

Scalable Visual Analytics of Massive Textual Datasets

M. Krishnan S. Bohn W. Cowley V. Crow J. Nieplocha
Pacific Northwest National Laboratory

{manoj, shawn.bohn, wendy, vern.crow, jarek.nieplocha }@pnl.gov

Abstract
 This paper describes the first scalable implementation
of a text processing engine used in visual analytics tools.
These tools aid information analysts in interacting with
and understanding large textual information content
through visual interfaces. By developing a parallel
implementation of the text processing engine, we enabled
visual analytics tools to exploit cluster architectures and
handle massive datasets. The paper describes key
elements of our parallelization approach and
demonstrates virtually linear scaling when processing
multi-gigabyte data sets such as Pubmed. This approach
enables interactive analysis of large datasets beyond
capabilities of existing state-of-the art visual analytics
tools.

1. Introduction
We are experiencing rapid growth of data volumes.

For example, in 2002 the world produced 5 exabytes
(5x1018 bytes) of data [1] stored information in different
formats. This was in addition to 18 exabytes of
streaming data produced during the same year, of which
95% were telephone conversations. The main data types
that constitute the bulk of information produced are [2]:
1) textual data that comes from various media such as
email, newspapers, web pages; 2) databases; 3) image
data collected from satellites and other sources; 4) sensor
data collected in different areas of life and science and
technology; 6) video data. The current estimate of the
data growth coming from these sources is 30% per year
[1]. The existing technologies for extracting information
and knowledge discovery cannot handle the sizes and
heterogeneity of the massive amounts of data. An
example that illustrates the need for technologies to scale
is within the litigation sector. Walter [16] reports that
legal discovery processes are currently dealing with
terabytes of data and one recent discovery process hit the
first Petabyte examination.*

This paper is concerned with addressing scalability in
analysis of textual data. In particular, we are focusing on
a visual approach to analyzing textual data or so called
visual analytics. Visual analytics is a relatively new and

1-4244-0910-1/07/$20.00©2007 IEEE.

expanding field that evolved from the collective
understanding in scientific and information visualization
with additional contributions from other fields such as:
statistics, cognitive science, and data/
knowledge management. Its primary goal is to enhance
and organize the analytic process by exploiting the
analyst’s perceptual pattern-matching capabilities. In the
context of unstructured document analysis, this approach
becomes very powerful [3].

Information visualization systems can enable users to
quickly determine the general subject areas of hundreds to
millions of documents. Analysts can then be tasked with
identifying which of these documents should be examined
with greater scrutiny for addressing their need. This kind
of information analysis problem, which is becoming
increasingly common, is not directly addressed by
information retrieval (IR) systems based on user-defined
queries (e.g., Google). Visual analytics tools create
visualizations of document collections to help information
analysts understand the collection as a whole, discover
important hidden relationships, and formulate insights
with a minimum of reading.

Current state-of-the-art visual analytics software tools
can quickly and automatically convey the gist of large sets
of unformatted text documents such as technical reports,
web data, newswire feeds and message traffic. Visual
analytics software unveils common themes and reveals
hidden relationships within document collections. It allows
analysts to spend more time exploring the information they
find most relevant and less time sifting through the masses
of irrelevant documents. However, the increased volume
of data and computational complexity of the underlying
algorithms are stressing the standard computer desktop
technology, limiting the problem sizes that can be handled
effectively. Parallelization of these algorithms is required
to produce one, and ultimately two, orders-of-magnitude
improvement in the time to create visualization, allow
scaling of the maximum number of supportable concurrent
users, and greatly improve responsiveness for complex
interactions. To address the scalability challenge of current
visual analytics software such as IN-SPIRE™, we focused
on the text processing engine. We parallelized key
elements of this software including scanning, indexing,
signature generation, and clustering. Our approach relies
on the global address space programming model as

implemented in the Global Array Toolkit [23]. In
addition, we have deployed remote procedure calls to
implement scalable hash tables. The parallelization
approach was evaluated in context of large datasets
including the National Institutes of Health (NIH)
PubMed database and the Text Retrieval Conference
(TREC) Terabyte collection. The experimental results
validate our approach and show linear scalability.

