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Abstract 
  This paper describes the first scalable implementation 
of a text processing engine used in visual analytics tools. 
These tools aid information analysts in interacting with 
and understanding large textual information content 
through visual interfaces. By developing a parallel 
implementation of the text processing engine, we enabled 
visual analytics tools to exploit cluster architectures and 
handle massive datasets. The paper describes key 
elements of our parallelization approach and 
demonstrates virtually linear scaling when processing 
multi-gigabyte data sets such as Pubmed. This approach 
enables interactive analysis of large datasets beyond 
capabilities of existing state-of-the art visual analytics 
tools.  

1. Introduction 
We are experiencing rapid growth of data volumes. 

For example, in 2002 the world produced 5 exabytes 
(5x1018 bytes) of data [1] stored information in different 
formats. This was in addition to 18 exabytes of 
streaming data produced during the same year, of which 
95% were telephone conversations. The main data types 
that constitute the bulk of information produced are [2]: 
1) textual data that comes from various media such as 
email, newspapers, web pages; 2) databases; 3) image 
data collected from satellites and other sources; 4) sensor 
data collected in different areas of life and science and 
technology; 6) video data. The current estimate of the 
data growth coming from these sources is 30% per year 
[1]. The existing technologies for extracting information 
and knowledge discovery cannot handle the sizes and 
heterogeneity of the massive amounts of data.  An 
example that illustrates the need for technologies to scale 
is within the litigation sector. Walter [16] reports that 
legal discovery processes are currently dealing with 
terabytes of data and one recent discovery process hit the 
first Petabyte examination.* 

This paper is concerned with addressing scalability in 
analysis of textual data. In particular, we are focusing on 
a visual approach to analyzing textual data or so called 
visual analytics. Visual analytics is a relatively new and 
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expanding field that evolved from the collective 
understanding in scientific and information visualization 
with additional contributions from other fields such as: 
statistics, cognitive science, and data/ 
knowledge management. Its primary goal is to enhance 
and organize the analytic process by exploiting the 
analyst’s perceptual pattern-matching capabilities. In the 
context of unstructured document analysis, this approach 
becomes very powerful [3]. 

Information visualization systems can enable users to 
quickly determine the general subject areas of hundreds to 
millions of documents. Analysts can then be tasked with 
identifying which of these documents should be examined 
with greater scrutiny for addressing their need. This kind 
of information analysis problem, which is becoming 
increasingly common, is not directly addressed by 
information retrieval (IR) systems based on user-defined 
queries (e.g., Google). Visual analytics tools create 
visualizations of document collections to help information 
analysts understand the collection as a whole, discover 
important hidden relationships, and formulate insights 
with a minimum of reading. 

Current state-of-the-art visual analytics software tools 
can quickly and automatically convey the gist of large sets 
of unformatted text documents such as technical reports, 
web data, newswire feeds and message traffic. Visual 
analytics software unveils common themes and reveals 
hidden relationships within document collections. It allows 
analysts to spend more time exploring the information they 
find most relevant and less time sifting through the masses 
of irrelevant documents. However, the increased volume 
of data and computational complexity of the underlying 
algorithms are stressing the standard computer desktop 
technology, limiting the problem sizes that can be handled 
effectively. Parallelization of these algorithms is required 
to produce one, and ultimately two, orders-of-magnitude 
improvement in the time to create visualization, allow 
scaling of the maximum number of supportable concurrent 
users, and greatly improve responsiveness for complex 
interactions. To address the scalability challenge of current 
visual analytics software such as IN-SPIRE™, we focused 
on the text processing engine. We parallelized key 
elements of this software including scanning, indexing, 
signature generation, and clustering. Our approach relies 
on the global address space programming model as 



 

implemented in the Global Array Toolkit [23]. In 
addition, we have deployed remote procedure calls to 
implement scalable hash tables. The parallelization 
approach was evaluated in context of large datasets 
including the National Institutes of Health (NIH) 
PubMed database and the Text Retrieval Conference 
(TREC) Terabyte collection. The experimental results 
validate our approach and show linear scalability.  

The remainder of the paper is organized as follows. 
Section 2 provides background information on visual 
analytics software including INSPIRE. Section 3 
describes details of the parallelization approach. Section 
4 presents experimental results demonstrating 
performance and scalability of the parallel 
implementation for multiple datasets. Section 5 relates 
our work to other existing research. The paper is 
concluded in Section 6. 

