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Abstract. In almost all image-model and model-model registration prob-
lems the question arises as to what optimal rigid body transformation
applies to bring a physical 3-dimensional model in alignment with the
observed one. Data may also be corrupted by noise. Here I will present
the exponential and quaternion representations for the SO(3) group. I
will present the technique of compounding derivatives and demonstrate
that it is most suited for dealing with numerical optimization problems
that involve rotation groups.

1 Introduction

A common task in computer vision is matching images or features and es-
timating essential transformation parameters [1]. In the weak perspective
regime the 2-dimensional affine image transformation with 6 parameters
is applicable; in general a perspective transformation applies. Amongst

Fig. 1. Fly-by satellite view on a rendered region of duckwater. The main difference
between both images is a rotation about the viewing axis.

those parameters are 3 Euler-angles that describe the orientation of the



viewer with respect to a world-coordinate system, see Fig. 1 as an exam-
ple. Then neglecting other free parameters, we could formulate the image
matching problem as finding a minimum to the log- likelihood

− logP ∝
∑

p

(Ip − Îp(φ, θ, ψ))2, (1)

where we sum over all pixels in the observed image data Ip and the ex-
pected image Îp. It is well known that numerical optimiztion algorithms
with Euler-angle representation have numerical problems. Several alter-
natives to Euler-angle representations exist. However, a prior it is not
clear how well various representations and minimization methods will
perfom. The subject of my investigation is the types of suitable rotation
group representations and their application in numerical minimization al-
gorithms. I will compare the convergence rate of various methods in the
special case of matching point-clouds.

In the next section, I will present suitable rotation group representa-
tions, followed by their application within numerical optimization algo-
rithms.

2 SO(3) reprsentations

I briefly introduce the euler, the exponential and the quaternion represen-
tation. An extensive introduction to rotation groups and parametrization
can be found in [2].

2.1 Euler-angle representation

The rotation matrix R represents an orthonormal transformation, RRT =
I, det(R) = 1, as such it can be decomposed into simpler rotation matri-
ces,

R = Rz(φ) Ry(θ)Rz(ψ), (2)

with

Rz(φ) =






cosφ sinφ 0
− sinφ cosφ 0

0 0 1




 , Ry(θ) =






cos θ 0 − sin θ
0 1 0

− sin θ 0 cos θ




 . (3)

The decomposition (2) is not unique. We adhere to the “NASA Standard
Aerospace” convention [3] with ψ the precession, θ the nutation and φ
as the spin. The derivatives with respect to the Euler-angles are easily
obtained and will not be given here.



2.2 Exponential representation, (Axis-angle)

The axis-angle representation is frequently used in kinematics [4] and
commonly referred to as the exponential representation. The rotation
matrix R is obtained by exponentiation of a matrix H. This generating
matrix H must be antisymmetric. and in 3-dimensions constitutes the
cross product operator,

H = [r]× =






0 −rz ry
rz 0 −rx
−ry rx 0




 , r = ω/θ, θ = |ω| , (4)

where ω is called the Rodrigues vector. We notice that in the limit θ → 0
the Rodrigues vector is ill-defined and we need proper limit considerations
[5]. The rotation matrix R and its generating matrix H are related by,

R = exp(θH) = I + sin θH + (1 − cosθ)H2. (5)

In minimization problems that utilize gradients we require the knowl-
edge of derivatives with respect to the components of the Rodrigues vec-
tor ωxyz. In the following I introduce the index notation: Greek indices
run over {1, 2, 3} which is synonymous for {x, y, z}, repeated indices are
implicitly summed over1. Now the derivatives are easily obtained

dR

dωα
= sin θ

dH

drβ

drβ
dωα

+ (1 − cos θ)
dH2

drβ

drβ
dωα

+ cos θHrα + sin θH2rα, (6)

where
drβ
dωα

= (δαβ − rαrβ)/θ,
dθ

dωα
= rα. (7)

Hence, using
dH

drx
rx +

dH

dry
ry +

dH

drz
rz = H (8)

and
dH2

drx
rx +

dH2

dry
ry +

dH2

drz
rz = 2H2 (9)

we obtain the rotation matrix derivative with respect to the Rodrigues
vector component

dR

dωα
=
dH

drα

sin θ

θ
+
dH2

drα

(1 − cos θ)

