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Abstract

Statistical properties of rain exhibit the interesting feature that they depend in a nontrivial way on the length and time scales

over which rain rate is averaged. A quantitative understanding of this dependence can be utilized to relate statistics at different

scales and is important for inter-comparison of rainfall data obtained from measuring devices with differing space–time

resolutions. A stochastic dynamical model of rainfall based on a fractional diffusion type kinetic equation introduced earlier by

the authors describes fairly well how the second moment statistics of area-averaged rain rate depend on the averaging length L

and predicts a power law scaling behavior as L/0. The model pictures the correlation of the precipitation field as arising from

two-dimensional Lévy flights. The present paper extends the investigation to the full space–time covariance function of the

precipitation field. In particular, a scaling regime is identified in which the various second moment statistics of area- and/or

time-averaged rain field exhibit invariance under a combined rescaling of the space and time variables—a property known as

dynamic scaling, the scaling exponent being identified with the Lévy index. Although the space and time scales resolved in the

radar data used to establish the model turn out to be too coarse for the dynamic scaling behavior to be experimentally

demonstrated, we predict that it should be observable in high frequency rain gauge data from dense gauge networks.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Rain formation involves an inter-play of complex

dynamical processes in the atmosphere, taking place

at many different space and time scales. Such

processes include nucleation and growth of raindrops
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within a cloud followed by their aggregation

and break-up due to collisions and random motion

due to turbulence in the course of their collective

downward fall under gravity. Local physical

conditions in the atmosphere that influence precipi-

tation vary rapidly in an unpredictable manner.

Consequently, a physically based prediction of the

space–time distribution of precipitation is well nigh

impossible. Instead, such a description is conveniently

sought within the framework of a stochastic
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dynamical model. The instantaneous rain rate at a

point on the ground can be regarded as a random

variable whose statistical properties are characterized

by a small number of empirical model parameters.

A considerable body of evidence now exists to

indicate that statistical properties of precipitation

fields exhibit self-similar behavior over a broad range

of spatial and temporal scales. This manifests itself in

scaling properties of the various statistics under a

rescaling of the area and time over which rain is

averaged. Models that describe statistics of point

rainfall have the flexibility of being applicable to

situations where precipitation data measured at

different spatial and temporal resolutions, such as

radar and rain gauge data, have to be compared.

Statistics of instantaneous point rain rate can be

averaged to any desired space and time scale dictated

by the measurement method or numerical climate

model. Remote sensing measurements like those

carried out by ground-based radar or radar and

microwave instruments on board low earth-orbiting

satellites, such as the Tropical Rainfall Measuring

Mission (TRMM), yield estimates of near-instan-

taneous area-averaged precipitation rate over large

areas at various spatial resolutions. On the other hand,

rain gauges directly observe precipitation rate at a

point continuously over long periods of time.

Comparison between the two types of data is

facilitated by a statistical model that can be adapted

to arbitrary averaging length and time scales (Bell and

Kundu, 2003; Bowman et al., 2003).

In recent years at least two theoretical approaches

have been developed to describe the space–time

behavior of point rain rate statistics in terms of random

processes which incorporate the scaling properties in a

natural manner. The first approach describes rainfall as

a multiplicative random process generated through

exponentiation of an additive process. The multifractal

models based on a self-similar multiplicative random

cascade process belong to this class. Full space–time

models of this type have been investigated by a number

of authors (Marsan et al. (1996), Over and Gupta

(1996) and Seed et al. (1999)). In the second type of

approach the local precipitation rate is modeled by an

additive random variable satisfying a stochastic

dynamical equation. Such a model based on a simple

diffusion type equation was first described by North

and Nakamoto (1989). The model considered in this
paper generalizes the North-Nakamoto model by

introducing an equation involving fractional order

spatial derivatives that describe a kind of anomalous

diffusion. At small length and time scales the model

statistics follow simple power law dependence thus

indicating scaling behavior typical of fractals.