2. Visual Analytics 
Analysts and researchers are increasingly inundated 

with the amount of information they must search to 
prove, disprove or identify what has or has not been 
done in a specific topic pertaining to their task. This is 
especially true in the stressful environment of 
intelligence agencies where time-critical products are 
required to help policymakers choose an appropriate 
course of action. To provide these products, analysta use 
a search system to perform successive searches and data 
reduction in order to analyze their problem in a 
manageable time. During this process, key pieces of 
information can be missed, resulting in incorrect or less 
confident hypotheses or assessments and costing 
agencies time and resources in pursuing courses that 
have already been explored. Figure 1 shows concentric 
rings of query refinements that highlight the issue of 
missing articles in the final result set [24].  

Typical information retrieval (IR) systems provide 
ranked results lists that require careful crafting of queries 
and many hours or even days of research investigating 
those results. Researchers often become frustrated by 
either over- or under-constraining their results lists, 
taking more time sorting or reformulating their queries. 
In addition, researchers are not always performing 
directed searches but are interested in associated articles 
that may play a role in their research. In such situations, 
researchers switch to a mode where browsing, not 
searching, is the dominant approach for document 
perusing. In this mode, typical IR systems are not 
configured or optimized for lending suggestions on 
topics the user is interested in without a great deal of 
user input. 

 
2. 1 Visual Document Analysis Software 

IN-SPIRE is a visual analytics system designed to to 
enable analysts to rapidly discover information 
relationships. The analyst can not only identify 
relationships but also identify the pertinent documents for 
reading, rather than wading through large volumes of text 
(or query lists). The system is based on a vector space 
model that structures the information into signatures.  
These n-dimensional document signatures are then 
clustered into groups of related documents and projected 
from n-space into 2-space. The projection of n-space to 2-
space is intended to preserve the major high-dimensional 
relationships where proximity represents similarity. This 
2-d projection can be used to generate a ThemeView™ 
visualization. A ThemeView visualization is a scale-
independent landscape of themes based on the 
contributions of the projected documents into 2-space. The 
terrain (Figure 2) has various mountains depicting where 
themes are dominant and valleys where weak themes lie 
[2]. However, key to generating visualizations and the 
interaction capabilities to support on a massive scale is an 
architecture that supports this. 

Figure 2. ThemeView Representation. 

Figure 1. Missed Articles Doing Query Refinement.



 

Given a set of data sources, the IN-SPIRE text engine 
uses various processing stages (Figure 3) to create a 
dataset for visualization. A source is a collection of 
“files” or “documents” or “records.” Each record is set of 
fields, and each field is a collection of terms (vocabulary). 
Processing basically comprises the following steps: 
1. Scan the source documents to identify individual 

records and fields, compile a list of terms (i.e., a 
vocabulary), and build an index of terms per field (the 
“field-to-term index”). We refer to this as the “Scan & 
Map” step. 

2. Invert the field-to-term index to produce a “term-to-
field index.” 

3. Use the term-to-field index to create a “term-to-record 
index.” Steps 2 and 3 use the FAST-INV algorithm 
[14, 15] for the inversion process. 

4. Using indices from above steps, find a subset of N 
words that can be used to statistically discriminate 
among records, and a larger subset of M words that 
associate with the set of N.   We call member words of 
these sets “topics” and “major terms,” respectively. 

5. Use the N and M discriminating words from step 4 to 
create an “association matrix” that relates topic terms 
to other major terms. 

6. Use the association matrix from step 5 to compute a 
“knowledge signature” for each document, such that 
each document occupies a point in a high-dimensional 
N-Space, where each topic represents an orthogonal 
dimension of that space. 

7. Persist the knowledge signatures computed in step 7. 
These signatures comprise a valuable intermediate 
product of the text engine. 

8. Cluster the records in the high-dimensional N-Space 
by examining the inter-document scalar distances. 

9. Project the high-dimensional space onto a two-
dimensional view, resulting in a visualization (e.g., 
ThemeView). The 2-D document coordinates 
comprise the final primary product of the text engine. 

3. Parallelization Approach 
This section describes the parallelization approach of 

the IN-SPIRE text processing engine. IN-SPIRE’s code is 
written in C++; Global Arrays parallel software develop-
ment toolkit [23] and MPI were used to develop a 
portable parallel code across various shared and 
distributed memory architectures. Figure 4 illustrates the 
parallelization approach in various stages of text process-
ing engine (using two processors, for example). The 
various parallelization components are explained below. 

