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A Numerical Method for Pricing Electricity Derivatives for Jump-Diffusion Processes

Based on Continuous Time Lattices

ABSTRACT

We present a numerical method for pricing derivatives on electricity prices. The method is

based on approximating the generator of the underlying process and can be applied for stochastic

processes that are combinations of diffusions and jump processes. The method is accurate even

in the case of processes with fast mean-reversion and jumps of large magnitude. We illustrate the

speed and accuracy of the method by pricing European and Bermudan options and calculating the

hedge ratios of European options for the Geman-Roncoroni model for electricity prices.



Introduction

Jump-diffusion models are widely used in energy finance to describe the behavior of spot electricity

prices. While the jumps are due to limited generation supply and inelastic and volatile demand which

result in electricity prices that fluctuate violently over short periods of time, the difficulty of calibrating

models based on supply and demand has led researchers to try to match characteristics of electricity

prices using reduced form models, allowing for large jumps.1

A problem that arises in using models with jumps is the relative lack of fast and accurate numerical

methods for pricing derivative contracts and for determining the optimal exercise policy of American-

type claims. A straightforward method based on Monte-Carlo simulation is inefficient, because of

slow convergence due to the large magnitude of the jumps, and to inherent difficulties in identifying

the optimal exercise policy. In this paper we present an alternative numerical method that tries to

overcome this difficulty. Instead of approximating the process directly, we approximate the generator

of process, under the risk-neutral measure, by the generator of a discrete Markov chain.2

The main idea of the method is to choose the generator of the Markov chain so that it converges,

in the limit of an infinite number of states, to the generator of the underlying continuous process.

Approximating the generator of the process has the advantage that jumps are explicitly accounted for

in the transition probabilities between the states of the Markov chain. Another advantage is that the

time between the steps of the Markov chain can be chosen arbitrarily without influencing the accuracy

of the approximation. The flexibility of choosing the time steps allows us to consider the values of the

Markov chain only at times of interest based on the specifics of the problem; e.g., possible exercise

dates, settlement dates, etc.

We illustrate our method by applying it to the case of pricing electricity derivatives using the model

proposed by Geman and Roncoroni (2006) applied to average daily, on-peak, electricity prices. Due

to lack of closed-form formulæfor European option prices and hedge-ratios in the Geman-Roncoroni

model, it is difficult to measure the accuracy of our method. Monte Carlo method is not suitable to

calculate the hedge-ratios in this case. To address this issue, we apply our method to the Merton’s

jump-diffusion model where it posses semi-analytic formula for price and hedge-ratios for European call

option and compare the results by applying our method against them.
1Such reduced form models models have been proposed, for example, by Kholodnyi (2004) and Geman and Roncoroni

(2006) — see also Eydeland and Wolyniec (2003) for an overview of both reduced form and structural models, and the
difficulties involved in their calibration.

2Our method is an extension of the method described in Albanese and Kuznetsov (2003), adapted to the case of
electricity processes (other methods for pricing derivatives in the presence of jumps include Hirsa and Madan (2004),
Cont and Tankov (2004), and Levendorskii, Kudryavtsev, and Zherder (2006)).
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The paper is organized as follows: We describe the numerical method in the context of the Merton

jump-diffusion model in Section 1. Section 2 discusses the modifications necessary to apply the method

to the Geman-Roncoroni model of electricity prices. Section 3 provides a calibration and numerical

simulations of option prices and hedge-ratios of European options and the optimal exercise threshold

of daily-exercisable Bermudan options for the Geman-Roncoroni model. Section 4 concludes.

1. Description of the Numerical Method

We illustrate the numerical method for the case of the Merton jump-diffusion model. This model is

an ideal candidate to demonstrate the accuracy of the method since the underlying stochastic process

exhibits jumps and allows for closed-form formulas for the price and hedge-ratios of European call

options.

Merton’s jump-diffusion model under the risk-neutral measure can be specified through the stochastic

differential equation

dSt
St−

= (r − λm)dt+ σdWt + (Jt − 1)dNt (1)

where St− stands for the left limit of S at time t, r is a constant risk-free interest rate, σ is a constant

diffusion volatility, W is a standard Brownian motion, and Nt is a Poisson process with constant

intensity λ which is independent of W . Jt is the amplitude of the multiplicative jump size which is

lognormally distributed with expectation E[Jt] = J , variance Var[log Jt] = b2 and m = J − 1.

The price, delta, and gamma of a European call option are given by

Price =
∞∑
n=0

e−λ
′
t (−λ

′
t)n

n!
BS(S0, σn, T, rn,K) (2)

Delta =
∞∑
n=0

e−λ
′
t (−λ

′
t)n

n!
BSD(S0, σn, T, rn,K) (3)

Gamma =
∞∑
n=0

e−λ
′
t (−λ

′
t)n

n!
BSG(S0, σn, T, rn,K) (4)

where λ
′

= λ(1 + m), σ2
n = σ2 + b2n/T , rn = r − λm + n log(1 + m)/T , and BS(.), BSD(.), BSG(.)

denotes the Black-Scholes call option price, delta and gamma formula respectively. We assume that
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the jump component is independent of the diffusion component and that the parameters, including the

risk-free interest rate r are constant.