The remainder of the paper is organized as follows.
Section 2 provides background information on visual
analytics software including INSPIRE. Section 3
describes details of the parallelization approach. Section
4 presents experimental results demonstrating
performance and scalability of the parallel
implementation for multiple datasets. Section 5 relates
our work to other existing research. The paper is
concluded in Section 6.

2. Visual Analytics
Analysts and researchers are increasingly inundated

with the amount of information they must search to
prove, disprove or identify what has or has not been
done in a specific topic pertaining to their task. This is
especially true in the stressful environment of
intelligence agencies where time-critical products are
required to help policymakers choose an appropriate
course of action. To provide these products, analysta use
a search system to perform successive searches and data
reduction in order to analyze their problem in a
manageable time. During this process, key pieces of
information can be missed, resulting in incorrect or less
confident hypotheses or assessments and costing
agencies time and resources in pursuing courses that
have already been explored. Figure 1 shows concentric
rings of query refinements that highlight the issue of
missing articles in the final result set [24].

Typical information retrieval (IR) systems provide
ranked results lists that require careful crafting of queries
and many hours or even days of research investigating
those results. Researchers often become frustrated by
either over- or under-constraining their results lists,
taking more time sorting or reformulating their queries.
In addition, researchers are not always performing
directed searches but are interested in associated articles
that may play a role in their research. In such situations,
researchers switch to a mode where browsing, not
searching, is the dominant approach for document
perusing. In this mode, typical IR systems are not
configured or optimized for lending suggestions on
topics the user is interested in without a great deal of
user input.

2. 1 Visual Document Analysis Software

IN-SPIRE is a visual analytics system designed to to
enable analysts to rapidly discover information
relationships. The analyst can not only identify
relationships but also identify the pertinent documents for
reading, rather than wading through large volumes of text
(or query lists). The system is based on a vector space
model that structures the information into signatures.
These n-dimensional document signatures are then
clustered into groups of related documents and projected
from n-space into 2-space. The projection of n-space to 2-
space is intended to preserve the major high-dimensional
relationships where proximity represents similarity. This
2-d projection can be used to generate a ThemeView™
visualization. A ThemeView visualization is a scale-
independent landscape of themes based on the
contributions of the projected documents into 2-space. The
terrain (Figure 2) has various mountains depicting where
themes are dominant and valleys where weak themes lie
[2]. However, key to generating visualizations and the
interaction capabilities to support on a massive scale is an
architecture that supports this.

Figure 2. ThemeView Representation.

Figure 1. Missed Articles Doing Query Refinement.

Given a set of data sources, the IN-SPIRE text engine
uses various processing stages (Figure 3) to create a
dataset for visualization. A source is a collection of
“files” or “documents” or “records.” Each record is set of
fields, and each field is a collection of terms (vocabulary).
Processing basically comprises the following steps:
1. Scan the source documents to identify individual

records and fields, compile a list of terms (i.e., a
vocabulary), and build an index of terms per field (the
“field-to-term index”). We refer to this as the “Scan &
Map” step.

2. Invert the field-to-term index to produce a “term-to-
field index.”

3. Use the term-to-field index to create a “term-to-record
index.” Steps 2 and 3 use the FAST-INV algorithm
[14, 15] for the inversion process.

4. Using indices from above steps, find a subset of N
words that can be used to statistically discriminate
among records, and a larger subset of M words that
associate with the set of N. We call member words of
these sets “topics” and “major terms,” respectively.

5. Use the N and M discriminating words from step 4 to
create an “association matrix” that relates topic terms
to other major terms.

6. Use the association matrix from step 5 to compute a
“knowledge signature” for each document, such that
each document occupies a point in a high-dimensional
N-Space, where each topic represents an orthogonal
dimension of that space.

7. Persist the knowledge signatures computed in step 7.
These signatures comprise a valuable intermediate
product of the text engine.

8. Cluster the records in the high-dimensional N-Space
by examining the inter-document scalar distances.

9. Project the high-dimensional space onto a two-
dimensional view, resulting in a visualization (e.g.,
ThemeView). The 2-D document coordinates
comprise the final primary product of the text engine.