3.1 Global Arrays 
The Global Arrays (GA) toolkit [23] provides a shared 

memory style programming environment in the context of 
distributed array data structures (called “global arrays”). 
Each process in a single program multiple data (SPMD) 
parallel program can asynchronously access logical 
blocks of physically distributed dense multi-dimensional 
arrays, without need for explicit cooperation by other 
processes. From the user perspective, a global array can 
be used as if it were stored in shared memory, and all 
details of the data distribution, addressing, and data 
access are encapsulated in the global array objects. 
Information about the actual data distribution and locality 
can be easily obtained and taken advantage of whenever 
data locality is important. Unlike other shared-memory 
environments, the global array model exposes to the 
programmer the non-uniform memory access 
characteristics of the high-performance computers. 
Efficient data access mechanisms as well as control of 
data distribution and mapping interfaces allow users to 
optimize their code by exploiting locality. In our 
parallelization effort, globally shared arrays were used to 
store field-to-term, term-to-field indices, term statistics, 
major terms list, and association matrix. 

Figure 3. Various processing stages in IN-SPIRE.  
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3.2 Scanning 
The source datasets are partitioned equally into a 

distinct set of documents and distributed among 
processes. This static partitioning of sources is based on 
the size of individual documents/records (bytes) and 
ensures load balance when distributed. Each process 
scans its list of sources; tokenizes by scanning the 
sequence of bytes; and identifies records, fields, and 
terms locally. As mentioned earlier, a “source” is a 
collection of documents. Each document is a set of fields, 
and each field is a collection of terms (vocabulary). The 
terms are separated by whitespaces (or any delimiters 
specified during configuration). When a document is 
scanned, a list of terms is identified for a field, and a 
field-to-term table is built, which stores the terms 
identified in each field. Similarly, a document-to-field 
table is created once all the fields have been identified. 
This process is called forward indexing. These tables are 
stored in global arrays, so that they are globally 
accessible when processes exchange information during 
inverted file indexing (IFI). During scanning, whenever a 
unique term (i.e., vocabulary word) is identified by a 
process, it is inserted into the global hashmap to identify 
that term’s global term ID. 

A global (distributed) hashmap is created collectively 
by all processes to store the unique terms and generate a 
global term ID for each term inserted into the hashmap. 
Initially, the hashmap is empty; it will be populated 
during the scanning phase. Global term IDs are used in 
global operations (e.g., global term statistics, global 
topics, etc. in Figure 4), in which all processes participate 
together to complete a task. At the end of forward 
indexing phase, the hashmap construction will be 
completed and all the unique terms will have a unique 
global ID. We deployed Aggregate Remote Memory 
Copy Interface (ARMCI) [25] remote procedure calls to 
implement scalable distributed hashmaps for storing 
global vocabulary information in a distributed fashion. 
Once the global hashmap is populated with all terms and 
the forward indexing is completed, each process performs 
an index inversion to generate a term-to-field table and 
term-to-document index table.  
3.3 Indexing 

The indexing component comprises Parallel Inverted 
File Indexing (IFI) and Global term statistics. 
Parallel Inverted File Indexing: The process of 
inverting forward indexes has been well-studied and has 
multiple approaches for search result properties. Each 
process performs an index inversion to generate a term-
to-field index using the field-to-term index. The end 
results from the term-to-field index are aggregated into 
the term-to-document index. Our approach uses the 
FAST-INV algorithm [5, 14, 15] and modifies the 

algorithm to distribute inversion loads among the 
processes that have already completed their loads. Each 
load is a fixed chunk of terms corresponding to those 
fields in the field-to-term index table. To accomplish this, 
we created a global array (global address space) that 
stores the load tables so that any process can assist in 
performing the inversion.  