We consider equation (1) in logarithmic scale. By Ito’s lemma,

d logSt = (r − λm− 1
2
σ2)dt+ σdWt + log JtdNt (5)

Let ξt = logSt.

To price options under the stochastic process described in Equation (5) we approximate the evolution

of the stochastic differential equation on a discrete lattice of prices. Let Ω be a finite set {0, · · ·, N}

containing the first N integers together with 0 and let ξ : Ω → R be a non-negative function which

satisfies the following two conditions: ξ(0) ≥ 0 and ξ(x) > ξ(x− 1) for all x = 1, . . . , N . Given such a

function ξ, the discretized price process ξΩt can take any of the values ξ(x), where x is an element in Ω

and time t ∈ R+.

The dynamics of the price are specified by the Markov generator LΩ which is given by

LΩ = LdΩ + LjΩ (6)

where LdΩ is the discretization of the generator of the diffusion component and LjΩ is the discretization

of the generator of the jump component.

We first consider the diffusion part of the model. The Markov generator of a diffusion process given

by the stochastic differential Equation (5) acts in the following way on any twice differentiable real

function φ:

(Ldφ)(ξd) = (r − λm− 1
2
σ2)

∂φ

∂ξd
(ξd) +

σ2

2
∂2φ

∂ξd
2 (ξd).

To insure that the dynamics of the discretized energy price process corresponds to the dynamics

specified by the Equation (5), elements of the discretized Markov generator for diffusion LdΩ(x, y) are

obtained by solving the following linear systems for all x, y ∈ Ω, which guarantee that the mean and
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variance of the diffusion part of the process are matched locally:

∑
y∈Ω

LdΩ(x, y) = 0, (7)

∑
y∈Ω

LdΩ(x, y)(ξ(y)− ξ(x)) = r − λm− 1
2
σ2, (8)

∑
y∈Ω

LdΩ(x, y)(ξ(y)− ξ(x))2 = σ2. (9)

Equation (7) ensures probability conservation over the infinitesimal time interval. Equations (8)

and (9) are the instantaneous first and second moment matching conditions for the discretized log-price

process ξΩt respectively.

At each end of the domain Ω, we impose absorbing boundary conditions by setting LdΩ(x, y) = 0

for all y ∈ Ω, x = 0, N . This is a reasonable requirement of the underlying process for two reasons.

First, since the size of the set Ω is a parameter of our model, we can make sure that we choose it large

enough so that the process does not reach the boundary. Second, this choice of boundary conditions

makes it easy to detect if the domain Ω is not large enough, which would not necessarily be the case

had we used reflecting boundary conditions. The resulting matrix LdΩ(x, y) is tri-diagonal and in the

continuous state-space limit reduces to the generator of a diffusion Ld.

After obtaining the Markov generator for the diffusion component, we consider the jump component

of the Merton model. The jumps in the model are controlled by a Poisson process with constant

intensity. In the time interval (t, t + δt) the probability of a jump is roughly proportional to δt, while

the probability of two or more jumps is negligible.

The Markov generator for the jump component is given by:

LjΩ(x, y) =

λ
∫ B
A
φ(z, µ, b2)dz = λ[Φ(B,µ, b2)− Φ(A,µ, b2)], if x 6= y

−
∑
z 6=x L

j
Ω(x, z), if x = y
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for all x, y ∈ Ω, where

φ(z, µ, b2) =
1√
2πb

e−
1
2 ( z−µb )2

Φ(X,µ, b2) =
∫ X

−∞
φ(z, µ, b2)dz

µ = log(J)− 1
2
b2

A =
ξ(y) + ξ(y − 1)

2
− ξ(x)

B =
ξ(y) + ξ(y + 1)

2
− ξ(x)

A. Computing the probability kernel

To obtain the probability kernel of the process ξΩt from its Markov generator LΩ, we consider the

following eigenvalue problem

LΩun = λnun

LTΩvn = λnvn

where λn are the eigenvalues of the operator LΩ and un and vn are its right and left eigenvectors

respectively and the superscript T denotes matrix transposition. In general, the Markov generator is

not symmetric, hence un and vn are different and the eigenvalues are not real. We can only guarantee

that the real part of the eigenvalues is non-positive and that the complex eigenvalues appear in pairs,

in the sense that if λ is an eigenvalue then its complex conjugate, λ, is also an eigenvalue.

