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This algorithm theoretical basis document (ATBD) addresses issues that are of concern in
the retrieval of atmospheric parameters from the highest altitudes scanned by EOS-MLS. Its
primary purpose is to supplement the EOS MLS Forward Model ATBD [10] with a theoretical
basis for polarized radiative transfer in the vicinity of the the Zeeman-split, 118-GHz O2 line.

Although we are interested only in the radiances for the polarization of the MLS receiver
being modeled, radiative transfer modeling of resolved, Zeeman-split lines requires calculation
of radiance in both polarizations and of the correlation between the two modes. The goal
here is to provide a module for polarized radiative transfer that can be dropped into the
context of the scalar forward model production code. The polarization of the receiver in
question (R1A or R1B) can be selected from the matrix output of the polarized code, and
provides a grid of monochromatic radiances for discrete pointings that can be convolved in
frequency and pointing by the existing scalar code.

Frequency convolution for the EOS-MLS digital autocorrelator spectrometers (DACS)
is described in a separate chapter of this document. The DACS are considered to be a
“Mesospheric” issue because they measure signals from the Doppler-broadened cores of O2,
H2O, CO and O3, which originate in the Mesosphere and above.

The first two chapters are pedagogical reviews of the microwave spectroscopy of oxygen
and the origins of the polarized radiative transfer equation for a slightly anisotropic medium.
The meat of the algorithms for MLS follows.
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Chapter 1

Spectroscopy

1.1 The 118-GHz O2 Spectral Line

Diatomic oxygen has a band of spectral lines near 60 GHz, an isolated line at 118.75 GHz,
and a series of higher-frequency lines in the sub-millimeter, which are all magnetic-dipole
transition resulting from the realignment of the molecule’s dumbbell rotation and its elec-
tronic spin. Under atmospheric conditions, diatomic oxygen is well modeled as a rigid rotator
in its electronic ground state. In units of energy scaled by the Boltzmann constant, the first
vibrational levels of 16O2 is 2239K above the vibrational ground state and the first electronic
excited state, 1∆g, is 10,200K above the electronic ground state. These excited states are
largely frozen out at atmospheric temperatures under the assumption of local thermodynamic
equilibrium.

1.1.1 Diatomic Oxygen Electronic Ground State

The electronic ground state of diatomic oxygen (O2) is 3Σ−
g . This notation denotes that

• it has zero electronic orbital angular momentum (Σ),

• it has electronic spin of one from two unpaired electrons, making it a triplet state
(superscript 3),

• it is odd under reflection of the electrons through a plane containing the two nuclei
(superscript “-”),

• it is even under inversion of the electrons through the midpoint of the internuclear axis
(g from the German gerade).

This combination makes the electronic state odd under exchange of the nuclei, limiting al-
lowed rotational states when the nuclei are identical, as discussed in Section 1.1.3.

1.1.2 O2 Spin-Rotational States

The spin-rotational Hamiltonian of O2 contains terms involving the angular momentum of
the rigid rotation of the molecule, N , the interaction between the two spins that make up
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total electronic spin, s, and the coupling of J and s.

H = B(N 2)/h̄2 +λ(s2z − 1
3s2)/h̄2 +γ(N · s)/h̄2

= Hrot +Hspin-spin +Hspin-rot.
(1.1)

Angular momentum is not strongly coupled to the intermolecular axis, since there is no
electronic orbital angular momentum, and the Hamiltonian is dominated by Hrot for all but
the lowest rotational states of N . Thus, the O2 states are best approximated as Hund’s
case (b), where N and s add vectorially to give total angular momentum, J , as is shown in
Figure 1.1. In this ideal coupling case, N is a good quantum number and Hrot = BN(N +1)
is diagonal with B = 43.1GHz. In Hund’s case (b), J , and (N, s, J,m) are good quantum
numbers. The magnitudes of N 2, s2 and J2 are N(N + 1)h̄2, s(s + 1)h̄2, J(J + 1)h̄2

respectively. The projection of J on an external axis, which we will take to be the direction
of the geomagnetic field, is mh̄. In the case of the oxygen ground state, s = 1, and J can
take positive values N − 1, N , N + 1.

The spin-spin term (also called “pseudo-quadrupole” because of its resemblance to a nu-
clear quadrupole term) depends upon the projection of electronic spin upon the internuclear
axis. This term results from the interaction between the two electronic spin 1

2 ’s, and also
from the partial excitement of electrons into Π orbits by the electronic magnetic moments.
This term’s diagonal element is zero for J = N states and approaches -59.5 GHz for the
J = N + 1 and J = N − 1 states with large values of N . For the (N = 1, J = 0) state, it is
approximately 119 GHz. This term is what makes the states with J = N ± 1 approximately
60 GHz lower than those with J = N , giving rise to the 60 GHz oxygen band, and it causes
the (J = 1, N = 1) to (J = 0, N = 1) transition to be near 119 GHz.

The spin-spin term is not diagonal in the Hund’s case (b) basis, but the Hund’s (b) states
provide a basis in which the Hamiltonian can be diagonalized. The resulting eigenstates are
close to Hund’s (b), and are labeled by the Hund’s (b) eigenvalues, but the states labeled N
have small admixtures of N ± 2.

The spin-orbit term includes both the interaction of the electronic spin with the field
produced by the rotating nuclei and “L uncoupling,” where interaction with the molecular
rotation causes the electronic states to have some electronic angular momentum along the
axis of molecular rotation. The diagonal elements of this term are γ(N + 1) for J = N + 1
states, −γN for J = N − 1 states and zero for J = N states, with γ = 0.25 GHz. These
terms increase in size as N increases, but are still much smaller than the spin-spin terms for
all appreciably populated states under atmospheric conditions.

1.1.3 Nuclear Symmetry Constraints

Molecules with identical nuclei have overall wave functions with definite symmetry under
exchange of nuclei: those with identical boson nuclei (16O2 and 18O2) must have total wave
functions that are even under exchange of the nuclei and those with identical fermion nuclei
(17O2) must be odd. Nuclei may be exchanged by an end-over-end half rotation of the
entire molecule (even for even values of N) and then returning the electrons to their original
positions, which uses the “g” and “−” symmetries of the electronic state. For the 3Σ−

g

electronic ground state, symmetry requirements limit 16O2 and 18O2 to rotational states
with odd values of the quantum number N.

The relative abundances of oxygen isotopes in the earth atmosphere are: 16O 99.758%,
18O 0.204%, and 17O 0.037%, so discussion can be limited to 16O2 (99.517% of diatomic
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N

s
<s>

J

Figure 1.1: In Hund’s case (b), s adds to N to give total angular momentum, J . Time-
averaged 〈s〉 is the projection of s on J . Oxygen eigenstates are not exactly Hund’s (b),
but are found by diagonalizing the Hamiltonian. The resulting eigenstates are labeled with
quantum numbers of the Hund’s (b) state which they most closely resemble.

oxygen,) 16O18O (0.408%) and 16O17O (0.075%.) These abundances hold throughout the
parts of the atmosphere under consideration in this work because O2 is the reservoir for
oxygen atoms.

1.1.4 Zeeman Splitting

The combined spin, s, of the two unpaired electrons has an associated magnetic moment,
µ = −geµBs, where µB is the Bohr magneton and ge ≈ 2.00229 is the gyro-magnetic ratio
of an electron. This magnetic moment interacts with the geomagnetic field, Hgeo, giving a
magnetic Hamiltonian,

Hmag = −µ · Hgeo (1.2)

In O2, the coupling between s and N is much stronger than the magnetic interaction of s

with Hgeo. Classically, electronic spin s precesses rapidly about J , so that for weaker, slower-
precessing interactions we can use the time-averaged value of s, which is its projection on J .
The time-averaged magnetic moment, < µ >, associated with the time-averaged electronic
spin, < s > drags J around Hgeo. Thus, to get the magnitude of µ ·Hgeo we first project µ

onto the direction of J , Ĵ , and then Ĵ onto Hgeo.

Hmag = geµB(s · Ĵ)(Ĵ · Hgeo) ,

= geµB
(s · J)(J · Hgeo)

J2 ,

but N 2 = J2 + s2 − 2J · s, so

Hmag = geµB
J2 + s2 − N 2

2J2 J · Hgeo ,
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J = 0

J = 1

N = 1  
π σ−σ+

m = +1

m = 0

m = −1

m = 0

Figure 1.2: The 1- line has three Zeeman components. This cartoon is very much not to
scale as all three transitions are approximately 118.7506 GHz, with Zeeman splitting in
typical geomagnetic fields of order 1 MHz.

