Ei – 1.

Transformation 7 If E contains neither vi – 1 nor vi,
but it shares a vertex u1 with Ei – 1, u1 ≠ vi – 2, and shares
a vertex u2 with Ei, u2 ≠ u1, then replace the segment
with vi – 2Ei – 1u1 Eu2Eivi Ei + 1vi + 1. See Fig. 18.

Transformation 8 If E contains neither vi – 1 nor vi,
but it shares a vertex u1 with Ei + 1, u1 ≠ vi + 1, and shares
a vertex u2 with Ei, u2 ≠ u1, then replace the segment
with vi – 2Ei – 1vi – 1Eiu2Eu1Ei + 1vi + 1.

This is like the previous transformation, but with the
changes occurring at Ei + 1 instead of Ei – 1.

Transformation 9 If E contains vi and there is anoth-
er element, F, that is not on the cycle, shares a vertex,
u1 ≠ vi, with E, and shares a vertex u2 with Ei, u2 ≠ u1

and u2 ≠ vi – 1, then replace the segment with vi – 2Ei – 1

vi – 1Eiu2Fu1Evi Ei + 1vi + 1.

This transformation can handle some instances of
hanging nodes, as shown in Fig. 19. It can also handle
case 2 in the proof of Theorem 3, although it places the
elements in a different order than that used in the proof.

Transformation 10 If E contains vi – 1 and there is
another element, F, that is not on the cycle, shares a
vertex, u1 ≠ vi – 1, with E, and shares a vertex u2 with Ei,
u2 ≠ u1 and u2 ≠ vi, then replace the segment with
vi – 2Ei – 1 vi – 1Eu1Fu2Eivi Ei + 1vi + 1.

This is like the previous transformation, but with E
sharing the in-vertex of Ei instead of the out-vertex.

Transformation 11 If E contains both vi – 1 and vi,
then replace the segment with vi – 2Ei – 1vi – 1Evi Ei + 1vi + 1.

This is the swapping of one element for another that
was described in case 3 of the proof of Theorem 3. One
would next attempt to add Ei back into the cycle. If
done recursively, this will handle case 3b of Theorem 3.

5. Conclusion

We considered the existence of various types of
Hamiltonian paths and cycles in two-dimensional grids
consisting of triangles or quadrilaterals, and three-
dimensional grids consisting of tetrahedra or hexa-
hedra. The types of Hamiltonian paths and cycles are
distinguished by whether passage from one element to
the next must be associated with an edge (through-edge
Hamiltonian), must be associated with a vertex (through-
vertex Hamiltonian), or can pass through either (uncon-
strained Hamiltonian). The existence results presented
in this paper can be summarized as:

1. There exists an unconstrained Hamiltonian path
in any conforming triangular grid with no local
cut vertices (previously known result). This is
easily extended to Hamiltonian cycle.

2. There exist triangular grids for which there is no
through-edge Hamiltonian path (previously
known result). This also holds for through-face
Hamiltonian paths in tetrahedral grids.

3. There exists a through-vertex Hamiltonian cycle
(and hence through-vertex Hamiltonian path) for
any conforming triangular grid with no local cut
vertices and at least one interior vertex.

4. There exists a through-vertex Hamiltonian cycle
(and hence through-vertex Hamiltonian path,
unconstrained Hamiltonian cycle and uncon-
strained Hamiltonian path) for any tetrahedral
grid that contains no local cut vertices and no
local cut edges.

5. There exist rectangular grids for which there is
no Hamiltonian path or cycle of any type. This
also holds for hexahedral grids.

Examples were given to show that the stated condi-
tions are essential. Some open questions remain:

Volume 110, Number 2, March-April 2005
Journal of Research of the National Institute of Standards and Technology

135

Fig. 18. Example of Transformation 7.

Fig. 19. Example of Transformation 9.



1. It is not known if the absence of local cut vertices
is essential for the existence of a Hamiltonian
path in a triangular grid. (The absence of cut
vertices is essential, and the absence of local cut
vertices is essential for a Hamiltonian cycle.)

2. It is not known if the presence of an interior
vertex is essential for the existence of a
Hamiltonian path in a triangular grid. (It is essen-
tial for a Hamiltonian cycle.)

3. The conditions under which any type of
Hamiltonian path or cycle exists in a rectangular
or hexahedral grid are not known.

The existence proofs for through-vertex Hamiltonian
cycles in triangular and tetrahedral grids are construc-
tive proofs. An efficient algorithm to find such a cycle
can be derived from the construction in the proofs.
Another algorithm, which can be applied to elements of
any shape, was outlined. This algorithm is not guaran-
teed to find a through-vertex Hamiltonian cycle even if
one exists, but it is likely to produce a (possibly broken)
cycle that is close.
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