θ
+

(

H(cos θ − sin θ/θ) + H2(sin θ − 2
1 − cos θ

θ
)

)

rα. (10)

1 summation over recurrent indicies is call Einstein summation



.
It is emphasized that the natural endowed algebra sturcture of the

vector space ω ∈ IR3 is not isomorphic to the multiplication in the SO(3)
group,

R(ω1) R(ω2) 6= R(ω1 + ω2) ! (11)

2.3 Quaternion representation

Quaternions can compactly represent rotation matrices. We will see that
the compounding (non-commutative multiplication) operation is isomor-
phic to the matrix multiplication in SO(3). Let’s introduce general quater-
nions by

Q̂ = (q0,q), q = q1e1 + q2e2 + q3e3, (12)

where q is a regular 3-dimensional vector with basis {eα} in IR3. Addi-
tion of quaternions is component-wise, a product (compounding) of two
quaternions as follows,

P̂ ◦ Q̂ = (p0q0 − pTq, p0q + q0p + p× q). (13)

The notation in (13) utilizes the dot and cross product defined in IR3. It
is remarked that the product (13) is non-commutative but associative! In
addition we have a conjugate operation,

Q̂ = (q0,q) → Q̂∗ = (q0,−q), (14)

hence we can write the squared norm as,

Q̂ ◦ Q̂∗ = (q20 + qTq, 0) ≡ q20 + qTq. (15)

We identify a scalar value c ∈ IR with a quaternion that has ”zero vector”
components, (c, 0) ≡ c and a vector q ∈ IR3 with a quaternion that
has ”zero scalar” component (0,q) ≡ q. Further, we will be sloppy with
the quaternion product notation ◦ but implicitly assume that Q̂P̂ means
Q̂ ◦ P̂ .

The claim is that a rotation can be represented by

R̂ = (cos
θ

2
, sin

θ

2
r), R̂R̂∗ ≡ 1 (16)

with θ the magnitude and r the direction of the Rodirigues vector given
in (4) and below, such that

Rv = R̂V̂ R̂∗, V̂ = (0,v). (17)



Proof of (17) is easy and proceeds as follows: Writing equation (5) in the
form with half-angles,

Rv = cos2 θ

2
Iv + 2cos

θ

2
sin

θ

2
r× v + sin2 θ

2
r× (r × v) + sin2 θ

2
rrT v

= (cos
θ

2
, sin

θ

2
r) ◦ (0,v) ◦ (cos

θ

2
,− sin

θ

2
r), (18)

which completes the proof!

Any quaternion Q̂ with Q̂Q̂∗ = 1 constitutes a rotation in SO(3), the
components of the rotation matrix R are easily obtained from (18),

Q̂ = (q0, q1, q2, q3), q20 + q21 + q22 + q23 = 1 →

R(Q̂) =






1 − 2q22 − 2q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q2q1 + q0q3) 1 − 2q21 − 2q23 2(q2q3 − q0q1)
2(q3q1 − q0q2) 2(q3q2 + q0q1) 1 − 2q21 − 2q22




 (19)

Back to our initial statement, that we can easily idenitify an isomor-
phic structure between quaternions and rotation matrices,

R(Q̂1) R(Q̂2) = R(Q̂1 ◦ Q̂2). (20)

2.4 Quaternion differential algebra

As in the case for the Rodrigues vector, we are interested in the differential
structure of the rotation matrix with respect to the quaternion compo-
nents. Since we have 4 quaternion components and only 3 rodrigues vector
ones, we also have to address the problem of overparametrization. The
quaternion ring is endowed with a commutative operation (addition) and
a non-commutative multiplicative operation (composition), it is natural
to consider the two differential structures.

Additive differential rotation We can cast the rotation matrix R in
a particular well suited quaternion form, essentially it’s restating (18)

R = Iq20 + qqT + 2q0[q]× + [q]×[q]×, (21)

I is the unit matrix. Using tensor notation in (21),

Iµν = δµν ,
(

qqT
)

µν
= qµqν, ([q]×)µν = εµρνqρ, (22)



where δµν is the Kronecker-delta and εµνρ the total antisymmetric tensor.
Now we consider a differential rotation R(Q̂+ dq̂) − R(Q̂) and obtain

∂Rµν

∂q0
= 2q0δµν + 2εµρνqρ,

∂Rµν

∂qη
= 2(δηµqν + qµδην + q0εµην − δµνqη).