Zeeman Frequency Shifts, ∆ν

N+ lines N− lines 1− case

σ+ −κ H m(N−1)+N
N(N+1) κ H m(N+2)+N+1

N(N+1)
1
2κH

π −κ H m(N−1)
N(N+1) κ H m(N+2)

N(N+1) 0

σ− −κ H m(N−1)−N
N(N+1) κ H m(N+2)−N−1

N(N+1) −1
2κH

κ = 2.8024MHz/gauss

Table 1.1: O2 Zeeman component line frequency shifts relative to the zero field position. The
quantum number, m, is of the upper state, and the constant κ is geµB.

and for Hund’s case (b) eigenstates, diagonal matrix elements,

Hmag =
J(J + 1) + s(s+ 1) −N(N + 1)

2J(J + 1)
gemµB|Hgeo| . (1.3)

While Equation 1.3 is exact for pure Hund’s (b) eigenstates, it must be adjusted to account for
small admixtures of states with rotational quantum number N and N±2, which are required
for diagonalization of the Hamiltonian. [8]. This may be accounted for by tabulating adjusted
ge values for each state. These values are tabulated in the JPL Spectral Line Catalog. [9]
The ge for the 118-GHz line is the free-space value, so no correction is needed in this case.
This sort of correction is discussed by Sandor and Clancy in reference to the 239-GHz 18O16O
line.[13]
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Zeeman Fractional Intensities,ξ(m,∆m)

N+ lines N− lines 1− case

∆m = +1 ↔ σ+
3(N+m+1)(N+m+2)
4(N+1)(2N+1)(2N+3)

3(N−m)(N−m−1)
4N(2N+1)(2N−1)

1
2

∆m = 0 ↔ π 3[(N+1)2−m2]
(N+1)(2N+1)(2N+3)

3(N2−m2)
N(2n+1)(2N−1) 1

∆m = −1 ↔ σ−
3(N−m+1)(N−m+2)
4(N+1)(2N+1)(2N+3)

3(N+m)(N+m−1)
4N(2N+1)(2N−1)

1
2

Table 1.2: O2 Zeeman component fractional intensities. These values are normalized so that
the zero-field case reduces to the scalar equations for each diagonal element of the matrix
expressions. The quantum number, m, is of the upper state.

1.2 Magnetic Dipole Transitions

1.2.1 Selection Rules

Magnetic dipole transitions obey the following selection rules:

|∆J | ≤ 1 ≤ Ji + Jf (1.4)

|∆m| ≤ 1, (1.5)

∆N ∈ 0,±2 . (1.6)

The second inequality in the first selection rule is included to specifically forbid transitions
from Ji = 0 to Jf = 0. The third selection rule results from the fact that the magnetic
dipole operator is even, and has nonzero matrix elements only between states that have the
same parity. For the transitions between spin-rotational states of the 3Σ−

g ground state of
16O2, the restriction due to nuclear symmetry constrains N to odd values, so the question of
transitions with ∆N = 1 is moot. Parity does forbid many transitions that would otherwise
be present in 16O18O. Figure 1.3 diagrams the lowest energy O2 spin-rotational states, with
states permitted for both 16O18O and 16O2 drawn with solid lines, and those that refer only to
16O18O drawn with dashed lines. This diagram is not to scale, and does not reflect frequency
shifts between the O2 isotopic species.

Lines that are transitions between states with the same N are generally designated N+
or N− depending upon whether ∆J goes up or down. The MLS spectroscopy database [10]
labels lines (Nupper, Jupper, Nlower, Jlower). A third notation, shown in Figure 1.3, is a 4-
character line designation in the form (∆N Nlower ∆J Jlower) where changes (∆N,∆J) are
labeled P , Q, R, S for 1, 0,−1,−2 respectively. The 118-GHz line in band 1 is variously
labeled (1-), 1110, or Q1R0. The 234-GHz 16O18O line in band 8 is labeled 2101 or S0Q1.
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Figure 1.3: Magnetic dipole transitions within the O2 electronic ground state. Only the
solid-line, odd rotational states are permitted for 16O2 and 18O18O in their electronic ground
states, while only the dashed-line, even rotational states are permitted for 17O17O. There
are no such restrictions on molecules without identical nuclei. The 118-GHz line is Q1R0.
The 234-GHz 16O18O line in band 8 is S0Q1.
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1.3 Tensor magnetic susceptibility

The dependence of the magnetic susceptibility on the angles between an imposed geomagnetic
field and the propagation polarization is what gives the radiative transfer described in this
document its matrix character. The three eigenvectors of χ link three eigen-polarizations to
the three allowed ∆m transitions: ±1 and 0. The factoring of a common angular dependence
for all lines in each of σ+, π, and σ− is a manifestation of the Wigner-Eckart theorem [6].

The magnetic susceptibility χ is proportional to a product of matrix elements of the
magnetic dipole moment operator µ

χij ∝
∑

α,β

〈Jα,mα|µi |Jβ ,mβ〉 〈Jβ ,mβ|µ†j |Jα,mα〉 (1.7)

where i, j are the spatial components of the dipole operator. The lines under consideration
are the transitions, α → β. This object is a tensor, so if we can determine it in any basis,
we can express it in any other basis via a unitary transformation. In this discussion, we
will consider the polarization of radiation to be the direction of its magnetic field vector,
ĤRF. We will consider a polarization basis (i, j) where the ẑ direction is that of the geo-
magnetic field. Linearly polarized radiation with its magnetic field aligned in the ẑ direction
(along Hgeo) couples only to π transitions. In the x − y polarization plane, (which has its
ĤRF perpendicular to Hgeo,) left and right circular polarizations couple only to σ+ and σ−
transitions, respectively. In a basis of these three polarizations, χij is diagonal.

χ′′′ =





χ+ 0 0
0 χ− 0
0 0 χ0



 (1.8)

We can transform this expression to a linear polarization basis {x̂, ŷ, ẑ} with the unitary
transformation

χ′′ = R � χR �
†

=





(χ+ + χ−)/2 −i(χ+ − χ−)/2 0
i(χ+ − χ−)/2 (χ+ + χ−)/2 0

0 0 χ0



 (1.9)

where

R � =







1√
2

i√
2

0
i√
2

1√
2

0

0 0 1







Rotation by an “elevation” angle, θ, about the x̂ axis moves the direction of propagation
away from the geomagnetic field direction.

Rθ =





1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 (1.10)

χ′ = Rθχ
′′R†

θ (1.11)
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Subsequent rotation by an “azimuth” angle, φ, about the ẑ axis (line of sight) permits
the field of view to be arbitrarily oriented relative to the geomagnetic field direction.

Rφ =





cosφ sinφ 0
− sinφ cosφ 0

0 0 1



 (1.12)

χ = RφRθχ
′′R†

θR
†
φ (1.13)

Under the assumption that the waves are transverse (we are neglecting Hz) we drop the third
row and column of this 3 × 3 tensor and get the result in Lenoir. The frame of reference
which will be used in discussions of EOS-MLS in Chapter 3 is the Instrument Field of View
Polarized Pointing (IFOVPP) frame where ẑ is in the direction of propagation and x̂ is in
the direction of In the IFOVPP, χ = χ+ρ+ + χ−ρ− + χ0ρ0 where

ρ±1 =

[

cos2 φ+ sin2 φ cos2 θ − sinφ cosφ sin2 θ ∓ ı cos θ
− sinφ cosφ sin2 θ ± ı cos θ sin2 φ+ cos2 φ cos2 θ

]

,

ρ0 =

[

sin2 φ sin2 θ sinφ cosφ sin2 θ
sinφ cosφ sin2 θ cos2 φ sin2 θ

]

. (1.14)

As Rφ involves only the ~̂x and ~̂y directions, the φ rotation can be done either before or
after the projection into two dimensions.
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Chapter 2

Polarized Radiative Transfer

Absorption and emission by resolved Zeeman components depends upon the orientation of
the geomagnetic field relative to the directions of radiation propagation and polarization. The
magnetic susceptibility matrix has off-diagonal elements that mix polarizations as the wave
propagates, so that the equations of radiative transfer for different polarizations are coupled.
This is an example of Faraday rotation of propagating radiation by a non-ionized atmospheric
constituent. Lenoir [6][7] developed methods of doing radiative transfer calculations with
2x2 coherence matrix tensors, and applied this theory to the case of Zeeman-split microwave
oxygen lines. Rosenkranz and Staelin [12] and Stogryn [15] advanced this work.

2.1 Field Equations

This section follows Lenoir to derive the radiative transfer equation for a medium with a
slightly anisotropic magnetic susceptibility. In this section, 3-dimensional vectors such as
fields in the Maxwell equations are denoted E, 3x3 matrices are denoted χ. When we project

equations into x-y 2-dimensional space, we will denote vectors as ~E and matrices as χ.

The source-free (no free charge or currents) Maxwell Equations for a harmonic field,
assuming e−iωt time dependence are

∇× E(r, ω) = i
ω

c
B(r, ω)

∇× H(r, ω) = −iω
c
D(r, ω)

∇ · B(r, ω) = 0

∇ · D(r, ω) = 0. (2.1)

In the spectral vicinity of the Zeeman-split oxygen microwave spectral lines, the dielectric
constant is that of free space, ε = 1, but there is a tensor magnetic susceptibility, χ,

D(r, ω) = E(r, ω)

B(r, ω) = µ(ω)H(r, ω)

µ(ω) = 1 + χ(ω). (2.2)
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For the cases under consideration here, all components of χ are small:

χij � 1. (2.3)

As usual, we take the curl of the second Maxwell equation and combine it with the first to
get the wave equation for H.

