

Toxicology and Carcinogenesis Studies of Dibromoacetic acid (CAS NO. 631-64-1) in F344/N Rats and B6C3F₁ Mice (Drinking Water Studies)

DBA: Human Exposure

- Drinking water disinfection by-product: formed primarily by the reaction of chlorine and naturally occurring organic matter in the presence of bromide
- Concentrations in finished water: up to 18 μg/L
- Concentrations in water at Southern Res. Inst.
 - Total DHAs = 45 ± 23 μg/L
 - DBA = 3.8 ± 2.9 μg/L
- EPA's maximum contaminant level for haloacetic acids in drinking water is 60 µg/L (MCA, DCA, TCA, MBA, and DBA)

DBA: Study Rationale

- Nominated to the NTP by EPA for toxicity and carcinogenicity studies because:
 - Widespread human exposure to DBPs
 - DCA is carcinogenic to the liver of rats and mice
- Drinking water is primary route of human exposure

2-Week Study in Rats

- Water concentrations of DBA: 0, 125, 250, 500, 1,000, and 2,000 mg/L
- No effects on survival, clinical signs, water consumption, or final mean body weight
- Hepatocyte cytoplasmic alteration in males at 500 mg/L or higher and in females at 2,000 mg/L
- Delayed spermiation, retained spermatids, and large residual bodies in testes of males exposed to 500 mg/L or higher concentrations

3-Month Study in Rats

- Water concentrations of DBA: 0, 125, 250, 500, 1,000, and 2,000 mg/L
- No effects on survival or clinical signs
- Water consumption and body weights were reduced in 2,000 mg/L males and females
- Liver: incidence of hepatocellular cytoplasmic vacuolization was increased in males at 500 mg/L and higher and in females at 2,000 mg/L
- Testes: decreased weight and atrophy of germinal epithelium at 2,000 mg/L (also epididymal hypospermia and reduced sperm motility); delayed spermiation and retained spermatids at 500 and 1,000 mg/L

2-Year Study in Rats

Conc, mg/L	Survival %	Av. Terminal Wt. (% of control)	Av. daily dose mg/kg	
Males				
0	68	509	-	
50	48	504 (99)	2	
500	60	457 (90)	20	
1000	57	435 (86)	40	
Females				
0	70	351	-	
50	78	349 (97)	2	
500	70	336 (96)	25	
1000	64	306 (87)	45	

2-Year Study in Rats: Incidence of Neoplasms

Concentration (mg/L)	0	50	500	1,000
Male	N = 50	50	50	50
Mesothelioma ^a	3	1	0	10
	(7)** ^d	(2)	(0)	(23)*
Mononuclear cell	17	31	24	13
Ieukemia ^b	(37)	(66)**	(56)	(30)
<u>Female</u>	N = 50	50	50	50
Mononuclear cell	11	13	16	22
leukemia ^c	(24)**	(27)	(35)	(47)*

^a Historical incidence in 2-year drinking water controls: $6.0 \pm 4.2\%$, range 0-12%

^b Historical incidence in 2-year drinking water controls: 31.6 ± 3.3%, range 26-34%

^c Historical incidence in 2-year drinking water controls: $23.5 \pm 4.4\%$, range 20-30%

^d Poly-3 adjusted incidence

2-Year Study in Rats: Nonneoplastic Lesions

Concentration (mg/L)	0	50	500	1,000
Male	N = 50	50	50	50
Liver, cystic	3	9*	11*	15**
degeneration	(1.0) ^a	(1.4)	(1.5)	(1.3)
<u>Female</u>	N = 50	50	50	50
Lung, alveolar epithelial	3	7	13**	14**
hyperplasia	(1.3)	(1.9)	(1.7)	(1.9)
Kidney, nephropathy	18 (1.1)	32** (1.3)	37** (1.4)	40** (1.3)

^a average severity: 1=minimal, 2=mild, 3= moderate

2-Week Study in Mice

- Water concentrations of DBA: 0, 125, 250, 500, 1,000, and 2,000 mg/L
- No effects on survival, clinical signs, water consumption, or final mean body weight
- Thymic atrophy in males at 1,000 or 2,000 mg/L and in females at 2,000 mg/L
- Spermatid retention and atypical residual bodies in the testes of males exposed to 1,000 or 2,000 mg/L