However, deviation from self-similarity and scaling

occurs as the distance and time scales approach the

characteristic length and time parameters of the model

and the mesoscale processes intervene. The model was

first introduced in Bell and Kundu (1996) to fit the

statistics of gridded ship-borne radar rainfall data from

Global Atmospheric Research Project (GARP) Atlan-

tic Tropical Experiment (GATE) conducted in 1974 in

the Eastern Atlantic. More recently, it proved success-

ful in describing second moment statistics of the

gridded precipitation data obtained from two ship-

borne radars during the Tropical Ocean Global

Atmosphere–Coupled Ocean Atmosphere Response

Experiment (TOGA-COARE) over the 4-month

period November 1992 to February 1993 in the tropical

Western Pacific (Kundu and Bell, 2003).

In this paper we demonstrate that at sufficiently

small distances and times the statistics generated by the

model remain invariant under the combined action of a

space–time scale transformation, a property some-

times referred to as dynamic scaling. Empirical

evidence for such a behavior in isolated storms has

been presented by Venugopal et al. (1999) for the

logarithmically transformed rain field. We here

explore a physical setting in which this aspect of the

model prediction could be experimentally verified. In

Section 2 we review the model and discuss how the

anomalous diffusion can be represented in terms of a

simple mathematical picture of two-dimensional

random flights. In Section 3 we discuss the scaling

properties of the various second moment statistics of

area- and/or time-averaged rain rate predicted by the

model at sufficiently small space and time scales and

obtain the dynamic scaling exponent. Section 4

concludes the paper with some discussions about

directions for future work.
2. The model

In this section we describe a stochastic dynamical

model that incorporates the self-similar behavior of
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rain statistics at small scales and derive its underlying

dynamical equation from heuristic physical consider-

ations. The statistics are assumed to be homogeneous

and isotropic in space and stationary in time.

The rain rate field on the ground is in a sense a two-

dimensional section of what in reality is a spatially

coordinated process in three dimensions. Formation of

rain patterns and their subsequent evolution is modeled

as a diffusive process that can be represented in terms

of random two-dimensional flights. We envision the

space–time non-uniformities of the rain field as being

aggregates of localized small-scale fluctuations. The

physical scenario can be described as follows: a

localized rain fluctuation at a point at time t is

associated with the occurrence of others in its vicinity

at time tCdt. The physical association comes from the

fact that the rain fluctuations originate through

interacting dynamical processes at higher altitudes.

One can think of this phenomenon as a sequence of

instantaneous random jumps in the horizontal plane

taking place during the time interval dt, the probability

of occurrence of a jump of a specified length vector l
being gdt. The probability of m such occurrences in

course of a finite time tO0 during which the system

undergoes a total displacement X(t)Zml is given by

the familiar Poisson distribution

Pr½XðtÞZml�hpmðtÞZ expðKgtÞ ðgtÞm=m! (1)

The characteristic function of the distribution is

given by

FXðk; tÞhE
�
expfik,XðtÞg

�
Z exp

�
Kgt ð1Keik:lÞ

�
(2)

where E[.] denotes the mean over an ensemble with

distribution (1). Next consider a more complex process

X(t) which is a sum of a continuous infinite number of

such independent Poisson processes with the same rate

constant g for which the jump sizes are assumed to be

continuously distributed with a (Lévy–Khintchine)

measure m(dl). Since the jumps of different length

vectors are assumed to be independent of one another,

the characteristic function of the resulting random

process (commonly known as a Lévy process) is

simply an infinite product of factors (2) for all l, which

can be expressed in the form

FXðk; tÞZ exp Kgt
Ð
ð1Keik,lÞmðdlÞ

� �
: (3)
We emphasize that the ‘jump’ model should be

viewed as merely a formal mathematical represen-

tation rather than an actual physical description of the

underlying cloud microphysical processes that end up

producing the space–time correlation in rainfall. Note

that the assumption that the rate constant g is

independent of l is not an essential restriction, since

any such l-dependence could be absorbed within the

integration measure m(dl).
Since we intend to describe rain statistics that are

spatially isotropic, the directions of the jumps are

taken to be isotropically distributed, that is, all

directions are assumed to be equally likely. In order

to incorporate the scaling behavior of rain statistics,

the jump sizes are assumed to follow a power law

distribution with density w(l)wlK(1Ca) (0!a!2).

