
Vector Computer Memory Bank Contention
David H. Bailey

September 24, 1985
Ref: IEEE Trans. on Computers, vol. C-36, no. 3 (Mar. 1987), p. 293{298

Abstract

A number of recent vector supercomputer designs have featured main memories with
very large capacities, and presumably even larger memories are planned for future gener-
ations. While the memory chips used in these computers can store much larger amounts
of data than before, their operation speeds are rather slow when compared with the sig-
ni�cantly faster CPU (central processing unit) circuitry in new supercomputer designs.
A consequence of this speed disparity between CPUs and main memory is that memory
access times and memory bank reservation times (as measured in CPU ticks) are sharply
increased from previous generations.

While it has been recognized that these longer memory operation times will reduce
scalar performance, it has not been generally realized that vector performance could su�er
as well, due to a sharp increase in memory bank contention. This paper will examine this
phenomenon using both a Markov chain mathematicalmodel and a Monte Carlo simulation
program. The potential for performance reduction will be described and techniques for
ameliorating this reduction will be proposed.

One signi�cant conclusion of this analysis is that the number of independent memory
banks necessary to preserve a constant level of memory e�ciency is (approximately) pro-
portional to the number of CPUs times the square of the memory bank reservation time (in
ticks). As a result, it appears that future generations of supercomputers will either have to
employ memory chips with signi�cantly faster operation speeds or else feature much larger
numbers of independent memory banks.

The author is an employee of Informatics General Corp., under contract to the NAS (Nu-
merical Aerodynamic Simulation) program at NASA Ames Research Center. This work
was performed under contract NAS 2-11555.

1



Introduction

In recent years advances in �elds such as computational uid dynamics and plasma
physics have outstripped the main memory capacity of even the largest scienti�c computer
systems. Furthermore, users have found that using disk drives or other external storage
media for temporary data storage in these large problems is seldom satisfactory, as it often
increases their wall clock run time by several orders of magnitude. Thus many scienti�c
programmers are now clamoring for vector supercomputers with vastly increased main
memory.

Fortunately for such users, the semiconductor industry has been remarkably successful
in recent years in producing memory chips with burgeoning capacity. 256 kilobit chips
are now readily available from suppliers, and prototypes of one megabit chips have re-
cently been displayed. Thus it is not too surprising that a number of recently announced
supercomputers have featured main memories as large as 256 million 64-bit words, and
presumably even larger memories are in the works for the next generation.

While the emphasis in the development of memory chips has been increased capacity,
the emphasis in the design of supercomputer CPU circuitry has been increased speed. CPU
clock \ticks" of ten nanoseconds or so are now commonplace, and supercomputers with four
nanosecond or even one nanosecond CPU cycle times are on the horizon. This disparity
in speed between CPU circuitry and memory bank circuitry means that the memory bank
reservation time and the memory access time, as measured in CPU clock ticks, are sharply
increased for new supercomputers. While it has been recognized for some time that these
long operation times would lower the scalar performance of supercomputers, it is only
recently that the potential for vector performance reduction has come to light.

The reason for this potential reduction in vector performance is memory bank con-
tention { that is, delays encountered when a CPU attempts to access a bank of main mem-
ory that has been reserved from a previous access by another (or even the same) CPU.
This article will analyze the phenomenon of memory bank contention and discuss both the
potential for performance reduction and techniques for ameliorating this reduction.

A Markov Chain Model for Memory Bank Contention

The memory bank operation of a multiprocessor vector computer system may be ap-
proximately modeled using a relatively simple Markov chain model. While such a model
cannot precisely describe the phenomenon of memory bank contention in a real vector com-
puter, it does serve as a good introduction to the problem, and in fact some quantitative
conclusions can be drawn from this simple model that do carry over to a more realistic
model.

In order to facilitate analysis, certain simplifying assumptions will be made. It will be
assumed that the computer system being modeled has m CPUs and n banks of interleaved
memory (i.e., successive data words are in successive memory banks). It will be assumed
that the cycle time for a complete memory access is t CPU ticks. In particular, it will be
assumed that whenever one of the CPUs initiates an access to a word of memory (either
to store or recall), a reservation of t ticks is placed on the bank containing that word. This

2



means that for the next t system ticks, any CPU wishing to initiate an access to a word in
that bank of memory must wait before it may begin. Once a CPU has initiated a memory
fetch or store, it is free to initiate another at the next CPU clock period. Note that a single
CPU may be simultaneously in the process of accessing up to t separate memory banks,
provided no bank busy conicts are encountered.