We assume that the operator LΩ admits a complete set of eigenvectors. If U is a matrix whose

columns are given by the eigenvectors un we have

LΩ = UΛU−1

where Λ is a diagonal matrix having eigenvalues {λi}Ni=0 as elements and U−1 = V with V a matrix

whose rows are given by the vectors vn.

Key to our construction is the remark that, if the Markov generator is diagonalizable, we can apply

to it an arbitrary function φ, defined on the spectrum of the generator, by means of the following
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formula:

φ(LΩ) = Uφ(Λ)U−1. (10)

Formula (10) is useful because the task of calculating φ(Λ) is a very simple one indeed:

φ(Λ) =


φ(λ0) · · · 0

...
. . .

...

0 · · · φ(λN )

 .

Formula (10) is the basis of “functional calculus”. As Itô’s formula regarding functions of stochastic

processes is central in the stochastic analysis for diffusion processes, functional calculus for Markov

generators plays a pivotal role in our framework.3 Formula (10) allows us to express p(x, t; y, T ) by

p(x, t; y, T ) = (e(T−t)LΩ)(x, y) =
N∑
n=0

eλn(T−t)un(x)vn(y).

B. Regularization of the Markov Chain Generator

A potential problem in the representation of the transition density p(x, t; y, T ) as

p(x, t; y, T ) =
(
Ue(T−t)ΛU−1

)
(x, y) (11)

arises in the case of underlying stochastic processes with large drift or large asymmetric jumps, common

for processes describing electricity prices. In such cases the Markov generator LΩ is highly asymmetric,

leading to large condition numbers and to numerical instabilities when inverting the matrix U .4

We propose a regularization algorithm to account for numerical instabilities. The method avoids

diagonalization of the Markov generator LΩ, by estimating the transition densities by means of binary-

exponentiation. Our objective is to find the transition density p(x, t; y, T ) induced by LΩ and it must

satisfy the following four criteria:

1. Conservation of probability: The sum of transition densities should equal one

∑
y

p(x, t; y, T ) = 1

3For more details see Albanese and Kuznetsov (2003).
4The condition number of a matrix is defined as the ratio of its largest to its smallest eigenvalue.
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2. Positivity: Transition densities should be between zero and one

0 ≤ p(x, t; y, T ) ≤ 1

3. Real values: Transition densities should be real numbers.

4. Chapman-Kolmogorov conditions:

∑
z

p(x, t1; z, t2)p(z, t2; y, T ) = p(x, t; y, T ), where t1 + t2 = T.

We will use the four criteria to measure the accuracy of the approximation of the transition densities

calculated by using the regularization method.

The numerical instability in equation (11) is due to the inversion of the right eigenvector matrix

U . Our aim in the regularization method is to find the transition density matrix PT from the Markov

generator LΩ without diagonalization.

The transition density matrix Pdt induced by the Markov generator LΩ is given as:

Pdt = edtLΩ .

If dt is small, Pdt can be approximated by

Pdt ≈ I + dtLΩ,

where I is the identity matrix, and the error is of order (dt)2.

Since LΩ is time homogenous, PT can be obtained by:

PT = (Pdt)T/dt, (12)

where T/dt is an integer.

While dt is small, T/dt can be quite large and to compute (Pdt)T/dt is computationally expensive.

A common trick is to use an algorithm so-called binary-exponentiation to overcome this problem. First

we find a constant τ1 such that Pτ1(x, y) satisfy the four criteria that are described earlier in this section

for all x, y ∈ Ω. By the Perron-Frobenius theorem5, the spectral radius for any finite transition density

matrix equals one. This will guarantee the power of the matrix Pτ1 would not explode and also satisfy
5For more details see (Horn and Johnson 1990)
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the four criteria for transition density. Second, we find an integer ν, which is the smallest integer such

that

2ν >
T

τ1
.

Finally, we set τ2 = T/(2ν). We can now rewrite equation (12) as:

P2τ2 = Pτ2 ×Pτ2

P4τ2 = P2τ2 ×P2τ2

...

PT = P2ντ2 = P2(ν−1)τ2 ×P2(ν−1)τ2

(13)

where only ν = log2(T/τ2) matrix multiplications are performed. Clearly, as we decrease τ2, the

approximation to equation (11) becomes more accurate but it will slow down the computation.

C. Hedge-ratios

Let C0(x) be the price of an European option on the spot energy price given the current spot energy

price is S(x), where S(x) = exp(ξ(x)) and x ∈ Ω. The delta and gamma of C0(x) can be computed

using symmetric differences

∆(x) :=
C0(x+ 1)− C0(x− 1)
S(x+ 1)− S(x− 1)

Γ(x) := 4
C0(x+ 1) + C0(x− 1)− 2C0(x)

(S(x+ 1)− S(x− 1))2
,

Notice that calculating C0(x+1), or any other value of the option C0(y) with a starting point y ∈ Ω

different from x, requires no further calculations because the probability density function corresponding

to a value other than x is given by a different row of the matrix Pt, which has already been calculated

during the pricing of the original contract C0(x).