(23)
We used the following tensor contraction in (23)

εαβγεαµν = δβµδγν − δβνδγµ. (24)

Compounded differential rotation Alternatively, we can compose
the differential rotation as the compound of the deviation from the unit-
quaternion Î (this represents the identity operation, null-rotation), by

δQ̂ = (Î + δq̂) ◦ Q̂− Q̂ = δq̂ ◦ Q̂, (Î + δq̂)(Î + δq̂)∗ = 1. (25)

Then, we can write a differential rotation R((Î + δq̂) ◦ Q̂) − R(Q̂) with
the change of δq̂ (25),

[R(Q̂+ δQ̂) −R(Q̂)]v = δQ̂ ◦ (0,v) ◦ Q̂∗ + Q̂ ◦ (0,v) ◦ δQ̂∗

= δq̂ ◦ (0,v′) + (0,v′) ◦ δq̂∗

= 2δq0v
′ + 2δq × v′

= 2δq0R(Q̂)v + 2δq × (R(Q̂)v), (26)

hence the derivatives have a particularly simple form compared to (23),

∂Rµν

∂δq0
= 2Rµν ,

∂Rµν

∂δqα
= 2εαρµRρν . (27)

Overparametrization, connection with the Rodrigues vector The
rotation group SO(3) is a 3-parameter group, that is reflected in the num-
ber of Euler-angles and the vector components of the Rodrigues vector.
Quaternions have 4 real components, seemingly we have increased the
number of parameters. However, for a quaternion Q̂ to represent a rota-
tion it must lie on the normalized-sphere S3,

Q̂Q̂∗ = 1. (28)

This represents an additional constraint, that is not built into the quaternion-
component derivatives (23,27).



We can choose to parameterize the quaternion with the Rodrigues
vector (16), then the derivatives of a general rotation quaternion q̂ with
respect to the independent rodrigues vector ω components are,

∂q̂

∂ωα
= (−

rα
2

sin
θ

2
,
rα
2

cos
θ

2
r +

1

θ
sin

θ

2
(δαβ − rαrβ)eβ). (29)

Here we assume that 0 < θ or equivalently 0 < q2. Equivalently we can
express (29) in quaternion component form,

∂q0
∂ωα

= −
1

2
qα,

∂qη
∂ωα

=
1

2
(q0 − sincx)

qαqη
q2

+
sincx

2
δαη , x = arctan

√

q2

q20
.

(30)
We notice, that (29,30) show that the quaternion-constraint manifests in
non-linear functions.

On the other hand, if we were to parametrize the infinitesimal devia-
tion from a unit-quaternion,

q̂ = Î + δq̂ = (q0,q) = (cos
δθ

2
, sin

δθ

2
r), r = δω/δθ, δθ = |ω| . (31)

then the quaternion-constraint is reflected by a rather simple linear de-
pendence,

∂δq0
∂δωα

∣
∣
∣
∣
q=0

= 0,
∂δqη
∂δωα

∣
∣
∣
∣
q=0

=
1

2
δαη . (32)

Notice, that (32) is the limiting case of (30) for q2 → 0.

3 Non-linear function minimization over S
3

Given a bounded scalar function with SO(3) group parameters as argu-
ments

M ≤ f(Q̂) = f(R(Q̂)), Q̂ ∈ S3, M ∈ IR (33)

we are to find the (not necessarily unique) optimal quaternion Q̂(f) which
minimizes the scalar function f(Q̂) in (33). In most cases analytical closed
form solutions to (33) are not available. Numerical minimization algo-
rithms utilize gradient information and at most deal with quadratic ex-
pansions of (33). Therefore it is natural to lay focus on functions of the
form

f = a+ bµνRµν + cηρ
µνRµνRηρ. (34)

The arguments of f are implicitly subsumed in the rotation matrix com-
ponents Rµν . Equation (34) is frequently the result of a quasi-Newton ap-
proximation to (1). Despite of the seemingly simple structure of Eqn. (34)



with rotation matrix components occuring at most in order 2, hence we
could call them Rµν-harmonic functions , it generally doesn’t possess a
closed form solution. Only for the particular case presented below the
solution is known.