3. Parallelization Approach
This section describes the parallelization approach of

the IN-SPIRE text processing engine. IN-SPIRE’s code is
written in C++; Global Arrays parallel software develop-
ment toolkit [23] and MPI were used to develop a
portable parallel code across various shared and
distributed memory architectures. Figure 4 illustrates the
parallelization approach in various stages of text process-
ing engine (using two processors, for example). The
various parallelization components are explained below.

3.1 Global Arrays
The Global Arrays (GA) toolkit [23] provides a shared

memory style programming environment in the context of
distributed array data structures (called “global arrays”).
Each process in a single program multiple data (SPMD)
parallel program can asynchronously access logical
blocks of physically distributed dense multi-dimensional
arrays, without need for explicit cooperation by other
processes. From the user perspective, a global array can
be used as if it were stored in shared memory, and all
details of the data distribution, addressing, and data
access are encapsulated in the global array objects.
Information about the actual data distribution and locality
can be easily obtained and taken advantage of whenever
data locality is important. Unlike other shared-memory
environments, the global array model exposes to the
programmer the non-uniform memory access
characteristics of the high-performance computers.
Efficient data access mechanisms as well as control of
data distribution and mapping interfaces allow users to
optimize their code by exploiting locality. In our
parallelization effort, globally shared arrays were used to
store field-to-term, term-to-field indices, term statistics,
major terms list, and association matrix.

Figure 3. Various processing stages in IN-SPIRE.

Indexing Signature Generation
(topics, association matrix,

DocVecs)

Scan

Clustering Projection

 Source
datasets

3.2 Scanning
The source datasets are partitioned equally into a

distinct set of documents and distributed among
processes. This static partitioning of sources is based on
the size of individual documents/records (bytes) and
ensures load balance when distributed. Each process
scans its list of sources; tokenizes by scanning the
sequence of bytes; and identifies records, fields, and
terms locally. As mentioned earlier, a “source” is a
collection of documents. Each document is a set of fields,
and each field is a collection of terms (vocabulary). The
terms are separated by whitespaces (or any delimiters
specified during configuration). When a document is
scanned, a list of terms is identified for a field, and a
field-to-term table is built, which stores the terms
identified in each field. Similarly, a document-to-field
table is created once all the fields have been identified.
This process is called forward indexing. These tables are
stored in global arrays, so that they are globally
accessible when processes exchange information during
inverted file indexing (IFI). During scanning, whenever a
unique term (i.e., vocabulary word) is identified by a
process, it is inserted into the global hashmap to identify
that term’s global term ID.

A global (distributed) hashmap is created collectively
by all processes to store the unique terms and generate a
global term ID for each term inserted into the hashmap.
Initially, the hashmap is empty; it will be populated
during the scanning phase. Global term IDs are used in
global operations (e.g., global term statistics, global
topics, etc. in Figure 4), in which all processes participate
together to complete a task. At the end of forward
indexing phase, the hashmap construction will be
completed and all the unique terms will have a unique
global ID. We deployed Aggregate Remote Memory
Copy Interface (ARMCI) [25] remote procedure calls to
implement scalable distributed hashmaps for storing
global vocabulary information in a distributed fashion.
Once the global hashmap is populated with all terms and
the forward indexing is completed, each process performs
an index inversion to generate a term-to-field table and
term-to-document index table.
3.3 Indexing

The indexing component comprises Parallel Inverted
File Indexing (IFI) and Global term statistics.
Parallel Inverted File Indexing: The process of
inverting forward indexes has been well-studied and has
multiple approaches for search result properties. Each
process performs an index inversion to generate a term-
to-field index using the field-to-term index. The end
results from the term-to-field index are aggregated into
the term-to-document index. Our approach uses the
FAST-INV algorithm [5, 14, 15] and modifies the

algorithm to distribute inversion loads among the
processes that have already completed their loads. Each
load is a fixed chunk of terms corresponding to those
fields in the field-to-term index table. To accomplish this,
we created a global array (global address space) that
stores the load tables so that any process can assist in
performing the inversion.