D. Numerical examples

We illustrate the accuracy of the numerical method under the following set of parameters: spot price

S0 = 100, time to maturity T = 2, risk free rate r = 0, diffusion volatility σ = 50%, jump intensity
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λ = 75%, mean of jump size J = 80% and jump size volatility b = 75%. The lattice ξ(.) is evenly spaced

with ξ(0) = 0, ξ(N) = 11.9184 and N = 500. Tables 1, 2 and 3 show the European call option prices,

deltas and gammas respectively. The second row of each table shows the time to compute all the prices,

deltas and gammas for that particular column (i.e. for the results in all three tables). The second column

is the strike of the European call options, the third column is the value calculated based on the closed-

form formula for Merton’s jump-diffusion model price, delta and gamma. The forth column is the result

obtained using the representation eTLΩ without regularization. Notice that the Merton’s jump-diffusion

model with the above parameters does not exhibit numerical instabilities when using the representation

eTLΩ to compute the transition density. The fifth to ninth column are the results obtained by using the

binary-exponentiation with different τ2, where τ2. We can see from all three tables that as τ2 decreases,

the result by the binary-exponentiation is closer to the closed-form solution. Since there are no numerical

instabilities introduced by the above set of parameters, the representation eTLΩ can be regarded as the

binary-exponentiation with τ2 → 0. Therefore, one would expect the representation eTLΩ approximates

the closed-form solution better than binary-exponentiation. Furthermore the smallest diagonal entry

of LΩ is −72.45082 (i.e. min LΩ(x, x), for all x ∈ Ω.), this implies if τ2 < 1
72.45082 = 0.0138, Pτ2(x, y)

is guaranteed to satisfy the four criteria that are described in Section 2.B for all x, y ∈ Ω.

We show that if there are no numerical instabilities, one would want to use the representation eTLΩ

to compute the transition density because is it more accurate and faster than binary-exponentiation.

There are two sources of discretization error introduced by binary-exponentiation. We have illustrated

the time discretization error in the tables above; we showed that as τ2 decreases, the result converges to

the closed-form solution. The representation eTLΩ is immune from the time discretization error as one

can consider it is taking τ2 → 0. The other source of discretization error is the state-space discretization

error which appears in both methods. In Tables 1, 2 and 3 the number of lattice points N is 500. Table

4, 5 and 6 shows the European call option prices, deltas and gammas using the representation eTLΩ

with different values of N . All three tables show that as the number of lattice points increases, the

closed-form solution is more closely approximated by eTLΩ . All the calculations in this paper were

performed using Pentium M 1.60GHz processor with 480MB RAM.
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Table 1

European Call option prices for Merton’s jump-diffusion model.

Strike closed-form eTLΩ τ2 = 0.00138 0.00414 0.00690 0.00966 0.01242
formula (2)

time(s) 41 78 67 62 60 58
85 46.94320 46.94709 46.94777 46.94912 46.95048 46.95183 46.95319
90 45.15809 45.16293 45.16365 45.16508 45.16651 45.16795 45.16938
95 43.46686 43.47072 43.47147 43.47297 43.47447 43.47596 43.47746
100 41.86367 41.86625 41.86703 41.86858 41.87013 41.87168 41.87323
105 40.34305 40.34596 40.34676 40.34835 40.34994 40.35153 40.35313
110 38.89991 38.90250 38.90331 38.90493 38.90656 38.90818 38.90980
115 37.52949 37.53325 37.53407 37.53571 37.53735 37.53900 37.54064
120 36.22735 36.23221 36.23304 36.23469 36.23634 36.23799 36.23965
125 34.98936 34.99414 34.99496 34.99662 34.99827 34.99992 35.00157
130 33.81166 33.81425 33.81507 33.81671 33.81836 33.82001 33.82165

Table 2

European Call option deltas for Merton’s jump-diffusion model.

Strike closed-form eTLΩ τ2 = 0.00138 0.00414 0.00690 0.00966 0.01242
formula (3)

time(s) 41 78 67 62 60 58
85 0.7812294 0.7812700 0.7812697 0.7812692 0.7812686 0.7812680 0.7812674
90 0.7642699 0.7643129 0.7643136 0.7643152 0.7643168 0.7643183 0.7643199
95 0.7474597 0.7475021 0.7475040 0.7475078 0.7475116 0.7475154 0.7475192
100 0.7308420 0.7308820 0.7308851 0.7308912 0.7308973 0.7309034 0.7309095
105 0.7144529 0.7144945 0.7144987 0.7145072 0.7145156 0.7145240 0.7145325
110 0.6983223 0.6983633 0.6983686 0.6983794 0.6983902 0.6984009 0.6984117
115 0.6824744 0.6825210 0.6825275 0.6825406 0.6825536 0.6825666 0.6825797
120 0.6669287 0.6669819 0.6669895 0.6670048 0.6670200 0.6670353 0.6670505
125 0.6517001 0.6517548 0.6517635 0.6517809 0.6517982 0.6518156 0.6518330
130 0.6368002 0.6368435 0.6368532 0.6368726 0.6368920 0.6369114 0.6369308

Table 3

European Call option gammas for Merton’s jump-diffusion model.