Load imbalance is a major performance degradation 
factor in this inversion process. Although the sources 
were equally distributed to the processes, the term 
distributions will not be distributed as such. Inverting 
indexes that have more terms and more documents than 
other processes will cause their processes to be burden 
longer while others are idle. To address the potential load 
imbalance in our inversion algorithm, we use a simple 
and effective dynamic load-balancing technique called 
fixed-size chunking [19]. This dynamic load-balancing 
technique is embedded in our parallel inversion algorithm 
to balance the load among processors. In our approach, a 
shared task queue, which is stored in a global array, 
represents the collection of loads to be processed by all 
processes. The task queue is prioritized in such a way that 
each process completes its inversion loads first, and then 
works on loads owned by other processes. When a 
process finishes computing its loads, it gets the next 
available load from the task queue, and atomically1 
increments the task queue to point to the next available 
load. This implementation of the dynamic load-balancing 
technique takes advantage of the atomic1 and one-sided 
operations in the Global Array toolkit [23]. The global 
array one-sided operations eliminate explicit 
synchronization between a processor that executes a task 
and a processor that has the relevant data. 

Atomic operations reduce the communication over-
head in the traditional message-passing implementations 
of dynamic load balancing based on the master-worker 
strategy. This strategy has associated scalability issues, 
because with the increased number of processors, 
management of the task queue by a single master 
processor [20] becomes a bottleneck. Moreover, the 
message-passing implementation of this strategy can be 
quite complex. On the other hand, the implementation of 
dynamic load balancing using GA atomics (fetch-and-
increment operation) involves only a few lines of code, 
while the overall performance of the inversion is 
competitive with the MPI-1 version [21]. 

Global term statistics: After IFI processing, each 
process contains the term statistics of its local datasets. A 
global array is created to store these term statistics from 
all processes. There term statistics entail the global  
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document and term frequencies. This information will be 
used to generate the knowledge signatures. 

3.4 Knowledge Signature Generation 
From the global term statistics, each process generates 

topicality for their sets of terms (N/P terms per process, 
assuming we have N unique terms and P processes). 
Topicality is a measure that defines discriminating terms 
within a set of documents. Our approach to compute 
topicality is based on Bookstein’s serial clustering 
method [22]. When all processes have completed their 
measure, each process chooses the top N topics and 
performs a global merge-sort process. The result is a list 
of top N terms based on topicality measure and is 
broadcast out to all processes. From these top N terms 
(major terms), we take the top M (typically 10% of the 
top N) and define them as the anchoring dimensions that 
discriminate the topic space. The next phase of creating 
signatures is based on computing the conditional 
probabilities of each term of the top M against the top N. 
An N by M matrix is then computed, with the entries in 
the matrix being the conditional probabilities of 
occupance, modified by the independent probability of 
occurrence, or  )|( ijij ttPM =  where ith row, jth 
column is the conditional probability of ti given tj; P(tj) is 
the probability of tj. The results will be a term-to-term 
association matrix (size NxM) correlating terms within 
the dataset. In our parallel algorithm, each process 
computes the association matrix for the terms associated 
with its dataset. The association matrices of all the 
processes are merged (MPI_Allreduce operation) to 
produce the global association matrix.  

Knowledge signatures are numerical vectors based on 
the dimensions of the top M topics. Each process 
computes the knowledge signatures by cycling through 
each record. For each term that exists in that record, we 
obtain the row within the association matrix. These rows 
represent a term vector that when linearly combined with 
other term vectors and then normalized we form a 
signature of that record. During the linear combination, 
each term vector is multiplied by the frequency of that 
term within that record. This is used to capture and 
weight that term and its importance in the signature of 
that document. Each signature is normalized based on a 
L1 Norm. 

Because we now have an M dimensional 
representation of the documents, we use clustering as a 
means to identify common documents. One of the aims of 
this work is to use this approach in reducing the 
dimensionality for graphically portraying the datasets. 

3.5 Clustering and Projection 
We implemented a distributed k-means clustering 

algorithm in our process [9]. However, other types of 

clustering could be applied that would enable different 
means to explore the relationships of the data (e.g., 
hierarchical clustering:  single-link, complete, and various 
adaptive cutting approaches). The intent of clustering is to 
produce anchoring vectors (centroids) in the M-
dimensional space that represent the major thematic 
groupings. In addition, the centroids provide a means to 
aid the projection method by using a representative 
“sample” of the document space when determining the 
transformations from a high-dimensional space to a lower 
one (e.g., 2-d or 3-d). Our approach for dimensionality 
reduction was to use the cluster centroids and employ 
principle component analysis (PCA) [15], where we can 
use the first two principal components to project the M 
space onto those principal components.  