At each system clock tick, it will be assumed that each CPU that is not waiting tosses
a coin with probability of heads equal to q, and attempts to initiate a memory access
(from a memory bank chosen at random) if the coin turns up heads. It will be assumed
that when a CPU attempts to access to a bank that is busy from a prior reservation, the
remaining reservation on that bank is uniformly distributed between 1 and t. The case
where more than one CPU is waiting to access a single reserved bank will be ignored in this
Markov model. A �nal approximating assumption is that the fraction of memory banks
that are busy at any time is approximately a constant x. Such an assumption may be
made assuming that the process has achieved a steady state.

It should be mentioned that in real vector computer operation, a CPU is typically either
attempting to access memory cells every tick, as part of a long vector fetch or store, or
else it is \crunching" and not attempting to access memory at all. Further, most memory
accesses are from consecutive memory banks, instead of from randomly chosen memory
banks. This last deviation appears to be the most serious in the model. By comparison,
the assumption that no more than one CPU is queued waiting to access a single busy bank
does not appear to be a serious limitation, based on the results of empirical simulations.

The operation of each CPU may now be approximately modeled by a Markov chain on
the t+ 1 states s0; s1; s2; : : : ; st. Here s0 denotes the free state and sk denotes the state of
waiting for a bank that has a reservation of k ticks remaining. Let T denote the Markov
transition matrix for this model (i.e., Tij is the probability that the next state is j, given
that the current state is i). Then T may be written as

T =

0
BBBBBBBBBBBBB@

1� qx qx=t qx=t � � � qx=t qx=t
1 0 0 � � � 0 0
0 1 0 � � � 0 0
0 0 1 � � � 0 0
� � � � � �
� � � � � �
� � � � � �
0 0 0 � � � 1 0

1
CCCCCCCCCCCCCA

It may easily be veri�ed that the Markov chain described by this transition matrix is
a regular (ergodic) process. This means that the a priori probability of any state is equal
to the limiting frequency of appearance of that state (for almost every sample sequence).
Let p = (p0; p1; p2; : : : ; pt) denote the vector of a priori probabilities of the t + 1 states.
These probabilities may be determined from the relationship pT = p (see [11], p. 72). This
equivalence yields the linear system of equations

3



p0(1 � qx) + p1 = p0
p0qx=t + p2 = p1
p0qx=t + p3 = p2

�
�
�

p0qx=t + pt = pt�1

p0qx=t = pt

When combined with the fact that the probabilities pk must sum to one, the solution
is easily found to be

p0 =
1

1 + qx(t+ 1)=2

p1 =
qx

1 + qx(t+ 1)=2

p2 =
qx(t� 1)

t[1 + qx(t+ 1)=2]
�

�

�

pt�1 =
2qx

t[1 + qx(t+ 1)=2]

pt =
qx

t[1 + qx(t+ 1)=2]

Since it was assumed that the fraction x of banks that are in a reservation cycle is
constant, the expected number of banks initially reserved at any instant must equal the
number whose reservation expires at that instant. This can be expressed by the relation

qmp0 = nx=t

where it is assumed that at each time 1=t of the busy banks are freed. This relation
combined with the above yields the solution

x =

q
1 + 2mq2t(t+ 1)=n � 1

q(t+ 1)

so that

p0 =
2

1 +
q
1 + 2mq2t(t+ 1)=n

4



The remaining pk can be similarly calculated.
Now that the probability vector p has been found, a memory e�ciency statistic may

be calculated. Let E denote the ratio of the expected number of memory accesses divided
by the sum of this �gure and the expected number of CPU ticks spent in wait states. This
e�ciency statistic can be written as

E =
qp0

qp0 + (1 � p0)

=
2q

2q � 1 +
q
1 + 2mq2t(t+ 1)=n

Implications of the Markov Chain Model

This formula for the e�ciency statistic does not, unfortunately, agree closely with most
actual vector supercomputer operation. The main problem appears to be, as mentioned
above, that most vector computer memory accesses are from consecutive banks (or at least
from banks di�ering by some constant stride) instead of from randomly chosen banks. The
term stride here refers to the increment in memory between successive elements in a vector
fetch or store. Only in the case where a computer is running programs with uncorrelated
nonunit strides does this formula closely agree with actual memory performance.

