
Plasma instabilities in the Anisotropic

Quark Gluon Plasma

• Why they should (?) be expected

• Similarities and Differences with conventional plasmas

• Possible implications

• Directions for further research

Is a weak-coupling treatment really in contradiction with

hydrodynamic behavior as observed at RHIC?

Guy D. Moore P. Arnold, J. Lenaghan, L. Yaffe

Stanislaw Mrówczyński, Mike Strickland, P. Romatschke, A. Rebhan
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Idealized Heavy Ion Collision: Before

Approaching Heavy Ions

Flat — Lorentz contraction

Each made of ∼ 200 p, n

p, n are made of ∼ 50 partons

(Parton = Quark or Gluon)
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Most partons miss all other partons or make a glancing

scattering
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So most particles continue nearly forward

A few scatter or emit at closer to right angles.
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So considerable population at central rapidity
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Conditions Just After a Collision

Middle region consists of Quarks

and Gluons with Random directions

(Quark Gluon Plasma, QGP).

19



System expands—but it is Pancake Shaped.

Expansion is quasi-1 dimensional–

aspect ratio of the QGP is chang-

ing rapidly.
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In the Absence of Further Scattering:

Only Forward Moving Things
End Up in the Forward Region

Back−Moving
Things in the
Backwards
Region

Only Lateral Movers End
Up in the Central Region

Central plasma is anisotropic (Oblate p distribution).
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Quark-Gluon Plasma is –Sort Of– like
conventional plasma

There are gluonic fields which obey Maxwell equations.

Small deBroigle wavelength quarks (and gluons!) act like

point-particle charges for these gluonic fields

Classical particle + classical field description is justified at

leading order in αs (and underlies Saturation/CGC picture)

Maxwell + Anisotropy =⇒ Weibel Instability
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Key Differences between QGP & conventional plasma

• Charges are Ultra-Relativistic

• Coupling is not small: αs ∼ 1/3 while α
EM
∼ 1/137

• 3 types of charge and 8 electromagnetic (gluon) fields

• Color E&M fields have direct mutual interactions,

Ja
µ = gfabcAν

bF
c
µν

Weibel instability may saturate differently than in
normal plasmas.
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Physical Origin of Weibel Instability

Trapping of charges by soft magnetic fields

Magnetic
Field due
to a Transverse
Field
with Wave
Vector
in the 

Direction

Net Current

Net Current

_+

~B fields trap particles moving along ~A direction

Trapped particle’s current reinforces trapping ~B field!
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Formal approach to Weibel Instability

G−1
µν = G−1

µν,vac +Πµν,medium

' p2ηµν − pµpν +Πµν,medium(p
0/|p|, p̂) .

Πµν ∼ g2
∫ d3k

k
f(k) ∝ m2

∞(or m2
D) .

For most p0,p, Πµν is positive–but for p
0 = 0 (plasma

frame) the average over p̂ directions of ΠT is zero.

Anisotropy: ΠT < 0 for some p̂ at small p0.

Small p: Π dominates free G. Pole at imaginary ω.

Anisotropic, Perturbative =⇒ exponential growth

13



Momentum space distribution of excitations:

P
typical

Dominant "Hard"

Super−populated, soft
"classical field" excitations

"Particle" excitations

mD

Oblate “hard” distribution, prolate classical field “soft”

distribution
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Does instability matter?

If I assume

1. Saturation picture, f(Qs) ∼ α−1
s at t ∼ Q−1

s

2. αs ¿ 1

3. Bjorken hydrodynamics (1-dimensional expansion)

4. No (other) fast isotropization mechanism

Then exponentiation timescale for instability always shorter

than age of plasma for all t > Q−1
s . Probably.

Arnold, Lenaghan, GDM hep-ph/0307325 (JHEP0308:002)

11



Key Dynamical Question

Do soft B fields grow to the scale

Aµ ∼
ptypical

g
(= Qs/g), B ∼

mD ptypical

g

the scale where RLamor ∼ m−1
D the coherence length, and

where B2 = ρB ∼ ρtotal,

Or do they saturate at

Aµ ∼
mD

g
, B ∼

m2
D

g

where nonabelian interactions become important (gauge

fields mutually interact, charges color-rotate on the A field

coherence length, etc)?
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Nonabelian system: nonabelian interaction

Ja
µ ∼ gfabcAb

νF
c
µν

as large as linear Maxwell term for A ∼ mD/g.