Load imbalance is a major performance degradation
factor in this inversion process. Although the sources
were equally distributed to the processes, the term
distributions will not be distributed as such. Inverting
indexes that have more terms and more documents than
other processes will cause their processes to be burden
longer while others are idle. To address the potential load
imbalance in our inversion algorithm, we use a simple
and effective dynamic load-balancing technique called
fixed-size chunking [19]. This dynamic load-balancing
technique is embedded in our parallel inversion algorithm
to balance the load among processors. In our approach, a
shared task queue, which is stored in a global array,
represents the collection of loads to be processed by all
processes. The task queue is prioritized in such a way that
each process completes its inversion loads first, and then
works on loads owned by other processes. When a
process finishes computing its loads, it gets the next
available load from the task queue, and atomically1
increments the task queue to point to the next available
load. This implementation of the dynamic load-balancing
technique takes advantage of the atomic1 and one-sided
operations in the Global Array toolkit [23]. The global
array one-sided operations eliminate explicit
synchronization between a processor that executes a task
and a processor that has the relevant data.

Atomic operations reduce the communication over-
head in the traditional message-passing implementations
of dynamic load balancing based on the master-worker
strategy. This strategy has associated scalability issues,
because with the increased number of processors,
management of the task queue by a single master
processor [20] becomes a bottleneck. Moreover, the
message-passing implementation of this strategy can be
quite complex. On the other hand, the implementation of
dynamic load balancing using GA atomics (fetch-and-
increment operation) involves only a few lines of code,
while the overall performance of the inversion is
competitive with the MPI-1 version [21].

Global term statistics: After IFI processing, each
process contains the term statistics of its local datasets. A
global array is created to store these term statistics from
all processes. There term statistics entail the global

1 Atomic operation has mutual exclusion built in: concurrent
accesses to the same data will be serialized

 Source
datasets

Source
datasets

Distribute Source documents

Scan & Map Scan & Map
Process 1 Process 2

Forward Indexing

Global Vocabulary Map (Distributed Hashmap)

Forward Indexing

Inverted File Index Inverted File Index

Global Term Statistics

Term Statistics Term Statistics

Topicality Topicality

Global Topics (Major Terms List)

Partial Association
matrix

Partial Association
matrix

Association matrix

Knowledge Signatures Knowledge Signatures

Clustering and Projection Visualization

Figure 4. Parallel Architecture of the IN-SPIRE text processing engine (2 process example).

Dynamic load
balancing

Insert Unique
Terms

Scanning
Component

Indexing
Component

Signature
Generation
Component

ClusProj
Component

document and term frequencies. This information will be
used to generate the knowledge signatures.

3.4 Knowledge Signature Generation
From the global term statistics, each process generates

topicality for their sets of terms (N/P terms per process,
assuming we have N unique terms and P processes).
Topicality is a measure that defines discriminating terms
within a set of documents. Our approach to compute
topicality is based on Bookstein’s serial clustering
method [22]. When all processes have completed their
measure, each process chooses the top N topics and
performs a global merge-sort process. The result is a list
of top N terms based on topicality measure and is
broadcast out to all processes. From these top N terms
(major terms), we take the top M (typically 10% of the
top N) and define them as the anchoring dimensions that
discriminate the topic space. The next phase of creating
signatures is based on computing the conditional
probabilities of each term of the top M against the top N.
An N by M matrix is then computed, with the entries in
the matrix being the conditional probabilities of
occupance, modified by the independent probability of
occurrence, or)|(ijij ttPM = where ith row, jth
column is the conditional probability of ti given tj; P(tj) is
the probability of tj. The results will be a term-to-term
association matrix (size NxM) correlating terms within
the dataset. In our parallel algorithm, each process
computes the association matrix for the terms associated
with its dataset. The association matrices of all the
processes are merged (MPI_Allreduce operation) to
produce the global association matrix.

Knowledge signatures are numerical vectors based on
the dimensions of the top M topics. Each process
computes the knowledge signatures by cycling through
each record. For each term that exists in that record, we
obtain the row within the association matrix. These rows
represent a term vector that when linearly combined with
other term vectors and then normalized we form a
signature of that record. During the linear combination,
each term vector is multiplied by the frequency of that
term within that record. This is used to capture and
weight that term and its importance in the signature of
that document. Each signature is normalized based on a
L1 Norm.

Because we now have an M dimensional
representation of the documents, we use clustering as a
means to identify common documents. One of the aims of
this work is to use this approach in reducing the
dimensionality for graphically portraying the datasets.