∇2H(r, ω) + k2
0 [1 + χ(ω)]H(r, ω) −∇[∇ · H(r, ω)] = 0. (2.4)

Here, k0 = ω
c
. Now, assume a plane-wave solution with fields depending only upon z, the

direction of propagation.

∂2

∂z2
[H(z, ω) −Hz(z, ω)ẑ] + k2

0 [1 + χ(ω)]H(z, ω) = 0 . (2.5)

The z-component of Equation 2.5 is

Hz(z, ω) =
−χzx(ω)

1 + χzz(ω)
Hx(z, ω) − χzy(ω)

1 + χzz(ω)
Hy(z, ω), (2.6)

and since χij � 1,
|Hz| � |Hx|, |Hy|. (2.7)

Since ε is scalar, E is exactly transverse (Ez = 0). If Hz is negligible, we can drop the ẑ
direction from our equations altogether. In the xy space, the wave equation may be expressed
in terms of a propagation matrix, G,

∂2

∂z2
~H(z, ω) − G2~H(z, ω) = 0 , (2.8)

where

G2 = −k2
0[1 + χ(ω)],

G ≈ −ik0[1 +
χ(ω)

2
]. (2.9)

Here, as in Stogryn, we have chosen the negative square-root to go with the e−iωt time
dependence.

Lenoir says that the validity of the neglect of fields along the direction of propagation
requires

<[χxzχzx +
1

2
χ2

xx]zmax � 1, (2.10)

where zmax is is the total distance along the propagation direction, which I assume to be
scaled in units of wavelength. He says this should not be of concern for radiative transfer in
the upper part of the earth’s atmosphere, except for extraordinarily long pathlength. The
validity of this approximation should be checked for our long limb-viewing geometry.

Equation 2.8, the wave equation for propagation through a uniform medium, has a general
solution

~H(z, ω) = exp[−G(ω)z]~H(0, ω). (2.11)

If the medium is not uniform, but is stratified along the direction of propagation, propa-
gation matrices, G(z, ω), for different values of z will not generally commute. The matrix
exponentials must be applied, in order, from the left-hand side for each uniform slab.

~H(zn, ω) = exp[−G(zn, ω)dzn] . . . exp[−G(z2, ω)dz2] exp[−G(z1, ω)dz1]~H(0, ω). (2.12)
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2.2 Two-Dimensional Field Equations

Given the assumption that the fields ~E(z, ω) and ~H(z, ω) are in the 2-dimensional x-y space,
the curl operator becomes

∇× → ∂

∂z
U−1 (2.13)

where U is a rotation by 90◦,

U =

[

0 1
−1 0

]

(2.14)

U−1 = UT = −U .

The first two Maxwell equations involving curl can be rewritten

∂~Ep

∂z
= − i

k0
G2~H , (2.15)

∂~H

∂z
= ik0

~Ep , (2.16)

where

~Ep ≡
[

−Ey

Ex

]

= U−1

[

Ex

Ey

]

,

~H ≡
[

Hx

Hy

]

,

G ≡
[

Gxx Gxy

Gyx Gyy

]

= −ik0(1 +
χ

2
) .

Plugging our form for ~H from Equation 2.11 into Equation 2.16 and rearranging a bit we get
an equation relating ~Ep and ~H,

~Ep =
i

k0
G~H . (2.17)

2.3 Coherence Matrices

Lenoir defines the complex power-spectrum coherence matrix

I(ω) =
〈

Ep(ω)H†(ω)
〉

=

[

〈−EyH
∗
x〉

〈

−EyH
∗
y

〉

〈ExH
∗
x〉

〈

ExH
∗
y

〉

]

(2.18)

where 〈 〉 denotes ensemble averaging. The diagonals of the coherence matrix are proportional
to the power propagated in two polarizations, the first has H in the x̂ direction and the second
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has H in the ŷ direction. The sum of these elements is proportional to the magnitude of the
Poynting vector, which is power propagating in the ẑ direction. [4]

S =
c

8π
(E × H∗)

=
c

8π
(ExH

∗
y −EyH

∗
x)ẑ (2.19)

The off-diagonal terms give information about the coherence between the two polariza-
tions. The equations could be recast in any polarization basis (for example, left and right
circular) by applying the appropriate unitary transformation, but discussion here will assume
a basis of crossed linear polarizations since this leads most naturally to a discussion of the
MLS antenna polarizations.

Stogryn [15] defines his power spectrum coherence matrix IStogryn to be UILenoirU
†, which

is proportional to the more standard definition of the coherence matrix, J .

J =

[

〈ExE
∗
x〉

〈

ExE
∗
y

〉

〈EyE
∗
x〉

〈

EyE
∗
y

〉

]

(2.20)

The coherence matrix, J , is manifestly Hermitian. It has real, positive eigenvalues. Its
diagonal elements are proportional to the power propagated in each of the two polarizations,
and the off-diagonal terms give the correlation between them. This matrix contains the same
information as the more-familiar Stokes vector,

S =









Jxx + Jyy

Jxx − Jyy

Jxy + Jyx

i(Jxy − Jyx)









. (2.21)

The form of I which we will use in this work is based upon Lenoir’s definition, and has
elements,

I =

[

I‖ I| + ıI◦
I| − ıI◦ I⊥

]

, (2.22)

where I‖ and I⊥ are radiated power (scalar brightness temperatures) in the two linear polar-
izations and I◦ and I| are their circular and linear coherences.

2.4 Tensor Radiative Transfer

For radiative transfer, we are interested in how the quantity I changes along the direction of
propagation. From this point forward, we will refer to this direction as ŝ rather than ẑ.

dI

ds
=

〈

d~Ep

ds
~H†
〉

+

〈

~Ep
d~H†

ds

〉

.

Substituting from Equation 2.15 and the complex conjugate of Equation 2.16 gives

dI

ds
= − i

k0

〈

G2~H~H†
〉

− ik0

〈

~Ep
~E†

p

〉

. (2.23)
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Substituting Equation 2.17, ~Ep = i
k0

G~H, and its complex conjugate, we get

dI

ds
= −G~Ep

~H† − ~Ep
~H†G†

= −GI − IG†

=

(

ik0

2
χ

)

I + I

(

ik0

2
χ

)†
. (2.24)

In the last equality, the part of G corresponding to the free propagator, ik01, has canceled
in the two terms. This part of the phase has no impact on power transmission.

The preceding semi-classical derivation gives us a polarized equation of radiative transfer
which lacks spontaneous emission. If we consider the unpolarized case, χ = χu1, each of the
diagonals will give the scalar radiative transfer equation with

dI

ds
= −k0 Im (χu)I . (2.25)

Positive, imaginary parts of χ give absorption. We can handle isotropic spontaneous emission
by replacing I on the right-hand side of Equation 2.25 with (I −B1), where B is the scalar
Planck source function for thermal radiation in equilibrium at temperature T ,

B(Tair ) =
hν

k(exp{ hν
kTair

} − 1)
, (2.26)

This brings us, finally, to the equation for polarized radiative transfer in a slightly anisotropic
medium,

dI

ds
= G (B − I) + (B − I)G† . (2.27)

This equation is the basis for our model of transmission near the Zeeman-split oxygen lines.
The solution for radiative transfer through a uniform slab of atmosphere of thickness z may
be written

I(z) = B + exp(−Gz)(I(0) −B) exp(−Gz)†. (2.28)

Here, B, G and z are properties of the uniform layer, while I(z) and I(0) are intensities at
the layer boundaries. Matrix exponentiation has its usual definition as a power series.

exp (A) = 1 + A +
1

2
AA + . . . (2.29)

Algorithms for the evaluation of matrix exponentials and their derivatives are given in Ap-
pendix A.

For multiple layers that have different G, the matrix exponentials must be time-ordered.
A power series of integrals over the path must have the integral broken into sums at ordered
times, which are then sorted in all of the products so that the earlier times are to the right.
We do this ordering, explicitly, by ordering matrix multiplication with discrete expressions.

Here, we adopt the indexing scheme used in the scalar code, in which the first layer
boundary is the top of the atmosphere closest to the observer, the tangent point is labeled t
when discussing the near side of the tangent point and 2N−t+1 when discussing the far side
of the tangent point, and the top of the atmosphere beyond the tangent point is 2N . There
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t2N−t+2

2N−t+2 2N−t+1 23

3 2

thickness

EARTH N

3

observer

observer

Figure 2.1: This layer indexing scheme is consistent with that used in the scalar model. The
lower figure labels only the layer boundaries. The upper also labels the layers, including a
zero-thickness layer at the tangent point. Each pointing is labeled by its tangent index, t.

are N − 1 layers between the top of the atmosphere and the surface of the earth, but the
line-of-sight tangent path only comes down to layer t. This indexing is shown in Figure 2.1.
The jth layer is on the side of the jth layer boundary closest to the observer. Layer 1 is
between layer boundary 1 and the observer and has G = 0.