Strike closed-form eTLΩ τ2 = 0.00138 0.00414 0.00690 0.00966 0.01242
formula (4)

time(s) 41 78 67 62 60 58
85 0.0028931 0.0028918 0.0028916 0.0028913 0.0028909 0.0028906 0.0028902
90 0.0030407 0.0030393 0.0030391 0.0030387 0.0030383 0.0030379 0.0030375
95 0.0031769 0.0031756 0.0031754 0.0031749 0.0031745 0.0031741 0.0031736
100 0.0033018 0.0033006 0.0033004 0.0032999 0.0032994 0.0032990 0.0032985
105 0.0034155 0.0034143 0.0034140 0.0034135 0.0034130 0.0034126 0.0034121
110 0.0035184 0.0035172 0.0035170 0.0035165 0.0035159 0.0035154 0.0035149
115 0.0036109 0.0036095 0.0036093 0.0036087 0.0036082 0.0036077 0.0036072
120 0.0036934 0.0036918 0.0036916 0.0036911 0.0036905 0.0036900 0.0036895
125 0.0037665 0.0037648 0.0037646 0.0037641 0.0037635 0.0037630 0.0037625
130 0.0038305 0.0038292 0.0038289 0.0038284 0.0038279 0.0038274 0.0038269
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Table 4

European Call option prices for Merton’s jump-diffusion model using eTLΩ with different
number of lattice points N .

Strike
N 300 500 700 900 closed-form

formula(2)
time(s) 11 41 102 231

85 46.95314 46.94709 46.94560 46.94448 46.94320
90 45.17129 45.16293 45.16011 45.15893 45.15809
95 43.47958 43.47072 43.46822 43.46788 43.46686
100 41.87103 41.86625 41.86491 41.86436 41.86367
105 40.35500 40.34596 40.34485 40.34437 40.34305
110 38.91363 38.90250 38.90232 38.90104 38.89991
115 37.54356 37.53325 37.53148 37.53091 37.52949
120 36.24128 36.23221 36.22963 36.22857 36.22735
125 35.00320 34.99414 34.99093 34.99042 34.98936
130 33.82565 33.81425 33.81410 33.81280 33.81166

Table 5

European Call option deltas for Merton’s jump-diffusion model using eTLΩ with different
number of lattice points N .

Strike
N 300 500 700 900 closed-form

formula(3)
time(s) 11 41 102 231

85 0.7813222 0.7812700 0.7812454 0.7812352 0.7812294
90 0.7643687 0.7643129 0.7642859 0.7642752 0.7642699
95 0.7475596 0.7475021 0.7474748 0.7474655 0.7474597
100 0.7309301 0.7308820 0.7308569 0.7308472 0.7308420
105 0.7145567 0.7144945 0.7144699 0.7144603 0.7144529
110 0.6984356 0.6983633 0.6983422 0.6983294 0.6983223
115 0.6825929 0.6825210 0.6824934 0.6824831 0.6824744
120 0.6670505 0.6669819 0.6669496 0.6669368 0.6669287
125 0.6518257 0.6517548 0.6517180 0.6517078 0.6517001
130 0.6369311 0.6368435 0.6368238 0.6368088 0.6368002

Table 6

European Call option gammas for Merton’s jump-diffusion model using eTLΩ with
different number of lattice points N .

Strike
N 300 500 700 900 closed-form

formula(4)
time(s) 11 41 102 231

85 0.0028921 0.0028918 0.0028925 0.0028928 0.0028931
90 0.0030393 0.0030393 0.0030401 0.0030404 0.0030407
95 0.0031755 0.0031756 0.0031764 0.0031766 0.0031769
100 0.0033010 0.0033006 0.0033013 0.0033015 0.0033018
105 0.0034140 0.0034143 0.0034149 0.0034152 0.0034155
110 0.0035167 0.0035172 0.0035177 0.0035181 0.0035184
115 0.0036090 0.0036095 0.0036103 0.0036106 0.0036109
120 0.0036915 0.0036918 0.0036928 0.0036931 0.0036934
125 0.0037645 0.0037648 0.0037659 0.0037661 0.0037665
130 0.0038284 0.0038292 0.0038297 0.0038301 0.0038305
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2. The Geman-Roncoroni model of electricity prices

In the Geman-Roncoroni model the evolution of the spot price of electricity St includes a mean-reverting

component and a jump component. The direction of the jumps depends on the level of the spot price:

if the price is below a threshold all jumps increase the spot price, while if the spot price is above

the threshold the jumps decrease the spot price. The existence of the threshold aims to reproduce

the observed spikes in electricity prices. We assume that the spot price describes day-ahead, average

on-peak price per megawatt-hour of electricity.