3.5 Clustering and Projection
We implemented a distributed k-means clustering

algorithm in our process [9]. However, other types of

clustering could be applied that would enable different
means to explore the relationships of the data (e.g.,
hierarchical clustering: single-link, complete, and various
adaptive cutting approaches). The intent of clustering is to
produce anchoring vectors (centroids) in the M-
dimensional space that represent the major thematic
groupings. In addition, the centroids provide a means to
aid the projection method by using a representative
“sample” of the document space when determining the
transformations from a high-dimensional space to a lower
one (e.g., 2-d or 3-d). Our approach for dimensionality
reduction was to use the cluster centroids and employ
principle component analysis (PCA) [15], where we can
use the first two principal components to project the M
space onto those principal components.

Each process computes the transformation matrix
using the centroids of the clusters. Finally, using the
transformation matrix, each process computes the 2-d or
3-d projection coordinate for its document set. The master
process (process with rank=0) collects all the coordinates
and writes them to a file, which is used to construct the
ThemeView visualization (Figure 2).

4. Experimental Results
In this section, we present and analyze the

performance of our proposed high-performance text
processing algorithms for various datasets with different
problem sizes. Experiments were performed using real-
time datasets to validate the effectiveness of our
algorithms. Numerical experiments were run on a Linux
cluster based on dual 1.5-GHz Intel Itanium nodes and
Infiniband network (48 processors total) at the Pacific
Northwest National Laboratory.

4.1 Datasets
Our parallel implementation enables us to analyze

large datasets much faster than it was previously possible
with leading visual analytics tools. This is important as
dataset size and time to solution is critical based on the
clients and their uses (e.g., intelligence community). We
expect that the text processing algorithms may perform
differently depending on the nature of the dataset. So we
selected real time datasets from two different fields
(medical and government) to demonstrate the
effectiveness of the parallel algorithm.

PubMed Database: PubMed database [9] contains
15+ million abstracts. PubMed is NIH's premier
bibliographic database, covering the fields of medicine,
nursing, dentistry, veterinary medicine, the healthcare
system, and the preclinical sciences [9, 10]. It contains
bibliographic citations and author abstracts from more
than 4,800 biomedical journals published in more than 70
other countries. The database contains over 15 million
citations dating back to the mid-1960s. Each abstract is

defined as unstructured (or free form) text and is
consistent in both size and language type.

TREC Terabyte Dataset: This is a collection of web
data crawled from web sites in the .gov domain during
early 2004 [12]. This collection (GOV2) contains a large
proportion of the crawlable pages in .gov, including
HTML and text, plus the extracted text of PDF, Word,
and Postscript files. The GOV2 collection is 426GB in
size and contains 25 million documents. While this
collection contains less than a full terabyte of data, data
analysis of this size is a time-consuming process with
respect to computational and input/output (I/O) cost.

4.2 Results and Performance Analysis
We conducted several experiments to demonstrate the

scalability of our parallel algorithm. Three problems sizes
were selected for Pubmed (2.75 GB, 6.67GB, and
16.44GB) and TREC (1 GB, 4GB, and 8.21GB) datasets.
These problem sizes were large enough to demonstrate
the performance of the algorithm on the selected
platforms.

Figures 5, 6a, and 7a show the overall performance of
our parallel text processing algorithms for various sizes of
Pubmed and TREC datasets up to 32 processors. As we
increase the number of processors, the time to solution
reduces almost linearly. In most cases, the algorithms
scale linearly, and no significant computational
degradation is manifested. However, in the case of 16GB
PubMed data on 4 processors, the performance is very
low because this problem size is too large for a 4
processor case. Therefore, excessive cache misses, page
faults, etc, degrade the overall performance.