We define the field layer transmittance for the jth layer:

E j = exp

(

−
∫ sj−1

sj

G(s′) ds′
)

,

with the special cases,

E 1 = 1 ,

E t+1 = Υf ,

(2.30)

The layer boundary indices t and 2N−t+1 both refer to the tangent point, and the layer field
transmittance for the zero-thickness layer between them, E t+1, is defined to be the Earth field
reflectivity,Υf , for instances where the path intersects the Earth, and 1 otherwise. We will
ignore polarization effects in the reflection and use the identity matrix times the square-root
of the scalar model’s “power” reflectivity as the “field” reflectivity.

Υf =
√

Υ1 (2.31)
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Layers are assumed to be thin enough that Gj(s) commutes with itself within each layer.
Now we can recast Equation 2.28 to give the expression for radiative transfer through

layer j + 1 as

Ij =

(

Bj+1 +Bj

2

)

(

1 − Ej+1E
†
j+1

)

+ Ej+1Ij+1E
†
j+1 , (2.32)

where Bj is the source function for the temperature of the jth slab boundary. If we apply
this recursion relation a few times we can see the pattern emerge:

I1 =

(

B1 +B2

2

)

(

E1E
†
1 − E1E2E

†
2E

†
1

)

+

(

B2 +B3

2

)

(

E1E2E
†
2E

†
1 − E1E2E3E

†
3E

†
2E

†
1

)

+

(

B3 +B4

2

)

(

E1E2E3E
†
3E

†
2E

†
1 − E1E2E3E4E

†
4E

†
3E

†
2E

†
1

)

+ E1E2E3E4I4E
†
4E

†
3E

†
2E

†
1 . (2.33)

We define product matrices, P j , which can be thought of as the time-ordered exponential of
the integral of G from the far side of the jth layer to the observer (beyond boundary 1.)

P 1 = E1 = 1

P 2 = P 1 E2

P 3 = P 2 E3

...

P i+1 = P i Ei+1

...

P t = P t−1 Et

P 2N−t+1 = P t Υf

P 2N−t+2 = P 2N−t+1 E2N−t+1

...

P 2N = P 2N−1 E2N

(2.34)

We can write the radiance emergent above the first layer:

I1 =

t
∑

i=1

(P i P
†
i − P i+1 P

†
i+1)

(

Bi +Bi+1

2

)

+

2N−1
∑

i=2N−t+1

(P i P
†
i − P i+1 P

†
i+1)

(

Bi +Bi+1

2

)

+ P 2N I2N+1 P
†
2N .

(2.35)

The terms in the summations of Equation 2.35 are radiative transfer through layer i+ 1 for
each index, i. The first sum includes the zero-thickness layer at the tangent point, which

17



contributes Υf
2 of the incoming radiance and (1−Υf

2) times the earth surface temperature
if the ray intersects the earth. The 2D ray-tracing in the “metrics” routines shared with the
scalar model determine the direction of the incoming ray, assuming specular reflection, in the
event that a ray intersects the earth.

We can rewrite this expression as a single sum including the layers below the tangent layer
if we make certain that E = 1 for all of these extra layers, so that they do not contribute.

Et+1 = Υf

Et+2 . . .E2N−t+1 = 1

P t+1 . . .P 2N−t+1 = 1 (2.36)

These extra, non-contributing terms are not included in the production code, but will be
included here just to make the handling of the tangent more transparent.

For a limb-sounding geometry, where layer 2N is the top layer of the atmosphere away
from the observer, I2N+1 is the unpolarized cosmic background radiance, Tcosmic , a multiple
of the identity matrix that can be pulled out of its product-matrix sandwich. This permits
the radiative transfer equation to be written in terms of a transmittance matrix,

T i ≡ P i P
†
i . (2.37)

Gathering terms for each T i, we get

I1 =
2N
∑

i=1

T i ∆Bi (2.38)

where

∆Bi =
Bi+1 −Bi−1

2
,

∆B1 =
B1 +B2

2
,

∆B2N = Tcosmic1 − B2N +B2N−1

2
.

To handle the jump at the tangent point,

∆Bt =
Bt −Bt−1

2

∆B2N−t+1 =
B2N−t+2 −Bt

2

and skip elements in the sum with indices i=(t+ 1) . . . (2N − t).

T i is analogous to the scalar transmittance from the ith layer boundary to the top of the
atmosphere. It is manifestly Hermitian, and may be thought of as a sandwich of E i matrices
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with the earliest times (largest indices) in the center of the sandwich. Here, all indices refer
to layer boundaries closest to the observer— the side from which radiation emerges from the
slab.

Since radiative transfer is now cast in terms of T i, which is “power” transmittance, it is
no longer necessary to carry the free-propagator term, −ik01, in G. Exponentials of these
terms can be factored out of each E i, since the identity matrix, 1 commutes with anything.
For each Ei in a T , there is a corresponding E

†
i to cancel this phase term. From this point

forward, we replace Equation 2.9 with

G = −ik0
χ(ω)

2
(2.39)

This same argument applies to the real parts of χ for unpolarized molecules. The contribu-
tions of unpolarized molecules will be added to G as multiples of the identity matrix, so their
dispersive parts may be factored out of T and canceled. We should be able to use complex
lineshapes or real lineshapes for unpolarized species and get the same results.
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Chapter 3

Radiance Calculation for EOS-MLS

This chapter describes the single-frequency, ray-pointing polarized radiative transfer calcu-
lation used to model EOS-MLS radiances, and their derivatives with respect to state vector
elements near the 118-GHz oxygen line center. The goal is a drop-in polarized radiative
module that can use the infrastructure provided by the scalar forward model, as described
in the MLS Forward Model ATBD [10].

Much of the mechanics of setting up the magnetic forward model calculation is identical
to what was done in the EOS-MLS Forward Model ATBD and will not be duplicated here.
This includes

• Earth Figure Ellipse

• 2-D Ray tracing (Metrics)

• Geopotential Function

• Hydrostatic Model

• Geometric and Attitude Model

• Scan Model

• Refraction

The forms of many of the equations in this work have direct analogs in the scalar ATBD,
and much of the critical details involving integration and removal of singularities will not be
repeated here.

3.1 EOS MLS Viewing Geometry

The Instrument Field Of View Polarized Pointing(IFOVPP) coordinate system is defined
such that the instrument boresight is in the −ẑ direction and receives polarized radiation
with its Poynting vector in the ẑ direction, whose electric field is in the x̂ direction, and whose
magnetic field is in the ŷ direction. The geomagnetic field, Hgeo, is oriented at an angle θ to
the ẑ direction. The geomagnetic field vector and ẑ-axis form a plane that is rotated through
φ relative to the x-z plane. In this linear polarization basis, components with ~E in the x̂
direction are designated “co-polarized” and those with ~E in the ŷ direction are designated
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Figure 3.1: Angle definition for polarized radiative transfer. In the Instrument Field Of
View Polarized Pointing (IFOVPP) coordinate system, x̂ is the antenna Ê direction, ŷ is the
antenna Ĥ direction, ẑ is the radiation propagation direction.

“cross-polarized”. The state vector contains the atmospheric state on layer boundaries. The
layer indexing scheme is shown in Figure 2.1.

3.2 Incremental Opacity Integral

As was shown in Chapter 2, polarized radiative transfer depends upon a tensor transmittance,
T , which is constructed from exponentials of slab incremental optical opacities, which in turn
are the integrals of the propagation matrix, G.

I(x) =

2N+1
∑

i=1

T i ∆Bi , (3.1)

where

T i = P i P
†
i ,

P i = P i−1 Ei ,

E i = exp −
∫ si−1

si

G(s′) ds′ ,

E 1 = P 1 = 1 .

The form of the polarized incremental opacity is very similar to that in the scalar model,
and here we will adopt the scalar model’s notation:

species
∑

k

∆δk
i→i−1 ≡

∫ si−1

si

G(s′)ds′.
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This notation has the advantage that it explicitly states the boundaries between which in-
tegration is to be performed. In the production code, the indexing across the tangent point
gets hairy, and bugs can be hard to find. Also, in the sum over k, it explicitly allow the con-
tributions of other species, with the field opacity of unpolarized species (half of their power
opacities) added to G as multiple of the identity.

The expression given below includes a correction for refraction. Refraction only becomes
significant for tangent heights below 20 km, and the oxygen line in Band 22 and Band 26
is opaque high in the atmosphere. However, inclusion of the refraction correction allows the
polarized model to be used more generally, and can give a consistent expression, both for the
line centers and wings.