The resulting random process is simply a Lévy flight

with index a (Mandelbrot, 1982). In order to obtain a

normalizable density it is convenient to introduce a

sharp lower cut-off l0O0 to the allowed jump lengths.

Imposing the normalization condition
ÐN

0 wðlÞdlZ1

on the truncated density, we obtain the measure

(4 denotes the polar angle)

mðdlÞZwðlÞdl d4=2p (4)

with

wðlÞZala0 l
Kð1CaÞQðlK l0Þ; (5)

where Q(x) is the unit step function defined as Q(x)Z
1 when xO0 and 0 otherwise.

Angular integration in (3) yields

FXðk; tÞZ exp Kala0gt

ðN
l0

½1KJ0ðklÞ�l
Kð1CaÞdl

� �
;

(6)

where J0(x) denotes the usual Bessel function of order

zero. Since 1KJ0(x)ZO(x2) near the origin and the

Lévy index a lies in the range 0!a!2, the radial

integral converges if we let l0/0 in the lower limit.

Doing so we obtain the simple approximate

expression

FXðk; tÞzexp½KDkat�; (7)

where

DZabðaÞgla0O0 (8)
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is the ‘generalized’ diffusion coefficient and

bðaÞZ

ðN
0

dx xKð1CaÞ½1KJ0ðxÞ� (9)

is a numerical constant depending on the index a. For

each t the Fourier transform

Fðx; tÞZ
1

2p

ðN
KN

eKik,xexp½KDkat�d2k (10)

represents (up to an overall normalization factor) the

p.d.f. (probability density function) of a symmetric

a-stable Lévy distribution for the random variable

X(t) of zero mean, a class of distributions discovered

by Paul Lévy in the 1930s (Lévy, 1954). When aZ2

one obtains the usual Gaussian normal distribution

which represents ordinary diffusion due to Brownian

motion.

Unlike the normal distribution, the Lévy distri-

butions possess power law tails proportional to xK(1Ca)

and the moments of order higher than the first all

diverge. The quantity AZ(Dt)1/a measures the width

of the distribution. As is well known, these distri-

butions share with the normal distribution the property

that they are ‘stable under addition’, i.e. the sum

X(t)ZSjXj(t) of a number of independent random

variables Xj(t) distributed according to the Lévy

distribution law of index a also obeys the same law.

The width parameter A characterizing the distribution

of X(t) is related to the widths aj of the p.d.f. of the

individual components Xj(t) through the formula

AaZSja
a
j , which generalizes the additivity of the

variance of normally distributed independent vari-

ables. Detailed mathematically rigorous expositions of

various aspects of the stable distributions can be found

in a number of standard references (see for example,

Gnedenko and Kolmogorov, 1954; Feller, 1971;

Samorodnitsky and Taqqu, 1994; Kahane, 1995).

The restriction 0!a!2 ensures that the function

F(x,t) is positive-definite as is necessary for it to

represent a probability density. We shall shortly see

that values of the so-called Lévy index a lying in this

range are appropriate for describing realistic rain

statistics.

In the present context, the function F(x,t) is

linearly related to the local instantaneous rain

fluctuation field R 0(x,t)ZR(x,t)KhRi at a point x at

time t, (prime denotes deviation from the mean). The

corresponding Fourier amplitudes a(k,t) are linearly
related to the characteristic function FX(k,t) and

satisfy the equation

daðk; tÞ

dt
ZKDkaaðk; tÞ:

This can be formally interpreted as a continuity

equation (in the spatial Fourier domain) expressing

conservation of probability, which however must be

violated in reality as the precipitation process

continues and new groups of fluctuations continually

enter the region of the horizontal plane from above.

This is incorporated in the model by simply adding a

white-noise stochastic force f(k,t) which acts as a

source/sink term for the rain fluctuation field. Another

needed refinement comes from the fact that the

relaxation time tk of the Fourier modes a(k,t) implied

by the simple scale-invariant Lévy flight picture has

the asymptotic behavior tkZ1/(Dka)/N as k/0.