The performance of individual components in our
parallel text processing algorithms is shown in Figures
6b, 7b, and 8. Figure 8 demonstrates the scalability of
individual components (scanning, indexing, signature
generation, and clustering/projection). When the number
of processors is increased, the percentage of time spent in
each component remains constant (except topicality), thus
demonstrating the stability of individual components for
various processor counts. The topicality component uses
an MPI_Allreduce collective operation to collect topics
from all processors. Therefore, the topicality algorithm
does not scale well when compared to other components
because the communication cost predominates when the
number of processors increases. However, the time
consumed here is relatively less when compared to other
components.
We also observed from the benchmarks (Figures 6b and
7b) that the PubMed dataset accentuated certain
computational bottlenecks in different components
(knowledge signature generation and clustering/
projections) of the algorithms. We recognized that our
current static approach for characterizing the space was
insufficient as we scaled with this dataset. Specifically, if

the dimensionality of the space was insufficient to
characterize the datasets, it would require subsequently
more iterations to converge in the clustering and
projections algorithms. We noted that many records had
less than desirable signatures and some were null.

This was remedied by increasing the dimensionality
producing robust signatures; increased dimensionality
typically incurs the overhead of more computation and
memory usage. However, because these new signatures
are significantly more representative within the space, the
time to converge took far less time than the previous
signatures. The cost of increasing the dimensionality is a
function of the vocabulary breadth and uniqueness per
document. Hence, as we scale we need to adapt the
dimensionality to dynamically fit the vocabulary diversity
and breadth for each dataset.

As explained earlier, the indexing component can
affect the overall scalability as it is highly load
imbalanced. Figure 9 demonstrates the effectiveness of
the dynamic load balancing algorithm in the indexing
component. Therefore, from Figures 8 and 9, it is proven
that the indexing component is scalable and well
balanced, when the problem sizes and processor counts
are increased. The experiment’s results show that our
algorithms are scalable for various problem sizes and

Figure 5. Performance (wall clock time) of
Pubmed and TREC datasets for 3 different
problem sizes on the Linux cluster.

Pubmed - Overall Timings

1

10

100

1000

10000

0 8 16 24 32
Processors

W
al

l c
lo

ck
 (m

in
ut

es
)

2.75 GB
6.67 GB
16.44 GB

TREC - Overall Timings

0

20

40

60

80

100

120

0 8 16 24 32

Proce ssors

W
al

l c
lo

ck
 (m

in
ut

es
) 1.00 GB

4.00 GB
8.21 GB

processor counts. The scanning component is I/O bound
as well as computationally bound. In case of larger files
and a large number of processors, the scanning
component becomes I/O bound, which can be leveraged
by using scalable parallel file systems (e.g., Lustre).

5. Related Work
In the area of IR systems, several approaches have

been developed that show scalability [2-8]. However,
little work has been done with extending the use of the
information retrieval to be applied to the data analytics.
Most of the work has been done in scaling the indexing
components as part of the IR tasks. There has been
considerable effort in the IR community to identify
approaches to improve the precision and recall metrics of
massive datasets. The TREC terabyte task, however, was
less interested in precision recall as it would have
required the ability to know the entire dataset and have
individuals tag it based on queries generated as part of the
experiment. As such, from 2004 through 2006, the main
effort was focused on identifying topics and judgments as
part of what the data contained. The main concern has not
been on the type of architecture but on making the
approach independent of the number of processors used.
A good example of a distributed processing is Google.

However, this distributed processing is embarrassingly
parallel and does not require data exchange between the
processing nodes. The goal of Google search engine and
other related IR system is identifying and ranking the
search results based on the specified query data.

They do not attempt to analyze and present complex
relationships between data found in the textual datasets.
Another paper [8] showed how efficiency results from a
parallel implementation of a vector space model but stops
short of anything but simple IR activities.

Other research activities in visual analytics have
attempted to address the issue of scale from a visual
interaction approach, using a simple or predetermined
method or taxonomy for data classification. Feteke [17]
focused on the use of graphic card accelerators in
providing high-density interactive visualization for one
million items. This approach made use of a predefined
taxonomy for data using the TreeMap [18] visualization.
The intent was to explore and interact with all items
without the aggregation, and they succeeded once the
underlying data was structured into the TreeMap.

6. Conclusions and Future Work
The amount of information will only increase and the

tools to deal with this information must be able to scale

TREC - Time Percentage in Components

0

10

20

30

40

50

60

70

80

scan index topic AM DocVec ClusProj

P
er

ce
nt

ag
e

4-nodes
8-nodes
16-nodes
32-nodes

Figure 7. a. Speed-up of TREC dataset for 3
problem sizes on the Linux cluster (Left).
b. Percentage of time spent on each component
in the algorithm for 1 GB dataset size (Right).