3.1 Pseudo-quadratic functions

The special case of finding a unit quaternion Q̂min which minimizes

fs(R(Q̂)) = a0 +
N∑

i=1

‖Rci − di‖
2 (35)

can be solved analytically [6, 7]. (35) represents the case where a cloud of
N points ci in IR3 are mapped by a rotation such that the result most
closely resembles the cloud di. We can write (35) in tensor notation,

fs = a0 + dµdµ − 2dµcνRµν + cνcρδµηRµνRηρ, (36)

where we have omitted the sum over point index i, thus in terms of tensor
coefficients (34) we have

bµν = −2cµdν , cηρ
µν = cνcρδµη .

Now, we use the orthogonality relation,

cηρ
µνRµνRηρ = cνcρδνρ (37)

and obtain an expression that is linear in the matrix elements Rµν , hence
(35) constitutes only a pseudo-quadratic function,

fs = a+ bµνRµν , bµν = −2
n∑

i=1

dic
T
i , a = a0 + cT

i ci + dT
i di. (38)

According to [7] we can find a solution to the Rµν linear problem (38)
by simply decomposing the general rank-2 tensor bµν and restating the
problem as in (35). Then we solve for Q̂min by noticing that fs is quadratic
in the quaternion components and therefore can be written as

fs = a0 + (q0,q)
n∑

i=1

BT
i Bi(q0,q)T , (39)

with 4 × 4 matricies Bi,

Bi =

[

0 (ci − di)
T

di − ci [di + ci]×

]

.

A solution to (35) is given by the eigenvector q̂ of BT
i Bi with minimal

eigenvalue.



4 Gradient search methods on the S
3 manifold

In the absence of analytical solutions we resort to numerical minimization
methods. To measure the minimization search performance of various
methods we focus on the pseudo-quadratic function fs and argue that the
results are representative even in the general scenario of (34).

4.1 Iterative quadratic expansion in the Rodrigues vector ω

or Euler-angles

We start with a Rodrigues vector ω0 and expand the function fs to
quadratic order in ω about ω0. We keep the rotation matrix entries Rµν

to second order, (this basically means that we don’t use the orthogonality
relationship),

fs(∆ω) ≈ ã+ (bµν + 2Rµρcρcν)
∂Rµν

∂ωα
︸ ︷︷ ︸

bT

∆ωα +∆ωα
∂Rµν

∂ωα

cνcρ
∂Rµρ

∂ωβ
︸ ︷︷ ︸

C

∆ωβ,

(40)
where ∆ω = ω−ω0. Omitted are all contributions from ∂2Rµν/∂ωα∂ωβ.
We need to calculate the exponential derivatives

∂Rµν

∂ωα
=
∂Rµν

∂q0,η

∂q0,η

∂ωα
, (41)

which is exactly expression (10). Having obtained the minimal ∆ω we
then update the rodrigues vector

ω0 → ω1 = ω0 +∆ω,

and iteratively proceed with a local expansion (40) until convergence is
reached.

expansion with Euler-angles The same outline as depicted above ap-
plies to a local quadratic expansion with Euler-angles. Instead of the
Rodrigues vector derivatives (41) we need to calculate the Euler-angle
derivatives,

∂Rµν

∂φ
,

∂Rµν

∂θ
and

∂Rµν

∂ψ
. (42)

Then the update procedure follows the rule,

{φ0, θ0, ψ0} → {φ1, θ1, ψ1} = {φ0 +∆φ, θ0 +∆θ,ψ0 +∆ψ} .



4.2 Quaternion-path gradient search

We construct a product sequence (path) from a suitable starting point
Q̂(0),

Q̂(k) = (Î +∆q̂(k)) ◦ (Î +∆q̂(k−1)) ◦ . . . ◦ Q̂(0), (43)

with the constraint

Q̂(k) ∈ S3 ∀k, (44)

meaning that Q̂(k) at any step represents a rotation.