The evolution of the spot price under the statistical measure P is given by

St = S0e
ξt+µP (t)

where ξt includes a mean-reverting and a jump component and solves the following stochastic differential

equation:

dξt = −θ1ξtdt+ σdWt + h(t, St−)dJt (14)

where St− stands for the left limit of S at time t. The term µP is a deterministic function of time and

represents the predictable seasonal trend of electricity prices6

µP (t) = α+ βt+ γ cos[ε+ 2πt] + δ cos[ζ + 4πt].

Jumps are characterized by their occurrence, magnitude and direction. The function Jt has the form

Jt =
N(t)∑
i=1

Yi,

where N(t) is a Poisson process with time-varying intensity ι(t) and the jumps Yi are independent and

identically distributed random variables with truncated exponential density q(z; θ3, ψ) given by

q(z; θ3, ψ) =
θ3exp(−θ3z)

1− exp(−θ3ψ)
, 0 ≤ z ≤ ψ. (15)

and

ι(t) = θ2 × s(t),

where s(t) represents a normalized (and possibly periodic) jump intensity shape and the constant θ2
6Since we are interested in pricing derivatives, it is the form of µP under the risk neutral measure that is important.

We discuss the transformation between the real and risk neutral measures in Section 3.
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can be interpreted as the maximum expected number of jumps per time unit.

To account for spikes in electricity prices, jumps occur in a positive direction when prices are below

a threshold Υ(t), and in a negative direction otherwise. The switching function, h, is given by

h(t, S) =

+1, lnS < Υ(t)

−1, lnS ≥ Υ(t).

The threshold is defined by a constant spread ∆ over the average trend:

Υ(t) = µP (t) + ∆.

We consider the case where the mean-reverting level of the diffusion process is constant (i.e. µP (t) =

α) and the compound Poisson process controlling jumps has constant intensity ι(t) = ι and constant

jump reversion threshold Υ = α+ ∆. For simplicity we also assume that the risk-free interest rate r is

constant.

In the Geman-Roncoroni model, the diffusion component and the jump component are independent.

The dynamics of the energy price are specified by the Markov generator LΩ which is given by

LΩ = LdΩ + LjΩ (16)

where LdΩ is the discretization of the generator of the diffusion component and LjΩ is the discretization

of the generator of the jump component.

The mean-reverting process is related to the solution ξdt of the following stochastic differential

equation:

dξdt = −θ1ξdt dt+ σdWt. (17)

The Markov generator of a diffusion process given by the stochastic differential Equation (17) acts

in the following way on any twice differentiable real function φ:

(Ldφ)(ξd) = −θ1ξdt
∂φ

∂ξd
(ξd) +

σ2

2
∂2φ

∂ξd
2 (ξd).

Elements of the discretized Markov generator for diffusion LdΩ(x, y) are obtained by solving the following

linear systems for all x, y ∈ Ω, which guarantee that the mean and variance of the diffusion part of the

13



process are matched locally:

∑
y∈Ω

LdΩ(x, y) = 0, (18)

∑
y∈Ω

LdΩ(x, y)(ξ(y)− ξ(x)) = −θ1ξ(x), (19)

∑
y∈Ω

LdΩ(x, y)(ξ(y)− ξ(x))2 = σ2. (20)

After obtaining the Markov generator for the diffusion component, we consider the jump component

of the Geman-Roncoroni model. The jumps in the model are controlled by the compound Poisson

process with constant intensity ι and jump size z with truncated exponential density q(z; θ3, ψ).

In the Geman-Roncoroni model, Yi is distributed according to the density given by Equation (15).

The transition density for the continuous-time process to jump from state x to state y between times t

and t+ dt is given by

p(x, t; y, t+ δt) = ιq(|ξ(y)− ξ(x)|; θ3, ψ)dt = ι
θ3e

−θ3|ξ(y)−ξ(x)|

1− e−θ3ψ
dt,

where |ξ(y)− ξ(x)| ≤ ψ.