In spite of these limitations, the above formula does contain implicit relationships be-
tween the number of processors, the number of banks, and the bank reservation time that
do carry over, to the more realistic model in the next section. First of all, one can con-
clude from this formula that if the number of processors m is increased by a factor k, then
the number of banks n must also be increased by a factor k to preserve the same level
of e�ciency. Secondly, if the bank reservation time t is increased by a factor k, then the
number of banks must be increased by a factor of about k2 to maintain the same memory
e�ciency.

Monte Carlo Simulations of Memory Bank Contention

A more sophisticated (and realistic) model of memory bank contention will now be
presented. Above it was assumed that each free CPU tosses a coin with a certain probability
and attempts to access a single randomly chosen memory bank if the coin turns up heads.
It will now be assumed that each free CPU instead initiates a vector access (fetch or
store) of a certain length if its coin turns up heads. The starting bank number for this
vector access is assumed chosen at random, but thereafter the bank number advances with
some constant stride through the duration of the vector access. The length of the vector
access is assumed chosen at random according to a distribution that is uniform on the
set f1; 2; : : : ; V g, except that a speci�ed larger fraction v of the vector lengths have the
maximum value V . Similarly, the memory stride is assumed to be chosen from a uniform
distribution on the set f1; 2; : : : ; ng, except that a certain speci�ed larger fraction s of the
strides are 1.

5



It should be noted that strides greater than n do not need to be considered, because such
strides are equivalent for our purposes to their remainder when divided by n. It should also
be noted that the mean restart time R between vector accesses is merely the reciprocal
of the coin toss probability r, a fact that can be easily demonstrated from elementary
probability theory.

As in the Markov chain model, it will be assumed that a reservation of t ticks is placed
on any memory bank once a CPU initiates a memory access. Unlike the Markov chain
model, this model will not ignore the case where two or more CPUs are waiting to access
the same memory bank { it will be assumed that the CPUs merely take turns until all
accesses have been completed. Observe that if no conicts are encountered, a single CPU
can be simultaneously accessing up to t separate memory banks.

This model is not intended to exactly mimic the memory operation of any actual super-
computer. Instead it is intended to enable the general problem of memory bank contention
to be simulated and analyzed. However, variations of this model have been shown to quite
closely mimic a number of real computers. For example, the author has analyzed the
Cray-2 memory by using this basic model with an enhancement that mimics the operation
of the Cray-2 quadrants. The Cray X-MP/48 memory has also been studied using this
model with enhancements that handle the multiple memory ports from each CPU. One
result of interest from these studies is that actual performance reductions on real codes
(as measured in run time) on these systems closely parallels the reductions in memory
e�ciency (as determined by simulations). In particular, the actual performance slowdown
is typically about 70% of the memory e�ciency reduction in the cases studied.

Unfortunately, it is does not seem possible to analyze this model with the elementary
Markov chain techniques of the previous section. It is possible, however, to run Monte
Carlo simulations based on such a model. Such a simulation program has been written,
and numerous runs with it have been made on the Cray X-MP/12 belonging to the NAS
(Numerical Aerodynamic Simulation) program at the NASA Ames Research Center. Each
separate assumption of the above parameters was run for one million ticks. It has been
observed that empirical e�ciency �gures are reliable to within a percent or two when the
simulation is run to this length.

Results of the Monte Carlo Simulation Runs

Several plots displaying important simulation results are shown in the pages following
the end of the article. Except where indicated otherwise, these results are for the case
n = 256; m = 4; V = 128; R = 1=r = 100; t = 40; v = 0:75; s = 0:75. These parameters
were chosen for a \generic" vector computer, roughly a composite of a number of current
and projected supercomputers.

Figure 1 shows how the memory e�ciency E decreases as the reservation time t in-
creases. The four separate curves represent results for various numbers of CPUs. Figure 2
shows how e�ciency increases as the fraction s of unit stride varies from zero to one. Each
curve in this �gure represents results for di�erent reservation times. Figure 3 shows how
e�ciency decreases with large numbers of processors. The four curves on this �gure are for

6



di�erent numbers of banks. Figures 4 and 5 present a di�erent slant on the problem: with
other parameters held �xed, the number of banks necessary to preserve a constant level of
memory e�ciency (75%) is shown as a function of increasing reservation time (�gure 4)
and as a function of increasing numbers of processors (�gure 5). In �gure 4 the separate
curves represent results for di�erent numbers of banks, and in �gure 5 each curve gives
results for di�erent reservation times.