However, physical considerations demand that the

long wavelength modes representing large-scale

fluctuations be damped out in a finite time. In order

to ensure this, we modify the Lévy flight model

described above to one heuristically based on the

stochastic dynamical equation

daðk; tÞ

dt
ZK

1

tk
aðk; tÞC f ðk; tÞ (11)

with

tk Z t0ð1Ck2L2
0Þ
Ka=2 (12)

where t0 is the limiting value of the relaxation time

scale and L0 is a characteristic length defined by the

relation DZLa0 =t0 which in effect separates the large

and small scale fluctuations of the rain field and marks

the outer limits of a scale-invariant regime of the

model statistics. The white-noise forcing term f(k,t) is

assumed to have zero mean and d-function covariance

hf ðk; tÞf �ðk0; t 0ÞiZ 2pF0dðkKk0ÞdðtK t 0Þ: (13)

Mathematically, the model described by Eqs. (11)

and (12) leads to a nonlocal integro-differential

equation for the point rain rate in physical space–

time, which can be formally expressed in terms of a

stochastic differential equation of the diffusion type

involving fractional order spatial derivatives.

In recent years fractional kinetic equations, represent-

ing what is generally termed anomalous diffusion

or fractional diffusion, have found application in
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the description of a wide variety of physical

phenomena. The distribution function (10) for Lévy

flights leads to a type of anomalous diffusion that

describes faster spreading than ordinary diffusion and

is referred to as superdiffusion. See, for example, the

review articles by Metzler and Klafter (2000) or by

Bouchaud and Georges (1990) and references cited

therein.

The space–time covariance of the point rain rate

field is defined as

cðr; tÞZ hR0ðx; tÞR0ðx0; t 0Þi (14)

where rZxKx 0 and tZtKt 0. An explicit calculation

yields the expression

cðr; tÞZ g0

ðN
0

dk
k

hðkÞ
J0ðkr�Þe

Kjt�jhðkÞ (15)

where h(k)Z(1Ck2)a/2, r*Zr/L0, rZjrj, t*Zt/t0

and the multiplicative factor g0 is given by

g0 Z
ffiffiffiffiffiffiffiffi
p=2

p
F0t0=L

2
0: (16)

The model is thus characterized by four par-

ameters: an overall strength parameter g0, character-

istic time and length parameters t0, L0 and the Lévy

index a. As mentioned in the introduction, the model

has already been shown to accurately describe the

space–time statistics of precipitation in both GATE

Phase I (Bell and Kundu, 1996) and in TOGA-

COARE (Kundu and Bell, 2003). The GATE Phase I

data set consisted of 4-km gridded rain rates in 1716

radar images at roughly 15 min interval over a 280!
280 km2 region centered at the ship location. The

TOGA-COARE data set was much larger and

consisted of six subsets (2 ships and 3 monthly

‘cruises’). Each subset contained radar images of a

128!128 km2 square gridded on a 2 km spatial grid

at roughly 10 min intervals. For the details of the data

analysis and model fitting we refer the reader to the

papers mentioned above.
3. Scaling properties of model rain statistics

In this section we examine the scaling behavior of

the rainfall model outlined above under the action of a

simultaneous rescaling of the space and time

variables.
3.1. Dynamic scaling behavior of the point statistics

First we consider the scaling properties of the

space–time covariance of the point rain rate. While

the exact model defined by Eqs. (11)–(13) is not scale-

invariant, there is indeed a ‘scaling regime’, i.e. a

range of values of the space–time variables r, t where

the model does exhibit approximate scale-invariance.

This can be easily seen as follows.