Each process computes the transformation matrix 
using the centroids of the clusters. Finally, using the 
transformation matrix, each process computes the 2-d or 
3-d projection coordinate for its document set. The master 
process (process with rank=0) collects all the coordinates 
and writes them to a file, which is used to construct the 
ThemeView visualization (Figure 2). 

4. Experimental Results 
In this section, we present and analyze the 

performance of our proposed high-performance text 
processing algorithms for various datasets with different 
problem sizes. Experiments were performed using real-
time datasets to validate the effectiveness of our 
algorithms. Numerical experiments were run on a Linux 
cluster based on dual 1.5-GHz Intel Itanium nodes and 
Infiniband network (48 processors total) at the Pacific 
Northwest National Laboratory. 

4.1 Datasets 
Our parallel implementation enables us to analyze 

large datasets much faster than it was previously possible 
with leading visual analytics tools. This is important as 
dataset size and time to solution is critical based on the 
clients and their uses (e.g., intelligence community). We 
expect that the text processing algorithms may perform 
differently depending on the nature of the dataset. So we 
selected real time datasets from two different fields 
(medical and government) to demonstrate the 
effectiveness of the parallel algorithm. 

PubMed Database: PubMed database [9] contains 
15+ million abstracts. PubMed is NIH's premier 
bibliographic database, covering the fields of medicine, 
nursing, dentistry, veterinary medicine, the healthcare 
system, and the preclinical sciences [9, 10]. It contains 
bibliographic citations and author abstracts from more 
than 4,800 biomedical journals published in more than 70 
other countries. The database contains over 15 million 
citations dating back to the mid-1960s. Each abstract is 



 

defined as unstructured (or free form) text and is 
consistent in both size and language type.  

TREC Terabyte Dataset: This is a collection of web 
data crawled from web sites in the .gov domain during 
early 2004 [12]. This collection (GOV2) contains a large 
proportion of the crawlable pages in .gov, including 
HTML and text, plus the extracted text of PDF, Word, 
and Postscript files. The GOV2 collection is 426GB in 
size and contains 25 million documents. While this 
collection contains less than a full terabyte of data, data 
analysis of this size is a time-consuming process with 
respect to computational and input/output (I/O) cost.  

4.2 Results and Performance Analysis 
We conducted several experiments to demonstrate the 

scalability of our parallel algorithm. Three problems sizes 
were selected for Pubmed (2.75 GB, 6.67GB, and 
16.44GB) and TREC (1 GB, 4GB, and 8.21GB) datasets. 
These problem sizes were large enough to demonstrate 
the performance of the algorithm on the selected 
platforms.  

Figures 5, 6a, and 7a show the overall performance of 
our parallel text processing algorithms for various sizes of 
Pubmed and TREC datasets up to 32 processors. As we 
increase the number of processors, the time to solution 
reduces almost linearly. In most cases, the algorithms 
scale linearly, and no significant computational 
degradation is manifested. However, in the case of 16GB 
PubMed data on 4 processors, the performance is very 
low because this problem size is too large for a 4 
processor case. Therefore, excessive cache misses, page 
faults, etc, degrade the overall performance. 

The performance of individual components in our 
parallel text processing algorithms is shown in Figures 
6b, 7b, and 8. Figure 8 demonstrates the scalability of 
individual components (scanning, indexing, signature 
generation, and clustering/projection). When the number 
of processors is increased, the percentage of time spent in 
each component remains constant (except topicality), thus 
demonstrating the stability of individual components for 
various processor counts. The topicality component uses 
an MPI_Allreduce collective operation to collect topics 
from all processors. Therefore, the topicality algorithm 
does not scale well when compared to other components 
because the communication cost predominates when the 
number of processors increases. However, the time 
consumed here is relatively less when compared to other 
components.  
We also observed from the benchmarks (Figures 6b and 
7b) that the PubMed dataset accentuated certain 
computational bottlenecks in different components 
(knowledge signature generation and clustering/ 
projections) of the algorithms. We recognized that our 
current static approach for characterizing the space was 
insufficient as we scaled with this dataset. Specifically, if 

the dimensionality of the space was insufficient to 
characterize the datasets, it would require subsequently 
more iterations to converge in the clustering and 
projections algorithms. We noted that many records had 
less than desirable signatures and some were null. 