The incremental opacity integral due to polarized O2 lines is

∆δO2

i→i−1 =
∆srefri→i−1

∆si→i−1

+1
∑

∆M=−1

ρ
∆M

(θ, φ) ξ
M,∆M

∫ ζi−1

ζi

fO2(ζ, φ(ζ))β∆M (ζ,B(ζ), T (ζ) , ν)
ds

dh

dh

dζ
dζ,

(3.2)
where ξ

M,∆M
is from Table 1.2, fO2(ζ, φ(ζ)) is the O2 species representation basis. Here, we are

chain-ruling from pathlength s to height h to negative-log-pressure, ζ.

ds

dh
=

(

h (ζ) + R⊕
eq (φ (ζ))

)

√

(

h (ζ) +R⊕
eq (φ (ζ))

)2 −
(

h (ζt) +R⊕
eq (φ (ζt))

)2

and

dh

dζ
=

[

h (ζ) +
?

Ro (φ (ζ)) −Ro (φ (ζ)) +R⊕ (φ (ζ))
]2

T (ζ) k ln 10

go (φ (ζ))
?

R
2

o (φ (ζ))M (ζ)

. (3.3)

These expressions are discussed more fully in the scalar forward model ATBD. [10]
As is discussed in Section 1.3, the ρ terms are purely functions of the orientation of the

propagation direction with respect to the geomagnetic field. They contain all of the angular
dependence and all of the 2x2 tensor-nature of the expression. These terms are common for
all lines with the same ∆M , though in the case of the 118-GHz line, there is only one Zeeman
component for each ∆M . All of the other terms in this expression are (possibly complex)
scalars. In the IFOVPP frame,

ρ±1 =

[

cos2 φ+ sin2 φ cos2 θ − sinφ cosφ sin2 θ ∓ ı cos θ
− sinφ cosφ sin2 θ ± ı cos θ sin2 φ+ cos2 φ cos2 θ

]

,

ρ0 =

[

sin2 φ sin2 θ sinφ cosφ sin2 θ
sinφ cosφ sin2 θ cos2 φ sin2 θ

]

. (3.4)

or, more transparently,

ρ±1 = Rφ

[

1 ∓ı cos θ
±ı cos θ cos2θ

]

R
†
φ (3.5)

ρ0 = Rφ

[

0 0
0 sin2 θ

]

R
†
φ (3.6)

where

Rφ =

[

cosφ sinφ
− sinφ cosφ

]

. (3.7)
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3.2.1 Unpolarized Contributions to Incremental Opacity

The contributions of unpolarized species may be included by adding half of their scalar power
incremental opacities, ∆δk

i→i−1, to the diagonal of the the tensor field incremental opacity.
The one half changes power incremental opacity to field incremental opacity. Equivalently,
the scalar incremental opacities may be added with weights ( 1

4 ,
1
2 ,

1
4) to the total of everything

that multiplies ρ−, ρ0 and ρ+, respectively.

3.2.2 Cross-Section β

Field cross-sections for the polarized lines are identical to the power cross-sections in the
scalar model except they are reduced by a factor of two and they require complex lineshapes
rather than only the real parts. Polarized power transmittance, T , is formed from products
of pairs of field transmittances, which are exponentials of the cross-sections. The two half
power cross-sections will add so that each of the diagonal elements will correctly give the
scalar result for unpolarized radiation.

The field cross-section βk for the kth species is

βk =
1

2
Rk

√

ln 2

π

10−13

kTwk
d

P
∑

j

10S
k
j F
(

xk
j , y

k
j , z

k
j

)

(3.8)

where

Sj = Ij (T0) + log

[

Qk(T0)

Qk(T )

]

+
hc

k
E

′′k

j

(

1

T0
− 1

T

)

+ log

[

tanh

(

hν

2kT

)]

+ log

[

1 + exp {−hνj/kT}
1 − exp {−hν0j/kT0}

]

.

• Rk is the isotopic fraction,

• T is temperature in Kelvins,

• T0=300K,

• P is pressure in hPa,

• Ij (T0) is the logarithm of the integrated intensity in nm2MHz at T0,

• νpj is the pressure-shifted (but not Doppler-shifted) line center frequency in MHz,

• ν0j is the unshifted line frequency, as it appears in the JPL Catalog.

• E
′′k

j is the lower-state energy for the jth transition in cm−1,

• Qk(T0) is the partition function at T0,

• Qk(T ) a log-linear interpolation of tabulated partition function values,

• wd = 3.58117369 × 10−7ν
√

T
M is the Doppler width,

• M is the absorber molecular mass,
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• Fj is the complex lineshape function,

• the subscript j identifies the individual lines in the molecule.
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3.2.3 Lineshape

The lineshape that we use for each of the Zeeman components is the Fadeeva, or complex
error function, modified to include line interference. Fadeeva includes the convolution of a
Gaussian thermal Doppler lineshape with a Lorentzian collisional lineshape. It has a simple
form,

F(z) =
i

π

∫ ∞

−∞

e−t2

z − t
dt

for complex z, or

F(x+ iy) =
1

π

∫ ∞

−∞
e−t2

(

y

(x− t)2 + y2
+

i(x− t)

(x− t)2 + y2

)

dt

= U(x, y) + iV(x, y) (3.9)

The real part of Fadeeva, U(x, y), is the Voigt function, which is the lineshape used in the
scalar forward model. Terms involving line mixing coefficients, Y , are added to include the
first-order effects of interference with the lines of the 60-GHz band [11]. The tabulated,
zero-field mixing coefficient will be used for all three Zeeman components. The contribution
of these terms is negligible for the pressures where Zeeman-splitting is resolved, but they
are included so that this model will merge more smoothly with the scalar model. Line
interference can only occur between Zeeman components of the same ∆m, so there is no
interference among the Zeeman components of the 118-GHz oxygen line.

The modified Fadeeva lineshape which we will use is

F (xj , yj) =
1

π

ν

ν0j

∫ ∞

−∞
e−t2

(

yj − Yj(xj − t)

(xj − t)2 + y2
j

+
i(yjYj + xj − t)

(xj − t)2 + y2
j

)

dt

=
ν

ν0j
(1 + iYj)F(xj + iyj), (3.10)

where

xj =

√
ln 2 (ν − νj − ∆νj,m,∆m)

wk
d

,

yj =

√
ln 2wcjP

wk
d

(

T0

T

)nk
cj

,

Yj = P

[

δk
j

(

T0

T

)nk
δj

+ γk
j

(

T0

T

)nk
γj

]

,

wk
d =

√

2 ln 2 kB/c

√

T

Mk
ν,

and the line center frequency is shifted according to

νk
j =

[

νk
0j + ∆νk

0jP

(

T0

T

)nk
∆ν0j

]

(

1 +
vlos

c

)

. (3.11)

25



Line constants from the JPL Catalog [9], which are tabulated in the scalar forward model
ATBD [10], include unshifted line center frequency, ν0j , collisional linewidth parameter, wk

cj,

collisional linewidth temperature dependence exponent, nk
cj, line pressure shift parameter,

∆νk
0j line pressure shift temperature dependence exponent, nk

∆ν0j
and line interference pa-

rameters, δk
j , nk

δj
, γk

j , nk
γj

.

The Doppler width depends upon Mk, the molecular mass of species k, and upon vlos, the
line-of-sight velocity (which is positive if the observer and atmosphere are moving toward one
another.) The Zeeman frequency shifts ∆νj,M,∆M from Table 1.2. are included in xj,M,∆M .
The leading ν

ν0j
, which gives agreement with the Debye non-resonant shape at low frequencies,

is nearly constant over the Doppler width and is pulled outside of the integral..

The cross section is summed over all of the lines that contribute significantly. The zj

dependence of “Lineshape(xj, yj, zj)” in the scalar ATBD explicitly includes the negative-
frequency resonance of each line. These terms give the absorption due to the far wing of the
emission line at −ν0j .

The polarized model’s lineshape, F (xj , yj), does not include these negative frequency
terms. If the tail of the line at -118 GHz is considered significant, it can be included in the
list of lines to be modeled, but as we are not including many strong lines in the 60-GHz
band, 60 GHz away from our band of interest, there is no need to single out the -118-GHz
line, four times more distant, for special treatment.

Accurate and efficient evaluation of the Fadeeva lineshape and its derivatives has been
an area of continuing research in the MLS group, with significant contributions made by Zvi
Shippony [14].

3.3 Geomagnetic Field Model

3.3.1 IGRF

The International Geomagnetic Reference Field (IGRF) model [2][3] is the empirical repre-
sentation of the Earth’s magnetic field recommended for scientific use by the International
Association of Geomagnetism and Aeronomy (IAGA). The IGRF model represents the main
(core) field, Bgeo, without external sources. The model employs the usual spherical harmonics
expansion of the scalar potential in geocentric coordinates. The IGRF model coefficients are
based on all available data sources including geomagnetic measurements from observatories,
ships, aircraft and satellites.

The launch-ready version of the EOS-MLS polarized forward model (version 1.4 of the
level 2 software) uses IGRF, without any additional external sources. In the absence of
magnetic storms and outside of the auroral belts, we expect that field variation at the altitudes
below 120 km will be on the order of 5 percent, but there is significant uncertainty in this
value. The adequacy of the IGRF model will be a research topic.