The precipitation spectrum implied by the exact

model, which is the Fourier transform of the space–

time covariance function c(r,t), is given by

~cðk;uÞZ
F0t

2
0

ðut0Þ
2 C ð1Ck2L2

0Þ
a
: (17)

In the limit of large k, u or more precisely, when

ðkL0Þ
2[1; ðut0Þ

2[ ðkL0Þ
2ðaK1Þ (18)

our model spectrum (17) reduces to the form

~cðNÞðk;uÞZ
F0t

2
0

ðut0Þ
2 C ðkL0Þ

2a
; (19)

which (up to an overall factor) is invariant with

respect to a scale transformation k/lK1k, u/lKau
in the Fourier domain:

~cðNÞðlK1k; lKauÞZ l2a ~cðNÞðk; uÞ: (20)

[Throughout this paper the superscript (N) attached

to a quantity denotes a scale-invariant approximation

of that quantity in the limit k/N, u/N, corre-

sponding to small space–time scales.]

The Fourier inverse transform of (19) c(N)(r,t),

which approximates the true space–time covariance

function c(r,t) in the limit of small r, t, can be

expressed in the form

cðNÞðr; tÞZ g0

ðN
0

dk k1KaJ0ðkr�Þe
Kjt�jk

a

(21)

and has the scaling behavior

cðNÞðlr; latÞZ laK2cðNÞðr; tÞ: (22)

From Eq. (22) upon choosing the scale factor l to

be lZ1/r*, it follows that c(N)(r,t) must have the

functional form

cðNÞðr; tÞZ g0r
aK2
� fðt�=r

a
�;aÞ: (23)
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The form of the scaling function f(x;a) depends

explicitly on the index a. Eq. (23) expresses the

dynamic scale invariance of our statistical model: the

function c(N)(r,t) remains invariant (up to an overall

multiplicative factor) under the combined action of

the space–time scale transformation

r�/lr�; t�/lat�: (24)

The dynamic scaling exponent is simply the Lévy

index a. Moreover, it is evident that the limiting

behavior of c(N)(r,t) as r*, t*/0 is non-uniform, in

the sense that it depends on the manner in which the

origin is approached.

The non-uniformity is characterized by the

x-dependence of the scaling function f(x;a). The

asymptotic behavior of f(x;a) as function of the

scaling variable xZt�=r
a
� as x/0 and x/N are of

interest in this context. They are easily determined

from the fact that the full space–time covariance

function c(r,t) can be expressed in closed forms when

one of its arguments vanish. We recall from Bell and

Kundu (1996) that when tZ0, the spatial covariance

function c(r,0) be expressed in the form

cðr; 0ÞZ ½g0=Gð1CnÞ�Cnðr�Þ; (25)

where n is related to the Lévy index a through

aZ2(1Cn), Cn(z)Z(z/2)nKn(z), Kn(z) being the usual

modified Bessel function of order n and G(z) is the

Euler G-function. The range 0!a!2 implies K1!
n!0. For the rain data sets that we have examined so

far, it appears that in fact n lies in the narrower range

K1/2!n!0. For the six TOGA-COARE data sets the

exponent n was found to lie in the range K0.21 to

K0.34 with most of the values clustered around

K1/4, which corresponds to aZ3/2. [This special

case of the Lévy distribution, known as the Holtsmark

distribution, arises naturally in stellar dynamics; see,

e.g., Chandrasekhar (1943)].

From the asymptotic behavior of Cn(z) as z/0

when n!0, it follows that

cðr; 0ÞZ
1

2
g0

GðKnÞ

Gð1CnÞ

� �
ðr�=2Þ

K2jnj C Oð1Þ: (26)

Comparison with (23) yields the limiting behavior

fð0;aÞZC1h
Gð1Ka=2Þ

2aK1Gða=2Þ
: (27)
On the other hand, explicit computation yields the

formula

cð0; tÞZ ðg0=aÞjt�j
K3
Gð3; jt�jÞ (28)

where 3Z ð2KaÞ=aZKn=ð1CnÞ and Gða; zÞZÐN
z taK1 eKtdt denotes the incomplete gamma function.