To discretize this formula on the lattice ξ(a), a ∈ Ω, we replace it with

p(x, t; y, t+ δt) = ιdt

∫ | ξ(y)+ξ(y+1)
2 −ξ(x)|

| ξ(y)+ξ(y−1)
2 −ξ(x)|

q(z, θ3, ψ)dz

= ιdt
e−θ3|

ξ(y)+ξ(y−1)
2 −ξ(x)| − e−θ3|

ξ(y)+ξ(y+1)
2 −ξ(x)|

1− e−θ3ψ

The Markov generator LjΩ for the compound Poisson process is given by

p(x, t; y, t+ δt) = edtL
j
Ω(x, y) ≈ δxy + LjΩ(x, y)dt

where δxy = 1 if x = y, and zero otherwise. LjΩ can be defined as follows:

LjΩ(x, y) =

ι
e−θ3|

ξ(y)+ξ(y−1)
2 −ξ(x)|−e−θ3|

ξ(y)+ξ(y+1)
2 −ξ(x)|

1−e−θ3ψ , ifx 6= y

−
∑
z 6=x L

j
Ω(x, z), ifx = y

for all x, y ∈ Ω.
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To obtain the Markov generator for the Geman-Roncoroni model with constant mean-reversion

level, constant jump intensity and constant jump reversion threshold, we combine LjΩ,LdΩ according to

Equation (16). Since LdΩ and LjΩ are Markov generators, LΩ is a Markov generator as well.

3. Numerical Examples for the Geman-Roncoroni model

In the Geman-Roncoroni model, due to the high mean-reversion rate and the large jump amplitude of

the spot electricity price, the corresponding Markov generator is highly asymmetric. This will cause

numerical instabilities when computing the transition density using eTLΩ . The Geman-Roncoroni model

does not allow for closed-form formulas for European option prices. In order to test the accuracy of

the numerical method, we compare the price of European call options on spot energy price to results

computed using Monte Carlo simulation. We also compute the hedge-ratios for European call options

on spot which are presented in Figures 4 and 5. Furthermore we compute the transition densities by

using the regularization method and analyse using the four criteria. The results are presented in Table

11.

A. Calibration

Geman and Roncoroni (2006) estimate the parameters of their model under the statistical measure. To

incorporate the price of risk we replace the drift µP (t) with the drift under the risk neutral measure

µQ(t) = α + a(t), estimated to reproduce futures prices, where a(t) is a deterministic function of time

t.7

The specification of the futures contract in electricity markets involves delivery over several days

of the delivery month. For example, for the PJM Interconnection Monthly Peak Electricity Futures

contract, the trading unit is 40 megawatt hours (MWhs) per peak day.8 Depending on the number of

peak days in the month, the number of MWhs will vary (between 760 MWhs and 920 MWhs). The

futures price is given by:

F (0, t) =
1
M

M∑
i=1

EQ0
[
Stie

(ti−t)r
]

(21)

where F (0, t) is the futures price at time 0 with settlement date t, r is the constant risk-free rate, ti is

7This change of measure effectively assumes that the price of risk is associated with the diffusion part of the process.
If derivative prices are available, additional changes could be made to the frequency and magnitude of the jumps, as
well as the position of the threshold. Since we are interested in presenting the numerical method for pricing electricity
derivatives, we do not focus on the calibration of the risk-neutral measure.

8PJM stands for the Pennsylvania, New Jersey, Maryland electricity market.
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a delivery day, Sti is the electricity price at time ti, M is the number of peak days in a month and EQ0

denotes expectation taken at time 0 under the pricing measure Q. We calibrate the model, under the

measure Q, by finding a factor a(t) to satisfy Equation (21).

We illustrate the calibration of our discrete state-space approximation in Figure 1. For simplicity,

we assume there are only four delivery days and ti+1 − ti = t1 − t, for all i. We want to calibrate

the lattice to the current futures prices F (0, t). In this example, we only have seven lattice points.

Therefore, the Markov generator will be a 7×7 matrix. We need to compute two transition probability

matrices: one from time 0 to time t and the other from time ti to time ti+1.

Pt = UetΛU−1

Pt1−t = Pti+1−ti = Ue(ti+1−ti)ΛU−1

Figure 1. Lattice calibration.

In general, for traded futures contracts, the transition matrices that need to be estimated are: from

the current time to the settlement date; from the settlement date to the first delivery date; for the

time between delivery dates during the week; and for the time between delivery dates on Fridays and

Mondays.

The parameters estimated by Geman and Roncoroni (2006) under the statistical measure for COB

are θ1 = 13.3815, θ2 = 13.2269, θ3 = 1.0038, α = 2.8928, β = 0.1382, γ = 0.1979, δ = 0.0618, ε =

1.7303, ζ = 1.7926, σ = 1.3631, ψ = 1.0169,∆ = 1. For simplicity, we illustrate our numerical method in

the case where the mean-reverting level µp(t), the jump intensity ι(t) and the jump reversion threshold

Υ(t) are all constant. We approximate all three time dependent paramters by setting µp(t) = α,
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Υ(t) = α + ∆ and , ι(t) = θ2 × 0.275 (where 0.275 is the average of s(t) for COB in Geman and

Roncoroni (2006)). The numerical method can be easily extended to the case of piece-wise constant

time dependent functions.