It should be mentioned that in �gure 2, the e�ciency values on the left edge of the
graph (i.e., the case where all strides are chosen at random) correspond closely to values
computed using the formula derived from the Markov model. In particular, if q in the
formula is set to the value of V=(V +R) (the approximate fraction of the time that a free
CPU initiates a fetch), then the empirical e�ciency results are within two percent of the
formula values.

Several de�nite trends can be quickly identi�ed from these plots. First of all, from
�gure 5 it is clear that the relationship between banks and processors is exceedingly close
to linear { in fact the number of banks necessary to compensate for an increasing number
of processors appears to be very closely proportional to the number of processors minus
1. This relation, except for the minus 1, matches the relation found in the Markov chain
analysis above. Secondly, although it is not immediately clear from �gure 4, logarithmic
regression of the simulation results shows that the number of banks necessary to compensate
for an increase in the bank reservation time t is proportional to approximately t1:85. The
corresponding relation from the Markov chain analysis is t(t + 1), which is equivalent to
approximately t1:96 over the range of the data in question. Relationships quite close to
these were also found in other cases that were run with the simulator program.

The reduction of memory e�ciency whenever the fraction of strides that are equal to
one is not 100% (see �gure 2) presents a dilemma of sorts to designers of supercomputers. It
is clear that signi�cantly less memory bank contention would result by designing hardware
that does not allow strides other than one on most vector memory accesses. This approach
has been taken, for example, by CDC in its Cyber 205 design. However, such a restriction
reduces the ability of a computer to e�ciently process Fortran data arrays by other than
the �rst dimension. As a result most supercomputer users, particularly those who run
codes with large multidimensional arrays, feel that a variable memory stride is a de�nite
advantage in a vector computer design. Nevertheless, it clear from these simulation results
that memory e�ciency will be lower with a variable stride architecture.

Conclusions

The analysis of the phenomenon of memory bank contention does indeed indicate the
potential for substantial reductions in performance in new generations of supercomputers.
For example, suppose a supercomputer were to be designed with eight central processing
units and a two nanosecond clock. A number of the current technology DRAM (dynamic
random access memory) chips now in production dictate a bank reservation time of roughly
120 nanoseconds, or 60 ticks. According to simulation runs based on the generic vector
computer model described above, more than 5000 memory banks would be necessary to

7



achieve an average e�ciency of roughly 75%. This number is considerably greater than
the 64 or 128 that characterize current designs. Thus it appears that future generations of
vector computers must either be designed with memory chips substantially faster than those
available today, or else they must feature much larger numbers of independent banks of
memory. Failure to address this problem will result in catastrophic performance reductions.

In the future, it is likely that memory chips signi�cantly faster than today's typical
DRAM chips will be available for supercomputer memories. For example, a number of
supercomputers feature static RAM chips with faster operation speeds than dynamic RAM
chips. However, such fast chips cost considerably more and have only a fraction of the
capacity of equivalent generation DRAM chips. This pattern can be expected to continue
for the foreseeable future. Thus it seems probable that future designers and purchasers
of supercomputers will have to make painful tradeo�s between performance and memory
size. Systems may be available with either a smaller memory of faster chips and minor
memory contention, or with a much larger memory of slower chips and substantial memory
contention.

Increased memory size does of course have a number of advantages. In addition to
the ease of programming large-scale scienti�c application codes, larger memories reduce
the amount of time a supercomputer must spend transferring jobs in and out or waiting
for I/O requests to be handled. Even with these advantages, though, it seems clear that
computational performance will generally be degraded with the larger (slower) memories.

One possible solution to this dilemma is to design vector supercomputers with large
main memories of the slower chips, but with a \cache" of much faster memory private to
each CPU. With such a scheme some programs could still access very large data arrays,
while other programs not requiring a large amount of data storage could use the cache
memory, thus lessening the competition for main memory banks. However, problems arise
with this design also. For one thing, swapping jobs in and out of a CPU could be muchmore
time consuming if it is necessary to save the entire cache memory. In addition, nonstandard
constructs may be required for the Fortran programmer to control which type of memory
is assigned to his or her data arrays. Finally, unless a fairly large amount of cache memory
is provided, most programs will be unable to perform a signi�cant amount of their required
computation using cache memory.