Since the power law singularity in the time dependence

as t*/0 predicted by (28) must be consistent with the

general functional form (23), one readily infers the

asymptotic behavior

fðx;aÞ ����/
x/N

C2x
K3 (29)

where C2Z(1/a)G(3) with 3Z(2Ka)/a>0, indicating

a power law fall-off as x/N.
3.2. Scaling behavior of area- and/or time-averaged

statistics

The instantaneous point rain rate is a highly

singular mathematical quantity. Its statistical proper-

ties are not directly accessible to observations, which

inevitably involve averaging over a certain area or

time interval. Thus the statistics of area- and/or time-

averaged rain rate are what the experimental data

usually allows one to compute. In what follows we

derive the scaling properties of the second moment

statistics of space- and time- averaged precipitation

fields.

First consider the statistics of area-averaged rain

rate

RAðtÞZ ð1=AÞ

ð
A

d2xRðx; tÞ

in an L!L square of area AZL2.The lagged

covariance function cAAðtÞZ hR0
AðtÞR

0
Aðt

0Þi can be

written as an integral over the point covariance

function c(r,t) as

cAAðtÞZ ð4=L2Þ

ðL
0

ðL
0

dr1dr2ð1Kr1=LÞð1Kr2=LÞcðr;tÞ

(30)

where rZ(r1,r2) and rZjrj. In view of (23), as t*,

L*ZL/L0/0, (30) takes the form

cðNÞ
AA ðtÞ Z g0L

KjaK2j
� f1ðt�=L

a
�;aÞ (31)



Fig. 1. Plot of the function c1 representing the lagged autocorrela-

tion function of area-averaged rain rate in the limit of small t*, a* as

function of the scaling variable uZt�=a
2ð1CnÞ
� for nZK1/4

computed from the model.
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where f1(u;a) is a dimensionless scaling function

defined by

f1ðu;aÞZ4

ð1

0

ð1

0
dz1dz2ð1Kz1Þð1Kz2Þ

!ðz2
1Cz2

2Þ
K1Ca=2fðuðz2

1Cz2
2Þ

Ka=2;aÞ: ð32Þ

Also, in the scaling limit L*/0 the variance of

area-averaged rain rate s2
AhcAAð0Þ is readily obtained

by setting tZ0 in Eq. (31). It exhibits the now-

familiar power law singularity:

s
2ðNÞ
A Z g0f1ð0;aÞ L

KjaK2j
� : (33)

Setting uZ0 in (32) and using (27) we have

f1ð0;aÞ Z
23KaGð1Ka=2Þ

Gða=2Þ

ð1

0

ð1

0
dz1dz2ð1Kz1Þ

!ð1Kz2Þðz
2
1 Cz2

2Þ
K1Ca=2:

It follows at once that in the scaling limit t*, L*/0,

the lagged autocorrelation function of area-averaged

rain rate cAA(t)ZcAA(t)/cAA(0) depends on its two

arguments t and L through the single variable

uZt�=L
a
�:

c
ðNÞ
AA ðtÞ Zc1ðt�=L

a
�;aÞ (34)

where c1(u;a)Zf1(u;a)/f1(0;a) is a scaling function.

Eq. (34) implies invariance of the autocorrelation

function under a simultaneous rescaling of t and L

through the scale transformation

L/lL; t/lat: (35)

The scaling function c1(u;a) can be numerically

computed. For ease of computation we choose the

averaging area to be a circular region of area AZpa2,

instead of a square. (The exact shape of the averaging

area is not an important factor in our considerations).

In this case, the lagged covariance function of area-

averaged rain rate cAA(t) takes the somewhat simpler

form

cAAðtÞZ ð4g0=a
2
�Þ

ðN
0

dk
J2

1ðka�Þ

khðkÞ
eKjt�jhðkÞ (36)

where a*Za/L0,h(k)Z(1Ck2)a/2 and J1(x) denotes the

usual Bessel function of order one. The shape of the

scaling function c1(u;a) predicted by the model for

circular areas is shown in Fig. 1 as a function
of the scaling variable uZt�=a
a
� for a typical value

aZ3/2, or nZK1/4.