This was remedied by increasing the dimensionality 
producing robust signatures; increased dimensionality 
typically incurs the overhead of more computation and 
memory usage.  However, because these new signatures 
are significantly more representative within the space, the 
time to converge took far less time than the previous 
signatures. The cost of increasing the dimensionality is a 
function of the vocabulary breadth and uniqueness per 
document. Hence, as we scale we need to adapt the 
dimensionality to dynamically fit the vocabulary diversity 
and breadth for each dataset. 

As explained earlier, the indexing component can 
affect the overall scalability as it is highly load 
imbalanced. Figure 9 demonstrates the effectiveness of 
the dynamic load balancing algorithm in the indexing 
component. Therefore, from Figures 8 and 9, it is proven 
that the indexing component is scalable and well 
balanced, when the problem sizes and processor counts 
are increased. The experiment’s results show that our 
algorithms are scalable for various problem sizes and 

Figure 5. Performance (wall clock time) of 
Pubmed and TREC datasets for 3 different 
problem sizes on the Linux cluster. 

Pubmed - Overall Timings

1

10

100

1000

10000

0 8 16 24 32
Processors

W
al

l c
lo

ck
 (m

in
ut

es
)

2.75 GB
6.67 GB
16.44 GB

TREC - Overall Timings

0

20

40

60

80

100

120

0 8 16 24 32

Proce ssors

W
al

l c
lo

ck
 (m

in
ut

es
) 1.00 GB

4.00 GB
8.21 GB



 

processor counts. The scanning component is I/O bound 
as well as computationally bound. In case of larger files 
and a large number of processors, the scanning 
component becomes I/O bound, which can be leveraged 
by using scalable parallel file systems (e.g., Lustre).  

  

5. Related Work 
In the area of IR systems, several approaches have 

been developed that show scalability [2-8]. However, 
little work has been done with extending the use of the 
information retrieval to be applied to the data analytics. 
Most of the work has been done in scaling the indexing 
components as part of the IR tasks. There has been 
considerable effort in the IR community to identify 
approaches to improve the precision and recall metrics of 
massive datasets. The TREC terabyte task, however, was 
less interested in precision recall as it would have 
required the ability to know the entire dataset and have 
individuals tag it based on queries generated as part of the 
experiment. As such, from 2004 through 2006, the main 
effort was focused on identifying topics and judgments as 
part of what the data contained. The main concern has not 
been on the type of architecture but on making the 
approach independent of the number of processors used. 
A good example of a distributed processing is Google. 

However, this distributed processing is embarrassingly 
parallel and does not require data exchange between the 
processing nodes. The goal of Google search engine and 
other related IR system is identifying and ranking the 
search results based on the specified query data.  

They do not attempt to analyze and present complex 
relationships between data found in the textual datasets.  
Another paper [8] showed how efficiency results from a 
parallel implementation of a vector space model but stops 
short of anything but simple IR activities.     

Other research activities in visual analytics have 
attempted to address the issue of scale from a visual 
interaction approach, using a simple or predetermined 
method or taxonomy for data classification. Feteke [17] 
focused on the use of graphic card accelerators in 
providing high-density interactive visualization for one 
million items. This approach made use of a predefined 
taxonomy for data using the TreeMap [18] visualization. 
The intent was to explore and interact with all items 
without the aggregation, and they succeeded once the 
underlying data was structured into the TreeMap.       

6. Conclusions and Future Work 
The amount of information will only increase and the 

tools to deal with this information must be able to scale 
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with it. We note that visual analytics is a new field where 
analysis leverages the perceptual capabilities of the user 
to aid in understanding the collection as a whole, discover 
important hidden relationships, and formulate insights 
with a minimum of reading. We have developed a set of 
scalable algorithms for visual analytics that are able to 
deal with massive volumes of data. Numerical 
experiments demonstrate virtually linear scaling when 
processing multi-gigabyte datasets such as PubMed. This 
approach enables interactive analysis of large datasets 
beyond capabilities of existing state-of-the art visual 
analytics tools. 

The next frontier of this work is the interactions 
associated with massive datasets within a visual analytics 
environment. To the best of our knowledge, interactions 
of this scale on a parallel system have never been 
attempted. We also believe that our system will scale into 
multi-terabytes and will be able to deal with the 
voluminous data existing today and in the future.  
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Figure 8. Speed-up of various components of the algorithm for Pubmed (Left) and TREC (Right) 
dataset. 
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