Since the magnetic susceptibility of the atmosphere is very nearly unity (in Gaussian
units) we use Bgeofor Hgeoin the Zeeman expressions.

The ECR components of magnetic field are loaded into profiles of the state vector by the
level 2 code and are treated like any other geophysical parameter. The machinery of the
forward model interpolates these ECR values to positions along the integration path. The
ECR values are then rotated to the IFOVPP frame for each pointing.
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3.3.2 Rotation of Field to IFOVPP

The IGRF model provides the Earth’s core magnetic field in Earth-Center-Rotating (ECR)
coordinates, since the field is fixed in the solid earth. For the purpose of polarized forward
modeling, we want the geomagnetic field in coordinates of the instrument field of view and
polarization.

Fortunately, the hard work has been done for us by the EOSDIS Science Data Pro-
duction (SDP) Toolkit [1], which provides minor-frame-dependent ECR-to-ECI and ECI-
to-Spacecraft rotations, and in the “EOS MLS Calibration Report” [5], which includes the
information needed to rotate from spacecraft coordinates to the field of view of each of the
radiometers. The FOV defined in the Calibration Report, Volume 2, p.704, has its +ẑ along
the antenna boresight and x̂ in the direction of the magnetic field vector, so this frame of
reference may be transformed to IFOVPP by ẑ → −ẑ, x̂ → ŷ, ŷ → x̂. Rotation matrices
from ECR to IFOVPP for R1A are calculated during level-1 processing and are included as
part of the L1BOA files. In the initial version of the software there is no separate rotation
matrix for R1B, but the cross-polarization of the R1A pointing may be used as proxy. I
should investigate the magnitude of the error introduced here.

The ECR-to-IFOVPP matrices are provided to the forward model as “MIF” quantities,
for the polarization and pointing of the central axis of the R1A antenna at the middle of
each integration (MIF). The forward model does radiative transfer calculations, for a grid of
pointings, which will later be convolved with each MIF’s antenna pattern. We need ECR-to-
IFOVPP on the forward model pointing grid, not as a MIF quantity. Rather than interpolate
(and extrapolate) the rotation matrices from the MIF grid to the radiative transfer pointing
grid, we use the rotation matrix from the closest MIF. Points in the radiative transfer grid
that are above the center of the highest MIF all use the rotation matrix from the highest MIF,
but errors induced should be negligible compared to those from other sources of uncertainty
in the magnetic field.

3.4 Derivatives

3.4.1 General Form of Polarized Derivatives

Equation 3.1 may be differentiated with respect to a state vector element, x, to give a
derivative as required by the retrieval. As always, care must be taken in the tensor case to
preserve matrix order.

∂I(x)

∂x
=

∂

∂x

2N
∑

i=1

T i ∆Bi

=

2N
∑

i=1

∂T i

∂x
∆Bi + T i

∂∆Bi

∂x
(3.12)

and we recall Equation 2.37,

T i ≡ P i P
†
i .
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The derivative of T i may be built up, for successive layers, by differentiating the recur-
rence relation P i = P i−1Ei−1.

∂P i

∂x
=
∂P i−1

∂x
Ei−1 + P i−1

∂Ei−1

∂x
(3.13)

with

∂T i

∂x
=
∂P i

∂x
P

†
i +

(

∂P i

∂x
P

†
i

)†
. (3.14)

(Thanks to Fred Krogh for suggesting this approach.)

3.4.2 Mixing Ratio Derivatives

The expression for incremental opacity is a sum of the product of the mixing ratios and
their derivatives, so the derivatives themselves are easily calculated by dropping f k and the
summation over species k from Equation 3.2.

∂∆δk
i→i−1

∂fk
lmn

=

+1
∑

∆M=−1

ρ
∆M

(θ, φ)

∫ ζi−1

ζi

βk
∆M (ζ, ν, T,B)

ds

dh

dh

dζ
dζ (3.15)

Mixing ratio coefficients are f k
lmn where k refers to the species, l is vertical coordinate

(ζ), m is horizontal coordinate (φ) and n is frequency (ν). Frequency is included for the case
of “extinction,” which may be treated as a frequency dependent species.

The incremental polarized transmission derivative, ∂ �
∂f

, is evaluated using Equation A.3

with Equation 3.15 as its argument. the result is substituted into Equation 3.13 to get ∂ �
∂f

,

which is, in turn, substituted into Equation 3.14 to get ∂ �
∂x

. Substituting this result into

Equation 3.12 gives ∂ �
∂x

.

The term in Equation 3.12 involving ∂∆Bk

∂x
is zero because ∆Bk depends only upon tem-

perature.
Generally, we do not attempt to retrieve a 16O2 mixing ratio, and consider oxygen to

comprise a constant fraction of dry air. The dilution of dry air by water vapor is only
appreciable in the lower troposphere; EOS-MLS bands 22 and 26, for which this polarized
model is being developed, will never see to this depth. The 16O2 mixing ratio starts to
fall off in the thermosphere (> 80km) as an appreciable fraction of the molecules begin
to dissociate. However, at these pressures, the lines are Doppler broadened and there is
not enough information to separate temperature from mixing ratio even if a retrieval were
attempted. The initial plan for EOS-MLS retrievals is to use, as truth, the same a priori
16O2 mixing ratio profile that was used for UARS.

3.4.3 Temperature Derivatives

Much of what is said in the section of the scalar ATBD devoted to temperature derivatives
is applicable here. Temperature differentiation is quite complicated because the atmospheric
absorption, the source function and the path length (through the hydrostatic model) all
depend upon temperature. The equations follow the same forms as in scalar ATBD, but
with a β for each ∆M multiplying an appropriate tensor, ρ, and summation over ∆M .
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Temperature coefficients, with respect to which we want to differentiate, are f T
lm where l is

vertical coordinate (ζ) and m is horizontal coordinate (φ).
As in the scalar case, a simplified incremental opacity is used that neglects the tempera-

ture dependence in refraction and uses a simplified dh
dζ

. The frequency representation basis is
dropped since temperature has no frequency dependence. The simplified incremental opacity
has the form

∆δk
i→i−1 =

∆srefri→i−1

∆si→i−1

+1
∑

∆M=−1

ρ
∆M

(θ, φ)

∫ ζi−1

ζi

fk (ζ, φ (ζ) , ν) βk
j,∆M (ζ, ν, T,B)

× H3

√

H2 −H2
t

Tk ln 10

goR2
oM

dζ (3.16)

d∆δk
i→i−1

dfT
lm

=
∆srefri→i−1

∆si→i−1

+1
∑

∆M=−1

ρ
∆M

(θ, φ)

×
∫ ζi−1

ζi

{

fk
∂βk

j,∆M (ζ)

∂fTlm
ηT

l (ζ) ηT
m (φ (ζ))

ds

dh

dh

dζ

+ fkβk
j,∆M(ζ)

2H2 dH
dfT

lm

− 3H2
t

dH
dfT

lm

+HHt
dHt

dfT
lm

(

H2 −H2
t

)
3

2

dh

dζ

+ fkβk
j,∆M(ζ)

ηT
l (ζ) ηT

m (φ (ζ))

T

ds

dh

dh

dζ

}

dζ

(3.17)

Apart from the summation over ∆M and the ρ matrices, this expression is identical to what
is in the scalar forward model except that here we have both the real and imaginary parts of
the lineshape to deal with in the temperature derivative of β. The part of the this derivative
which differs from the expression in the scalar ATBD is the derivative of the lineshape. We
have, from Equation 3.10,

F (xj , yj) =
ν

ν0j
(1 + iYj)[U(xj , yj) + iV(xj , yj)]

so

dF (xj, yj)

dT
=

ν

ν0j

[

(1 + iYj)
dU
dx

dx

dT
+ (1 + iYj)

dU
dy

dy

dT
+ i

dY

dT
U

+ i(1 + iYj)
dV
dx

dx

dT
+ i(1 + iYj)

dV
dy

dy

dT
− dY

dT
V
]

(3.18)

From this point, substitutions may be made from the scalar ATBD. The derivatives of the
real and imaginary parts of Fadeeva are

∂U
∂y

=
∂V
∂x

= 2yV − 2xU ,

∂U
∂x

= −∂V
∂y

= 2yV + 2xU − 2/
√
π, (3.19)
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and from Equation 9.8 of the scalar ATBD,

dνk
j

dT
=

(νk
0jvc − νk

j )nk
∆ν0j

T

dxk
j

dT
= −

xk
j

2T
−

√
ln 2 (νk

0jvc − νk
j )nk

∆ν0j

Twk
d

dyk
j

dT
= −

yk
j (nk

cj + 1
2 )

T

dY k
j

dT
= −P

[

nk
δj
δk
j

T

(

T0

T

)nk
δj

+
nk

γj
γk

j

T

(

T0

T

)nk
γj

]

(3.20)

This expression for the temperature derivative of β replaces the power-law approximation
which was used in the UARS code. This expression involves the analytic derivative of the
lineshape and is somewhat daunting, but results in a 30 percent speed-up of the temperature-
derivative code. The power-law dependence gave derivatives in good agreement with the
analytic case, but required evaluations of β at two perturbed temperatures.