In a similar manner one can derive the scaling

properties of the statistics of time-averaged rain rate at

a point RT ðxÞZ ð1=TÞ
Ð T

0 dt Rðx; tÞ where T is the

averaging time. The covariance of time-averaged

rain rate for two points separated by a distance rZ
jxKx 0j, is given by cTT ðrÞZ hR0

T ðxÞR
0
T ðxÞi, which

plays an important role in statistical studies of rain

gauge data. It can be expressed as an integral over the

point covariance function c(r, t):

cTT ðrÞ Z ð2=TÞ

ðT
0

dtð1Kt=TÞcðr; tÞ: (37)

In terms of the dimensionless variables r*Zr/L0,

T*ZT/t0 in the scaling limit r*, T*/0, it takes the

functional form

cðNÞ
TT ðrÞ Z g0r

aK2
� f2ðT�=r

a
�; aÞ (38)

where f2 (s; a) is a scaling function defined as

f2ðs;aÞZ 2

ð1

0
dzð1KzÞfðzs;aÞ: (39)

Next we consider the correlation between the

time averaged rain rate at two points separated by



Fig. 2. Plots of the ratio rZcAAðtÞ=c
ðNÞ
AA ðtÞ measuring deviation

from scaling as function of u for several values of a*.
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a distance r, defined as cTT(r)ZcTT(r)/cTT(0). The

denominator represents the variance of time-averaged

rain rate and is given in the exact model by

s2
T hcTT ð0Þ Z g0

1

aK1
TK1
� K

2

3aK2
TK2
�

�

C
2

a
TK3
� GðK2C3; T�Þ

	
; ð40Þ

where as before, 3Z(2Ka)/a. As T*/0, it reduces to

s2
T z ð2g0=aÞ GðK2C3ÞTK3

� K
1

23
COðT�Þ

� 	
: (41)

This immediately shows that in the scaling limit the

function c
ðNÞ
TT ðrÞ depends on its arguments r and T

through the combination sZT�=r
a
�:

c
ðNÞ
TT ðrÞ Zc2ðs;aÞh½ð2=aÞGðK2C3Þ�K1sK3f2ðs;aÞ:

(42)

Finally, the variance of area-time-averaged

rain rate RATZ ð1=ATÞ
Ð T

0 dt
Ð
A d2x Rðx; tÞ, namely, s2

AT

ZhR02
AT i is given by

s2
AT Z ð2=TÞ

ðT
0

dtð1Kt=TÞCAAðtÞ: (43)

In the scaling limit L*, T*/0, under a combined scale

transformation L/L 0lL, T/T 0laT, it transforms as

s
2ðNÞ

A0T 0 ZlaK2s
2ðNÞ
AT , and consequently has the functional

form

s
2ðNÞ
AT Z g0L

KjaK2j
� jðT�=L

a
�;aÞ: (44)
3.3. Departure from scaling

The exact model considered in this paper is

clearly not scale invariant. Strictly speaking, it is so

only in the limit r, t/0. Indeed marked departure

from dynamical scaling occurs as the spatial and

temporal separations r, t in the exact space–time

covariance function c(r,t) respectively become

comparable to the characteristic length and time

parameters of the model, namely L0, t0. The

inequalities (18) in the Fourier domain suggest

that one might qualitatively expect scaling behavior

when a*/1, u/1/a*. For the autocorrelation

function of area-averaged rain rate, cAA(t), the

deviation from dynamic scaling can be quantified by
examining the ratio rZcAAðtÞ=c
ðNÞ
AA ðtÞ as function of

the scaling variable uZt�=a
2ð1CnÞ
� introduced before

for various values of a*. Results of numerical

computation of this quantity are shown in Fig. 2 for

the typical value nZK1/4. The dynamic scaling

regime can be identified as the range of u (for a

specified a*/1) in which the ratio r introduced

above remains close to unity to a specified accuracy,

say 10%. The TOGA-COARE data set gives one

some idea about the relevant length and time scales.