TREC - Overall Performance

0

5

10

15

20

25

30

0 8 16 24 32
Processors

S
pe

ed
up

1.00 GB
4.00 GB
8.21 GB

Figure 6 a. Speed-up of Pubmed dataset for 3
problem sizes on the Linux cluster (Left).
b. Percentage of time spent on each component
in the algorithm for 2.75 GB dataset size (Right).

Time Percentage in Components

0

5

10

15

20

25

30

35

40

45

scan index topic AM DocVec ClusProj

Pe
rc

en
ta

ge

4 - procs
8 - procs
16 - procs
32 - procs

Pubmed - Overall Performance

0

5

10

15

20

25

30

35

0 8 16 24 32
Processors

Sp
ee

du
p

2.75 GB

6.67 GB

16.44 GB

with it. We note that visual analytics is a new field where
analysis leverages the perceptual capabilities of the user
to aid in understanding the collection as a whole, discover
important hidden relationships, and formulate insights
with a minimum of reading. We have developed a set of
scalable algorithms for visual analytics that are able to
deal with massive volumes of data. Numerical
experiments demonstrate virtually linear scaling when
processing multi-gigabyte datasets such as PubMed. This
approach enables interactive analysis of large datasets
beyond capabilities of existing state-of-the art visual
analytics tools.

The next frontier of this work is the interactions
associated with massive datasets within a visual analytics
environment. To the best of our knowledge, interactions
of this scale on a parallel system have never been
attempted. We also believe that our system will scale into
multi-terabytes and will be able to deal with the
voluminous data existing today and in the future.
Acknowledgments
This work was supported by the U.S. Department of
Energy (DOE) through the Data Intensive Computing
Initiative, Laboratory Directed Research and
Development program at the Pacific Northwest National
Laboratory (PNNL). PNNL is a multi-program national
laboratory operated by Battelle Memorial Institute for
DOE under contract DE-AC06-76L01830.

References
[1] P. Lyman, HR Varian, How much information 2003?,

available at
www2.sims.berkeley.edu/research/projects/how-much-
info-2003/.

[2] J. Thomas, K.A. Cook (eds) , Illuminating the Path: The
research and development agenda for visual analytics,
IEEE CS Press, 2005.

[3] P. Wong, J. Thomas, Visual Analytics, IEEE Graphics and
Applications, pg 20-21., Sept/Oct – 2004.

[4] Wise, J.A., Thomas, J.J., et. al. Visualizing the non-
visual: spatial analysis and interaction with information
from text documents, in Proceedings of IEEE 95
Information Visualization, pages 51-58. IEEE Service
Center, Atlanta, GA, October 1995.

[5] O. Sornil, E.A. Fox, Parallel Inverted Index for Large-
Scale, Dyanmic Digital Libraries, Ph.D Thesis,
VPI(Virginia Polytechnic Institute), 2001.

[6] Macfarlane, S.E. Robertson, and J.A. McCann. Parallel
computing in information retrieval – an updated review.
Journal of Documentation, 53(3):274-315, June 1997.

[7] Pogue and P. Willett. Use of text signatures for document
retrieval in a highly parallel environment. Parallel
Computing, 4:259-268, June 1987.

[8] P. Efraimidis, C. Glymidakis, B. Mamalis, P. Spirakis, B.
Tampakas, Parallel Text Retrieval on a High Performance
Supercomputer using the Vector Space Model,
Proceedings of the 18th Annual International ACM SIGIR

conference on Research and Development in Information
Retrieval, pg 58-66, Seattle, WA, USA, 1995.

[9] I.S. Dhillon, D.S. Modha, A Data-Clustering Algorithm On
Distributed Memory Multiprocessors, Large-Scale Parallel
Data Mining, Lecture Notes in Artificial Intelligence, pg
245-260, 2000.

[10] S Ghemawat, H. Gobioff, ST Leung, The Google File
System, ACM SOSP’03, October 2003.

[11] NIH National Library of Medicine (NLM) Pubmed
MEDLINE database.
http://www.nlm.nih.gov/pubs/factsheets/medline.html.

[12] NIH National Center for Biotechnology Information.
http://www.ncbi.nlm.nih.gov/entrez/query/static/overview.
html.