Newton-Raphson, Lagrange multiplier technique One way to con-
strain quaternions on a unit sphere is by a Lagrange multiplier technique.
As a test example we aim to obtain a quaternion sequence to find the min-
imum of the pseudo-quadratic functional (35). As usual with the Lagrange
multiplier technique, given fs and the normalization contraint for δq̂, we
can deal with the function g

g = fs + λ((1 + δq0)
2 + δq2 − 1). (45)

Now, if we write derivatives of g with respect to the multiplicative differ-
ential quaternions, we obtain

dg

dδq̂
= 0 ⇒

{

bµνRµν + λ(1 + δq0) = 0
εαµρbρνRµν + λδqα = 0, α ∈ {1, 2, 3}

(46)

Assuming R being constant for the gradient search, we find an easy solu-
tion to (46), i.e. starting with R(Q̂(0)), in the first step, then we can solve
for the update q̂,

q̂ = Î + δq̂, −λ =
bµνRµν

q0
,
qα
q0

= εαµρ
Rµνbρν

Rηξbηξ

. (47)

Having found q̂ and properly normalized, we successively obtain a new
starting point Q̂(1) = q̂ ◦ Q̂(0) with rotation matrix R(Q̂(1)) for the next
search step and solve for another quaternion until convergence is reached.
Experimental results follow.

Quasi-Newton method through infinitesimal exponential parametriza-
tion Instead of imposing the quaternion constraint by a Lagrange multi-
plier technique we could parametrize the deviation quaternion (Î+∆q̂) in



(43) by its Rodrigues-vector and assume that we are in the linear regime
(32),

fs ≈ ã+ (bµν + 2Rµρcρcν)
∂Rµν

∂δωα
︸ ︷︷ ︸

bT

∆ωα +∆ωα
∂Rµν

∂δωα
cνcρ

∂Rµρ

∂δωβ
︸ ︷︷ ︸

C

∆ωβ, (48)

where ã = a− cT
i ci. Using (27) and (32),

∂Rµν

∂δωα

=
∂Rµν

∂δq0,η

∂δq0,η

∂δωα

= 2(Rµν
∂δq0
∂δωα

−εηµρRρν
∂δqη
∂δωα

) = −εαµρRρν , (49)

and we obtain the expression for b

bα = −εαµρ (Rρνbµν − 2RµξcξRρνcν) . (50)

To emphasize the structure of the symmetric matrix C we write,

Dαµ =
∂Rµν

∂δωα
cν = −εαµρRρνcν , Cαβ = DαµD

T
µβ . (51)

We find ∆ω in equation (48) is quickly solved using SVD,

∂fs

∂∆ω
= 0,→ ∆ω = −

1

2
C−1b, (52)

and calculate the finite step update quaternion (Î + ∆q̂(k)) using (31).
With a new quaternion Q̂(k+1) as obtained in (43), we calculate rotation
matrices and derivatives thereof. This process is repeated until suffient
convergence is reached.

5 Experimental results

Here I present numerical experiments on the convergence of the vari-
ous gradient minimization methods. We compare the standard methods
as described in section 4.1 with the ones utilizing the quaternion-path
methods, see section 4.2. The iterative Euler-angle expansion and the it-
erative Rodrigues vector expansion are referred to as “Standard 1” and
“Standard 2”. The two methods utilizing quaternion-path gradients are
referred to as “Lagrange” and “Compounding”.

We initialize all experiments by a random selection of N points {ci}
and choosing a random transformation R(Q̂f ) to obtain a point cloud
{di} according to (35). Then we randomly initialize our first guess R(Q̂(0))



and employ the minimization methods. The graphs show the minimiza-
tion trajectory in the Rodrigues vector space. The green dota represents
the initial guess, the end-points of the two red lines the two possible exact
solutions.

We track the convergence by counting the number of steps it takes
to obtain the accuracy fs. This corresponds to the residual value of mis-
matching the euclidian distance (35). We clearly notice that in all sce-
narios the compounding quaternion derivative method is vastly superior
and has super-linear convergence. Also it never failed in all tested cases.
Most rarely does the Euler-angle method succeed.

6 Conclusions

I have concisely introduced important rotation group SO(3) representa-
tions and presented their differential structure. I’ve developed the new
idea of a product (compounding) path-quaternions and demonstrated its
advantages application towards numerical minimization methods. In the
special point-matching case this method is vastly superior than all its
alternatives. It is expected that the super-linear convergence of the com-
pounding path-quaternion approach is retained even in the case of more
general function types that depend on SO(3) parameters.



6.1 N = 2 data points
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6.2 N = 5 data points
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6.3 N = 12 data points
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