3.4.4 β Derivatives

Derivatives of quantities on which ∆δk
i+1→i has dependence only through β can be written

∂∆δk
i→i−1

∂xj
=

+1
∑

∆M=−1

ρ
∆M

(θ, φ)

∫ ζi−1

ζi

fk
lmn

dβk
∆M

dxj

ds

dh

dh

dζ
dζ . (3.21)

This class includes derivatives with respect to spectroscopic parameters, wind-induced Doppler
shifts, and magnetic field.

Derivatives with respect to line center frequency νj will be used in the retrieval of Doppler
shifts that result from large-scale wind along the line-of-sight. Doppler shifts due to the
spacecraft velocity are already accounted for in the line center frequencies. We expect to
encounter winds at 90 km on the order of 70 m/s in the N-S (meridional) direction (mostly
along the line of sight) and 100 m/s in the E-W (zonal) direction; a 70 m/s wind will result
in a 3-KHz line shift. This is a small fraction of the DACS channel spacing, but simulations
indicate that it should be measurable with sufficient averaging.

Derivatives with respect to the linewidth may be useful for retrieval of a width that may
be dominated by unmodeled variation in the magnetic field strength along the integration
path. Such variation will move the σ lines in and out, causing them to be blurred, and
making the σ lines appear broader than the π line

These are all areas for research after launch.

3.5 Field of View Convolution

Convolution of polarized radiances with the instrument antenna patterns is nearly identical
to what is described in the scalar Forward Model ATBD [10] in the chapter Field of View
Integration. In both cases, one starts with an expression for the polarized, far-field antenna
pattern, G, which is a function of offset in elevation and azimuth (ε, α) from the tangent
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pointing elevation and azimuth (εt, αt) which label the MIF to be modeled. Ideally, G would
be convolved with radiances I , which in the scalar case are radiance times the identity matrix.

I (εt, αt) =
1

4π
Tr

∫ 2π

0

∫ π
2

−π
2

I (ε, α) G (εt, αt; ε, ψ) cos εdεdα (3.22)

This expression sums the convolutions over each of the four degrees of freedom in the ra-
diances: co-polarized, cross-polarized, circular-coherence and linear-coherence. Near-field
measurements of the MLS antenna patterns [5] show the total power in the cross-polarized
patterns of the R1A and R1B receivers to be down 25 to 30 dB from the co-polarized total
power. Linear and circular coherences probably vary over the pattern, but have not been
measured.

In the scalar case, the radiation field is assumed to be unpolarized and the tensor equation
reduces to a scalar convolution of the scalar radiance with the sum of the co-polarized and
cross-polarized antenna patterns.

In the polarized case, we have chosen to do our radiative transfer in the IFOVPP basis,
so that the antenna pattern is very nearly zero in all but its (1,1) component. The polarized
case is handled by taking the co-polarized component of the radiance and then treating it
exactly like an unpolarized radiance from the scalar code.

I‖ → Iunpolarized

Ideally, the cross-polarization and the co-polarization would each be convolved with its own
pattern and then added. The approximation made here is the replacement of cross-polarized
radiances with co-polarized radiances. Resulting errors are on the order of the difference
in the unconvolved radiances reduced by 25–30 dB. In the most sensitive case, where there
could be as much as a 200 K contrast between the two modes, neglect of the cross-polarized
term might result in a 0.5 K error in a modeled radiance, but this would only be in the
highest tangent pointings where other sources of error will dominate. Inclusion of a small,
fixed fraction of I⊥ in the scalar I carried away from the polarized radiative transfer module
could be accomplished easily, and may be the topic of further research.

From this point, the scalar frequency averaging model is followed exactly, with the
Band 22 and Band 26 polarized dacs channels treated exactly as are the scalar Bands 23, 24, and 25.
DACS spectral convolution is described in Chapter 4.
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Chapter 4

DACS Spectral Integration

4.1 DACS Spectral Integration

Each digital autocorrelator spectrometer (DACS) has 129 channels equally spaced across a
12.5-MHz band in the center of a 25-channel filterbank. The signal into a DACS is supplied
by a single-sideband mixer with its local oscillator (LO) at 905-MHz in the second IF. The
upper sideband rejection is approximately -27 dB and an anti-aliasing filter limits the lower
sideband to approximately 10 MHz from 905-895 MHz. The input signal to a DACS is
sampled at 25 MHz and fed into a 129-lag autocorrelator. The Fourier transform of the
accumulated autocorrelation is 129 channels with centers spaced 12.5/128 MHz from 905
MHz down to 892.5 MHz.

To first order, each channel’s passband has a sinc(x)=sin(x)/x character, where x =
π (ν − νch) 128/12.5 MHz and νch is the channel’s center frequency. This filter shape results
from the sharp cutoff of the autocorrelation after the 128th lag in the time domain. The
sinc(x) of each channel is centered at the channel center and has a zero at the center of each
of the other channels. These sinc filter shapes must be modified to reflect the variations in
gain across the passband due to the anti-aliasing filter and amplifier characteristics. Even
for an ideal DACS, filter shapes for the channels would differ from one another, as shown in
Figure 4.1, because of the contributions of image channels.

The forward model must be calculated on an oversampled grid (higher than the channel
spacing) for the filter shapes to have any impact. Oversampling by a factor of two gives a
point on each of the sinc peaks as well as a wasted point on each of the zeros. Oversampling
the channel spacing by a factor of four gives three points between each zero. The amount of
oversampling required depends upon the sharpness of the spectral features to be modeled.

DACS channel responses may be modeled by brute force, multiplying a fine grid of
discrete-frequency forward model results by a grid of frequency weights for each of the 129
channels, but this calculation is more efficiently done in the Fourier domain.

We want to convolve an array of calibrated monochromatic radiances, R(νi), with nor-
malized DACS channel responses to produce calibrated DACS channel responses, Tk. In
addition to R(νi), we require a normalized “pre-filter shape,” P (νi), which is the product of
all of the gain variation across amplifiers and comparators in the signal chain as well as the
DACS anti-aliasing filter and L(νi), which is the convolved spectral shape of the first local
oscillator (LO) in the mixer chain. We want R(νi), P (νi) and L(νi) to be sampled on a grid
of frequencies νi that is finer than the channel spacing by a factor of 2x or 4x so that we can
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Figure 4.1: This example shows the 6th channel of a hypothetical 20-channel DACS. The
upper panel shows the sinc filter shape while the lower shows the actual response, which is
the sum of the sinc and all of its images. The EOS-MLS DACS have 129 channels so the
filter shapes of middle channels are much more sinc-like than what is shown here.
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see the impact of the sinc’s bumps between the channel centers. In practice, P and L are
measured using the DACS themselves, so they are measured at precisely the DACS channel
spacing. Fortunately, reasonable extrapolations of these functions can be performed in the
time domain.

We will assume that we begin with R(νi), P (νi) and L(νi) on a grid that is 4x finer than
the DACS channel spacing. These functions’ time-domain pairs are denoted by lowercase
letters.

R(νi)
DCT−→ r(tj) ,

P (νi)
DCT−→ p(tj) ,

L(νi)
DCT−→ l(tj) ,

(4.1)

where DCT is the “Discrete Cosine Transform.”

First we convolve the input signal with the LO shape and multiply the result by the
pre-filter shape:

A = (R ? L)P = DCT−1(rl)P , (4.2)

where ? is convolution. This is all at high (4x) resolution. Then we forward, 513-element
DCT, truncate from 513 to 129 lags (time samples), and then perform a 129-element inverse
DCT.

A′ = DCT−1
129(DCT513(A))) (4.3)
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This can be written explicitly with cosines as

aj =
1

2N

4N
∑

k=0

Ak cos
πkj

2N
for j=0 – N (4.4)

A′
l = a0 + aN (−1)l + 2

N−1
∑

1

aj cos
πjl

N
(4.5)

or it can be coded with FFTs.
A simple-minded FFT-based algorithm for a DCT of a (2N + 1)-element, real vector, xi,

is based upon the FFT of a complex vector, X of length 2N+1. The first half-plus-one of the
real part of X is x. The second half-minus-one of X is all of the elements of x except the first
and last, in reverse order. The imaginary part of X is zero. Each element of x appears twice
in X except the first and last element, which each appear once. After performing an FFT on
X, the first half-plus-one of the real part of the result is the desired DCT(x). The imaginary
part of the result should be zero, to numerical precision, or you have done something wrong.
This algorithm calculates many values which are thrown away, so it is not maximally efficient,
but it’s cost scales as (N +1) log(N +1), so it should be an improvement over the brute-force
method.