[13] TREC terabyte data. www-nlpir.nist.gov/projects/terabyte/.
[14] Fox, E. A. and Lee, W. C., FAST-INV: a Fast Algorithm

for Building Large Inverted Files. Technical Report. UMI
Order Number: TR-91-10., Virginia Polytechnic Institute
& State University, 1991.

[15] W.B. Frakes and R. Baeza-Yates, Information Retrieval:
Data Structures and Algorithms. Prentice Hall, 1992.

[16] S. Walter, Information Discovery Panel, NVAC
Consortium meeting 10/4-5, Richland, WA, 2006.

[17] J. Fekete, C. Plaisant, Interactive Information Visualization
of a Million Items, INFOVIZ 2002, IEEE Symposium on
Information Visualization, pg 117-124, Boston, 2002.

[18] Johnson, B. and Shneiderman, B. Tree-maps: A space-
filling approach to the visualization of hierarchical
information structures, Proc. IEEE Visualization’ 91 284 –
291, IEEE, Piscataway, NJ, 1991.

[19] Kruskal, C.P., and Weiss, A., Allocating independent
subtasks on parallel processors. IEEE Trans. Softw. Eng.
11, 10, 1001-1016, 1985.

[20] Matthey, T., and Izaguirre, J.A., ProtoMol: A molecular
dynamics framework with incremental parallelization. In
Tenth SIAM Conf. on Parallel Processing for Scientific
Computing (PP01), Society for Industrial and Applied
Mathematics, 2001.

[21] Tipparaju, V., Krishnan, M., Nieplocha, J., Santhanaraman,
G., and Panda, D., Exploiting non-blocking remote
memory access communication in scientific benchmarks.
In High Performance Computing - HiPC, 248-258, 2003.

[22] Bookstein, A., Klein, S. T., Raita, T, Detecting Content-
Bearing Words by Serial Clustering, Proceedings of the
15th International ACM SIGIR Conference on Research
and Development in Information Retrieval: 319-327, 1992.

[23] Jarek Nieplocha, et. al, Advances, Applications and
Performance of the Global Arrays Shared Memory
Programming Toolkit, International Journal of High
Performance Computing Applications, Vol. 20, No. 2, 203-
231, 2006.

[24] E.S. Patterson et al., Aiding the Intelligence Analyst in
Situations of Data Overload: From Problem Definition to
DesignConcept Exploration, tech. report ERGO-CSEL 01-
TR-01,Inst. for Ergonomics/Cognitive Systems Engineering
Lab., March 2001.

[25] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. Panda.
High Performance Remote Memory Access
Comunications: The ARMCI Approach. International
Journal of High Performance Computing and Applications,
Vol 20(2), 233-253, 2006.

Figure 8. Speed-up of various components of the algorithm for Pubmed (Left) and TREC (Right)
dataset.

Scanning

0

5

10

15

20

25

30

35

0 8 16 24 32
Processors

Sp
ee

du
p

2.75 GB
6.67 GB
16.44 GB

Indexing

0

5

10

15

20

25

30

35

0 8 16 24 32
Processors

Sp
ee

du
p

2.75 GB
6.67 GB
16.44 GB

Signature Generation

0

5

10

15

20

25

30

0 8 16 24 32

Processors

Sp
ee

du
p

2.75 GB
6.67 GB
16.44 GB

Clustering & Projections

0

5

10

15

20

25

30

35

0 8 16 24 32
Processors

Sp
ee

du
p

2.75 GB
6.67 GB
16.44 GB

Signature Generation

0

5

10

15

20

25

30

0 8 16 24 32
Processors

Sp
ee

d-
up

1.00 GB
4.00 GB
8.21 GB

Scanning

0

5

10

15

20

25

30

0 8 16 24 32
Processors

Sp
ee

d-
up

1.00 GB
4.00 GB
8.21 GB

Indexing

0

5

10

15

20

25

30

35

0 8 16 24 32
Processors

Sp
ee

d-
up

1.00 GB
4.00 GB
8.21 GB

Cluster and Projection

0

5

10

15

20

25

30

0 8 16 24 32
Processors

Sp
ee

d-
up

1.00 GB
4.00 GB
8.21 GB