3-Month Study in Mice

- Water concentrations of DBA: 0, 125, 250, 500, 1,000, and 2,000 mg/L
- No effects on survival or clinical signs
- Body weight gains were reduced in 2,000 mg/L males and females
- Liver: severity of hepatocellular cytoplasmic vacuolization was increased in males and females at 1,000 and 2,000 mg/L
 - Males: 1.6, 1.6, 1.5, 1.5, 2.1, 2.9 [1=minimal, 2=mild, 3=moderate, 4=marked]
 - Females: 1.5, 1.5, 1.5, 1.7, 2.3, 2.7
- Testes: spermatid retention and atypical residual bodies at 1,000 and 2,000 mg/L; no effect on epididymal sperm concentration or sperm motility

2-Year Study in Mice

Conc, mg/L	Survival %	Av. Terminal Wt. (% of control)	Av. daily dose mg/kg	
Males				
0	63	46.7	-	
50	76	50.0 (107)	4	
500	68	51.1 (109)	45	
1000	62	46.6 (100)	87	
Females				
0	76	59.0	-	
50	70	59.5 (101)	4	
500	64	57.9 (98)	35	
1000	64	56.6 (96)	65	

2-Year Study in Mice: Liver Neoplasms

Concentration (mg/L)	0	50	500	1,000
<u>Male</u>	N = 49	50	50	50
Hepatocellular	28	41	42	47
adenoma or carcinoma ^a	(61)** ^d	(86)**	(88)**	(96)**
Hepatoblastoma ^b	0	4	6	18
	(0)**	(9)	(13)*	(39)**
<u>Female</u>	N = 49	50	50	49
Hepatocellular	22	28	37	37
adenoma or carcinoma ^c	(48)**	(61)	(80)**	(80)**

^a Historical incidence in 2-year drinking water controls: 49.7 ± 31.1%, range 48-85%

^b Historical incidence in 2-year drinking water controls: $4.5 \pm 6.2\%$, range 0-13%

^c Historical incidence in 2-year drinking water controls: $44.4 \pm 18.1\%$, range 20-63%

^d Poly-3 adjusted incidence

2-Year Study in Mice: Lung Lesions

Concentration (mg/L)	0	50	500	1,000
Male	N = 49	50	50	50
Alveolar epithelial	2	6	6	7
hyperplasia	(1.5) ^a	(1.7)	(2.3)	(1.9)
Alveolar/bronchiolar	12	12	22	17
adenoma or carcinoma ^b	(28) ^c	(26)	(49)*	(37)
<u>Female</u>	N = 50	50	50	50
Alveolar/bronchiolar	2	5	5	7
adenoma or carcinoma ^d	(4)	(11)	(11)	(15)

^a average severity: 1=minimal, 2=mild, 3= moderate ^b Historical incidence in 2-year drinking water controls: 16.5 ± 10.7%, range 12-26%

^c Poly-3 adjusted incidence

^d Historical incidence in 2-year drinking water controls: $6.4 \pm 3.9\%$, range 2-12%

Conclusions: 2-Year Study of DBA in Rats

- Level of evidence of carcinogenic activity
 - Male rats: malignant mesothelioma = some evidence
 - Female rats: mononuclear cell leukemia = some evidence
- Nonneoplastic effects
 - Male rats cystic degeneration of the liver
 - Female rats alveolar epithelial hyperplasia, nephropathy

Conclusions: 2-Year Study of DBA in Mice

Level of evidence of carcinogenic activity

- Male mice:
 - Hepatocellular neoplasms, hepatoblastomas = clear evidence
 - Lung neoplasms = exposure related
- Female mice:
 - Hepatocellular neoplasms = clear evidence
 - Lung neoplasms = may have been related

Metabolism of Dihaloacetates

Toxicokinetic Studies on Dihaloacetates

Chemical, sex and species

- DCA male rats and female mice
- DBA female rats and male mice
- BCA male and female rats and mice

Measurements

- Plasma time courses of parent DHA and metabolites (glyoxylate and oxalate)
- Urine analyses of parent DHAs and metabolites after gavage treatments

Treatments

- Single iv of each DHA
- Single gavage of each DHA
- Single iv of glyoxylate
- 2 week drinking water exposures with each DHA followed by gavage
- 2 week drinking water exposures with each DHA

Features of the Preliminary PBPK Model of DBA

- Oral absorption
- Multi compartment distribution (flow-limited)
 - stomach, liver, kidney, slowly perfused tissues, rapidly perfused tissues
- Metabolism
 - <u>GST-zeta kinetics</u> with <u>suicide inhibition</u>, degradation and <u>resynthesis</u>
 - Non GST-zeta kinetics
- Urinary elimination
 - Glomerular filtration
 - Saturable reabsorption
- Published parameters
 - Cardiac output, urine flow, glomerular filtration, organ volumes (as fraction of body weight), organ blood flow (as fraction of cardiac output), tissue partition coefficients

NTP Technical Reports Review Subcommittee Meeting

Dibromoacetic acid