In any event, it is clear that both manufacturers and potential users of supercomputers
must pay close attention to the problem of memory bank contention. It is thus hoped that
the techniques described in this paper will be of assistance to such persons and will help
prevent unacceptable reductions in supercomputer performance.

8



References

1. Baskett, F., and Smith, A. J., \Interference in Multiprocessor Computer Systems
with Interleaved Memory", Communications of the ACM, vol. 19, no. 6 (Jun. 1976),
p. 327-334.

2. Bhandarkar, D. P., \Analysis of Memory Interference in Multiprocessors", IEEE

Transactions on Computers, vol. C-24, no. 9 (Sep. 1975), p. 897-908.

3. Briggs, F. A., and Davidson, E. S., \Organization of Semiconductor Memories for
Parallel-Pipelined Processors", IEEE Transactions on Computers, vol. C-26, no. 2
(Feb. 1977), p. 162-169.

4. Briggs, F. A., and Dubois, M., \E�ectiveness of Private Caches in Multiprocessor
Systems with Parallel-Pipelined Memories", IEEE Transactions on Computers, vol.
C-32, no. 1 (Jan. 1983), p. 48-59.

5. Budnik, P., \The Organization and Use of Parallel Memories", IEEE Transactions

on Computers, vol. C-20, no. 12 (Dec. 1971), p. 1566-1569.

6. Burnett, G. J., and Co�man, E. G., \Analysis of Interleaved Memory Using Blockage
Bu�ers", Communications of the ACM, vol. 18, no. 2 (Feb. 1975), p. 91-95.

7. Chang, D. Y., Kuck, D. J., and Lawrie, D. H., \On the E�ective Bandwidth of
Parallel Memories", IEEE Transactions on Computers, vol. C-26, no. 5 (May 1977),
p. 480-490.

8. Chung, K. L., Markov Chains, Springer-Verlag, New York, 1967.

9. Flores, I., \Derivation of a Waiting Time Factor for a Multiple Bank Memory",
Journal of the ACM, vol. 11, no. 3 (Jul. 1964), p. 265-282.

10. Hoogendoorn, C. H., \A General Model for Memory Interference in Multiprocessors",
IEEE Transactions on Computers, vol. C-26, no. 10 (Oct. 1977), p. 998-1005.

11. Kemeny, J. G., and Snell, J. L., Finite Markov Chains, D. Van Nostrand Co., Prince-
ton, NJ, 1963.

12. Knuth, D. E., and Rao, G. S., \Activity in an Interleaved Memory", IEEE Transac-

tions on Computers, vol. C-24, no. 9 (Sep. 1975), p. 943-944.

13. Lawrie, D. H., \Access and Alignment of Data in an Array Processor", IEEE Trans-

actions on Computers, vol. C-24, no. 12 (Dec. 1975), p. 1145-1155.

14. Lawrie, D. H., and Vora, C. R., \The Prime Memory System for Array Access",
IEEE Transactions on Computers, vol. C-31, no. 5 (May 1982), p. 435-442.

9



15. Patel, J. H., \Analysis of Multiprocessors with Private Cache Memories", IEEE
Transactions on Computers, vol. C-31, no. 4 (Apr. 1982), p. 296-304.

16. Ramamoorthy, C. V., and Wah, B. W., \An Optimal Algorithm for Scheduling Re-
quests on Interleaved Memories for a Pipelined Processor", IEEE Transactions on

Computers, vol. C-30, no. 10 (Oct. 1981), p. 787-800.

17. Rau, B. R., \Program Behavior and the Performance of InterleavedMemories", IEEE
Transactions on Computers, vol. C-28, no. 3 (Mar. 1979), p. 191-199.

18. Ravi, C. V., \On the Bandwidth and Interference in Interleaved Memory Systems",
IEEE Transactions on Computers, vol. C-21, no. 8 (Aug. 1972), p. 899-901.

19. Sastry, K. V., and Kain, R. Y., \On the Performance of Certain Multiprocessor
Computer Organizations", IEEE Transactions on Computers, vol. C-24, no. 11
(Nov. 1975), p. 1066-1074.

20. Smith, A. J., \Multiprocessor Memory Organization and Memory Interference",
Communications of the ACM, vol. 20, no. 10 (Oct. 1977), p. 754-761.

10