The characteristic length L0 was found to be in the

range 54 to 94 km and the characteristic time t0 was

roughly within 4.5 and 8.2 h. Consider a typical set

of model parameters nZK1/4, L0Z50 km and t0Z
6 h. It is apparent from Fig. 2 that, for an averaging

area of radius aZ5 km (a*Z0.1), comparable to the

size of TRMM precipitation radar footprints,

dynamic scaling is achieved to an accuracy rR0.9

when u is less than about 0.5 corresponding to a lag

t less than about 6 min. However, the radar images

in TOGA-COARE were available only at roughly

10 min intervals. Consequently, the space–time

scales at which the precipitation data could

potentially exhibit the predicted dynamic scaling

do not seem to be accessible to radar observations.

Indeed a scatter-plot of cAA(t) vs. u for various L at

the space–time scales resolved by the TOGA-

COARE data shows no clear evidence of dynamic

scaling as defined in this paper.



Fig. 3. Plot of the lagged autocorrelation function of area-averaged

rain rate cAA(t) computed from the exact model for the MIT cruise 3

data set and a circular averaging area of radius aZL/Op, with

LZ2 km.
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4. Concluding remarks

In this paper we have described a stochastic

dynamic model of precipitation obeying a fractional

diffusion type equation that leads to power law scaling

behavior of the second moment statistics when

extrapolated to small length and time scales. In

particular, the model predicts dynamic scaling of the

lagged autocorrelation function under a combined

space–time scale transformation at these scales.

However, we found that the space–time resolutions

achieved in the gridded radar data sets used to validate

the model is inadequate for exploring the dynamic

scaling regime because of the large deviation from

scaling predicted at these scales. We propose high

frequency rain gauge data from a dense gauge

network as a possible testing ground for this aspect

of the model.

As already mentioned in the introduction, in an

interesting paper Venugopal et al. (1999) have

presented empirical evidence for dynamic scaling in

precipitation statistics at length and time scales

similar to ones considered here. We do not believe

that their findings necessarily contradict those of this

paper since the two studies involve very different rain

statistics. The model studied here is intended to apply

to an ensemble of precipitation events over a large

area of the order of a few hundred kilometers on a side

and for a time period of the order of a month, and the

fitting procedure utilizes the entire available data.

Moreover, the space–time covariance function we

compute includes the zeroes of the rain field. On the

other hand, the work of Venugopal et al. (1999) seeks

to understand spatial and temporal organization of

precipitation within individual storms. The statistic

they study, namely Var½ln RAðtCtÞK ln RAðtÞ�

regarded as function of t and A, is culled from the

statistically stationary phase of an individual storm

event and excludes the grid boxes with zero rain in a

radar image. Moreover, since the logarithmic trans-

formation in their statistic emphasizes small rain

rates, the measures of variability in the two

approaches can lead to very different results. This

issue deserves closer study.

Finally, we conclude with a few remarks regarding

the accuracy of our statistical model in representing

the observed rainfall data. The model generally

describes the spatial statistics of the TOGA-COARE
and GATE rainfall data quite well (Bell and Kundu,

1996; Kundu and Bell, 2003) and also explains

the dependence of the integral correlation time

tAZ
ÐN

0 cAAðtÞdt on the size of the averaging area

L. Once the four model parameters are obtained by

fitting the spatial statistics and tA estimated from the

data, all other second moment statistics, such as the

lagged autocorrelation function cAA(t), are comple-

tely determined and provide a rather stringent test of

the model. As an example, a comparison between

the function cAA(t) evaluated from the actual data

for MIT cruise 3 and the model prediction, with

the corresponding best-fit model parameters

L0Z64.94 km, t0Z4.5 h and nZK0.259, is shown

in Fig. 3 for LZ2 km grid boxes. Overall the model

seems to describe the observed temporal autocorrela-

tion reasonably well except at small time lags where

the model apparently underestimates the observation.

The other TOGA-COARE data sets and the GATE

Phase I data set studied earlier all seem to exhibit this

deficiency. One possible way to improve agreement

between the model and the observed autocorrelation

at small t would be to allow for an arbitrary power

law exponent in the frequency dependence of
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the model spectrum (17) and adjust it for a best fit of

the function cAA(t) with observation. Such an

extension would correspond to anomalous diffusion

described by a fractional kinetic equation involving

both fractional space and time derivatives. We plan to

investigate this possibility in future work.
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