We want to normalize this set of linear operations, so that if the input, R, were spectrally
flat (R1K) then the outputs would all be spectrally flat (T1K). This means the channel
normalizations can be calculated

B = (R1K ? L)P, (4.6)

followed by forward-transform, truncation and back-transform, as above. However, convolu-
tion with a spectrally flat R1K is the same as multiplication by a delta function in the time
domain, so B = P and the normalization is

B′ = DCT−1
129(DCT513(P ))) (4.7)

The calibrated, convolved channel radiances are

Tk = A′
k/B

′
k (4.8)

Coefficients l and P (both length 513) and B ′ (length 129) are tabulated for each of the five
DACS bands. This frequency convolution requires two DCT transform pairs, the first in the
convolution R?L and the second in the “sinc convolution.” If the high-frequency (above lag
128) information in P is negligible, then we can make an approximation, (R?L)P ≈ (RP )?L.
If we make this approximation, then we do not have to come back out of the time domain to
do the multiplication with P , and we can eliminate a DCT-DCT−1 pair. Furthermore, we
are not required to make up data for the fine structure of the local oscillator shape, L, since
we only need 129 lags. To get A′:

• multiply R and P

• DCT513(RP)

• truncate to 129 lags

• multiply by L(0:128)
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• DCT−1
129

Normalization is slightly different in this case because, in this recipe, we have multiplication
by L(0:128) in the time-domain, but the difference between the two normalizations is less
than one part in 106 for real DACS data. The differences in the radiances computed with
these two methods for DACS channels of interest are on the order of 0.1 K or smaller, and
the second method will generally be used in production.

The forward model for a DACS band is calculated on a “pre-frequency grid” that captures
the Physics, and then is interpolated to the much larger grid of frequencies needed for filter
interpolation. If these frequencies are fixed for a given tangent height, then all of the steps
above, including spline or linear interpolation, are constant linear operations on the vector
of “pre-frequency-grid” forward model results. For example, if we are always going to do
radiative transfer on a set of 15 frequencies for a particular tangent height, we can pre-
compute a 15 × 63 matrix that will give us the forward model channels we require. This
sort of thinking might be useful in reducing the dimensionality in the retrieval problem. If
we really believe that the physics of the measurement is captured in 15 numbers (or one),
perhaps we should save the retrieval the trouble of sifting it out of 63 numbers.
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Chapter 5

Polarized L2PC Model

The MLS level-2 retrieval software requires Jacobians of partial derivatives of the radiances
with respect to state vector elements. Unfortunately, the cost of producing the polarized
derivatives during routine processing is probably prohibitive. Level-2 Precomputed (L2PC)
files of radiances and their derivatives for climatological conditions are used to take these
calculations off-line and allow them to be calculated once, rather than for every iteration of
the forward model in level 2.

Polarized L2PCs of temperature derivatives for DACS bands 22 and 26 are calculated
on a grid of magnetic field strengths and orientations. In the initial versions of this code,
the closest bin to the field strength and elevation angle (the angle between the field and the
line-of-sight) is used. The azimuth angle can be handled analytically, since the 2x2 power
spectrum coherence matrix, I , or any of its derivatives, may be rotated to give values for any
azimuth angle, φ. Since I is Hermitian,

I =

[

I‖ I| + ıI◦
I| − ıI◦ I⊥

]

,

I‖(φ) can be written

I‖(φ) = cos2(φ)I‖(0
◦) + sin2(φ)I⊥(0◦) + 2 cos(φ) sin(φ)I |(0

◦) (5.1)

With a modest bit of trigonometry, this may be recast as in terms of double-angle sines and
cosines, and in terms of I‖ for three values of φ rather than three components of I for φ = 0.

I‖(φ) =
1 + cos(2φ) − sin(2φ)

2
I‖(0

◦)+
1 − cos(2φ) − sin(2φ)

2
I‖(90

◦)+sin(2φ)I‖(45
◦) (5.2)

This formulation is particularly useful because the forward model software is designed to
select the parallel (‖) component of the radiance or radiance-derivative tensor, and to send
arrays of these real, scalar values through the antenna convolution and passband convolution
of the host scalar model. The polarized code can be run for φ = 0◦, 45◦ and 90◦, and these
values may be added as in 5.2 to produce a model for any φ.

In its current configuration, the polarized L2PC model assumes a constant geomagnetic
field magnitude and orientation along the integration path. This permits the model to be
parameterized by the field value at the tangent point. However, the full forward model
(and the real atmosphere) have geomagnetic-field variations along the path with resulting
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radiances which cannot be modeled with a constant field. For example, changes in the
field magnitude will move the σ± components in and out, resulting in a broadened spectral
feature and weighting functions with dependence on the details of the field along the path.
The degree to which this is going to cause problems in the EOS-MLS retrievals is an area for
further research.
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Appendix A

Matrix Exponentiation and

Derivatives

By applying the Hamilton-Cayley theorem (“A matrix satisfies its characteristic polynomial”)
to the Taylor series for a function of a matrix, one can develop Sylvester’s identity. In the
case of a function of a 2×2 matrix A whose eigenvalues are z1 and z2 we have for any function
F () (in this case: exp() )

F (A) =
F (z1)

z1 − z2
(A− z2I) +

F (z2)

z2 − z1
(A− z1I)

or

F (A) =
F (z1)(A − z2I) − F (z2)(A − z1I)

z1 − z2
(A.1)

where I is the 2 × 2 identity matrix,

Now, rearrange this to get ez2

[

eh−1
h

(A − z2I) + I
]

. where h = z1 − z2. This is well

behaved as h→ 0, so we don’t need to futz with L’Hôpital’s rule. Since limh→0
d
dh

eh−1
h

= 1,
the relative error in the first term is no greater than the relative error in h when h is small.

This could also be written as es
[

sinh d
d

(A − s I) + cosh d I
]

, where s = 1
2(z1 + z2) and

d = 1
2(z1 − z2). This is useful to compute the derivative without getting into trouble as

d→ 0, but the present form is OK here, and more efficient.

If you assume that A is a function of some parameter p, and work through dF (A)
dp

you will

eventually find dz1

dp
and dz2

dp
. These derivatives approach infinity as the eigenvalues approach

each other. Using s = 1
2(z1 + z2) = 1

2Tr(A) and d = 1
2 (z1 − z2) =

√

s2 − det(A) =
√
h, this

can be rewritten as exp(A) = es
[

sinh d
d

(A − s I) + cosh d I
]

. After much work you will find

d exp(A)

dp
= es

{

sinhd

d

[

s′A + A′ + (
h′

2
− s′s)I

]

+

d cosh d− sinhd

d3

[

h′

2
A + (hs′ − h′

2
s) I)

]}

.

(A.2)
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Collecting terms, we have

d exp(A)

dp
= es

{[

s′
sinh d

d
+
h′

2

d cosh d− sinhd

d3

]

A +
sinhd

d
A′+

[

sinhd

d

(

h′

2
− s′s

)

+
d cosh d− sinhd

d3

(

hs′ − h′

2
s

)]

I

} (A.3)

As the eigenvalues coalesce, no cancellations occur, and no infinities arise if the elements
of A and A′ are finite. The h′ and s′ terms are clearly well behaved as the eigenvalues
coalesce. To see that the functions of d are well behaved, write

sinh d
d

=
∑∞

k=0
d2k

(2k+1)! and d cosh d−sinh d
d3 =

∑∞
k=0

d2k

2kk!(2k+3)!!
, where (2k + 3)!! = 3 · 5 · 7 · · ·

2k + 3.
We can write sinh d

d
as e−d e2d−1

2d
and use the same software to evaluate this expression

as is used to do the matrix exponentiation. The series for d cosh d−sinh d
d3 converges extremely

rapidly for small d.
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Appendix B

Results of Simulations

The following figures are examples of simulated radiances for MLS channels, both for canon-
ical field orientations and for field orientations typical of an orbit.
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Figure B.1: This figure shows simulated, noise-free, Band 22 radiances for B = 0.5 Gauss
in three canonical orientations (top row) and three intermediate orientations (bottom row.)
Panels show pointings with tangent points from 90 km to the surface. The Doppler-broadened
cores of the lines are fully saturated even in the top-most scan positions. In the top left panel,
we look along B and the highest-altitude pointings show two fully saturated σ± lines. They
are circularly polarized, so half of the contribution into our linearly-polarized antenna comes
from the cosmic background. In the top middle panel, B is aligned with the antenna’s Ê
direction and we see the σ± lines co-polarized with the antenna. In the top right panel, B is
aligned with the antenna’s Ĥ direction and the π line is co-polarized with the antenna.
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Figure B.2: This figure shows simulated, noise-free radiances for R1A and R1B for the
northernmost point in the first orbit for a 1996d051 simulation (f32.) Channels listed in
frequency order, with the top figure showing band 32 , band 1, and the center 6 MHz of
band 22 and the bottom figure showing band 34 , band 21, and the center 6 MHz of band 26.
The ĤRFvector of R1B is close to the direction of the geomagnetic field, Hgeo, so we see the
π line in R1B. We see the two σ lines, linearly polarized, in R1A.
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