(Think of soft gauge fields as extra particles–but ones with

a prolate momentum distribution!)

May stop growth, and may scatter around direction of other

B fields to be random.

Steady state–pumping of soft modes, up-scattering of

momentum to scales above mD–would probably follow.
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Peter Arnold and Jonathan Lenaghan hep-ph/0408052

1 space × 3v toy model

Naive treatment of self-energy

System “Abelianizes”–2 of 8 color fields grow 2 commuting directions

These 2 suppress growth of other 6–they stay small and do

not feed back

Strickland, Romatschke, and Rebhan hep-ph/0412016

1 space × 3v but full Yang-Mills with ballistic (Eikonalized)

charges

Confirm Arnold&Lenaghan behavior
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Implication If True

Assume plasma becomes strongly anisotropic

• B grows until B2 ∼ ρ

• RLamor ∼ m−1
D ¿ τ (τ the system age)

• System isotropizes

Contradicts assumption of strong anisotropy

System must remain near-isotropic at all times t > Q−1
s

Sufficient to ensure Tij = Pδij, hence Hydrodynamic

behavior, radial and elliptic flow.
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What does system “look like”? In this picture,

Patchwork of domains, mD ∼ 1fm

across

Particles bend coherently within

each domain

B fields dominate bending but not

energy

Possible implications: hydrodynamic behavior, enhanced

bremsstrahlung (γ production, jet quenching)
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Needed: 3 space × 3v simulations

Method AMY, in preparation: treat A, f on 3-D lattice:

• Gauge field: lattice (link variable) method

• f(p) = f0 + δf , with f0 uncolored and δf adjoint color

fluctuations, f0 background and δf dynamical

• δf(p) angular dependence expanded in Ylm’s truncated

at some lmax, probably ∼ 6–12

Perturbative in deflection angle, Nonperturbative in A field

Can tell if saturation occurs at A ∼ mD/g or A ∼ ptypical/g.

Similar to Bödeker GDM Rummukainen hep-ph/9907545 (PRD61:056003)
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f(x, p) really f ab(x, p) an R̄×R tensor

fab = f singlet + fa + fhigher

Maxwell equation involves f a,

DµF
µν
a = g

∫ d3k

(2π)3
vνfa(k)

Dtf + ~v · ~Df = gvµF
µν∂k

νf(x, p)

Expand in f singlet À fa (small-angle approximation!)

(vµDµ)f
a = gvµF

µν
a ∂p

νf
singlet

Ultra-relativistic–free to integrate over |k|, f a a function

only of ~v (2 internal dimensions)
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Strengths:

• Fully nonperturbative in nonabelian interactions

• Full 3 space and 3v (Probably essential)

Limitations:

• Treats particles in Eikonal approximation (small

deflection angle)

• No hard collisions (Not an Issue)

• All founded on weak coupling (As usual)

Can resolve scale of Weibel saturation, but probably not

subsequent evolution.
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Preliminary results

A appears to saturate at the nonabelian scale

Subsequent cascade of energy from mD scale to larger k

gauge fields

Totally different dynamics than in Abelian plasmas

Enough for isotropy at all timescales? Not clear.
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Conclusions

• Heavy ion collisions—in the idealization of

high energy—contain all conditions for (color)

plasma instabilities

• May be relevant to good hydrodynamic

behavior observed at RHIC

• Instability may saturate early due to

nonabelian interactions
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Just in Case Slides

Why don’t we perform a Particle and Cell Simulation?

Gauge fields on links, particles in space, their charges on the

nearest site, B on plaquettes and E on links

GDM, B. Müller, C. Hu, hep-ph/9710436, PRD58:045001
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Particle changes “color” when it crosses between “boxes”

+q

outgoing flux  = +q outgoing flux  = 0

Just before crossing

outgoing flux  = +qoutgoing flux  = 0

Just after crossing

particle

+q

particle

Q→ eiA·lQ. Unlike abelian, A is a matrix

Requires local update (cannot perform smearing) to

conserve Charge, Energy and Gauss’ Law
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Particle velocity: v = c (must be at least close!)

Field velocities: lattice dispersion

vgroup =
dE

dp
∼ c

sin p

2 sin p/2
< 1

[Really, E2 =
∑

i(4/a
2) sin2(api/2)]

Cherenkov condition met for UV lattice modes

Spurious particle–UV lattice field interactions

Extremely numerically expensive to make this effect small

Not as important for applications of MMH paper

-2