We can match the futures prices F (0, t) by finding a(t) and the number of peak days in a month,

M = 22. We have used 700 evenly spaced states to discretize the electricity price with ξ(0) = 0 and

ξ(N) = 6. Constant risk-free rate r = 5%. The results are given in Table 7. The parameters we

used in our numerical method imply the mean-reversion level is approximately $18/MWh and the jump

reversion threshold is $49/MWh under the statistical measure. The initial spot electricity price S0 is

$40/MWh.
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Table 7

Calibration

This table presents Futures prices (in $/MWh) and the values of the function a(t), that accomplishes
the transformation of the drift between the real and the risk neutral measures.

t F (0, t) a(t)
1 month 42 0.55531
2 months 44 0.68736
3 months 45 0.73701
6 months 46 0.77161

1 year 48 0.81462
2 years 50 0.85544

B. Pricing European Options on futures price

The price of a European call option on futures price with expiration date s on the futures contract with

settlement date t, with strike price K is given by

e−rsEQ0 [F (s, t)−K]+

To price a European option on futures prices on a lattice, we need to compute the following transition

probability matrices: from the current time to the option expiration date, from the option expiration

date to the settlement date of the futures contract and for the time between the delivery dates of the

futures contract. Table 8 shows the prices of European call option on futures prices for the Geman-

Roncoroni model with the parameters described in Section 3.A.

C. Results

Table 9 to 10 shows the European call option prices in the Geman-Roncoroni model with the parameters

described above. The results in Table 9 are obtained using the binary-exponentiation algorithm with

different numbers of lattice points. The second row of Table 9 is the τ2’s that are used to compute the

transition densities. The third row is the maximum τ2’s that can be used to compute the transition

densities. Notice that as the number of lattice points increases, the minimum diagonal entry of LΩ

and the maximum τ2 also decreases. The τ2’s in the second row are ten times smaller than their

corresponding maximum τ2 in the third row. As the number of lattice points increases, the absolute

difference between the prices against the prices on its left-hand column decreases.
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Table 8

Prices of European Call option on futures price for the Geman-Roncoroni model

Strike binary-exponentiation
N = 700

τ2 = 0.00000394
time(s) 960

35 6.992765
expiration = 0.5m 40 2.519862
settlement = 1m 45 0.462843

50 0.067240
55 0.006477
35 8.962578

expiration = 1m 40 4.006070
settlement = 2m 45 0.555799

50 0.019986
55 0.000085
35 9.937695

expiration = 1.5m 40 4.968854
settlement = 3m 45 0.572591

50 0.001116
55 0.000000
35 10.863356

expiration = 3m 40 5.925467
settlement = 6m 45 0.987587

50 0.000000
55 0.000000
35 12.679029

expiration = 6m 40 7.802479
settlement = 1y 45 2.925930

50 0.000000
55 0.000000
35 14.268441

expiration = 1y 40 9.512294
settlement = 2y 45 4.756147

50 0.010922
55 0.000000
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Table 9

Prices of European Call option on spot for the Geman-Roncoroni model with varying
number of lattice points N , using the binary-exponentiation algorithm.

Strike N = 200 300 400 500 600 700
τ2 0.00004833 0.00002138 0.00001210 0.00000772 0.00000538 0.00000394

max τ2 0.00048326 0.00021382 0.00012097 0.00007718 0.00005378 0.00003942
min LΩ(x, x) -2069.27 -4676.73 -8266.57 -12956.53 -18595.31 -25367.81

time(s) 25 55 140 312 550 960
20 26.03813 26.03770 26.03119 26.03078 26.02881 26.02886
40 8.59357 8.60463 8.59732 8.60015 8.60033 8.60105

1m 60 1.99321 2.01762 2.00965 2.01502 2.01793 2.01957
80 0.55297 0.57173 0.56670 0.56968 0.57157 0.57284
100 0.17291 0.18228 0.17935 0.18087 0.18186 0.18252
20 25.25277 25.25603 25.25139 25.25160 25.25085 25.25107
40 8.37763 8.39744 8.39240 8.39530 8.39666 8.39780

2m 60 2.09861 2.12328 2.11918 2.12386 2.12707 2.12845
80 0.62260 0.64102 0.63805 0.64077 0.64286 0.64396
100 0.21131 0.22113 0.21891 0.22043 0.22155 0.22219
20 25.25698 25.25886 25.25671 25.25693 25.25660 25.25675
40 8.46933 8.47910 8.47980 8.48233 8.48409 8.48486

3m 60 2.16885 2.18695 2.18583 2.19043 2.19368 2.19488
80 0.65821 0.67446 0.67252 0.67533 0.67742 0.67858
100 0.22955 0.23866 0.23683 0.23843 0.23957 0.24026
20 25.50501 25.50524 25.50512 25.50515 25.50514 25.50515
40 8.77002 8.78098 8.78236 8.78406 8.78590 8.78666

6m 60 2.29306 2.31161 2.31146 2.31540 2.31875 2.31994
80 0.70655 0.72314 0.72189 0.72447 0.72667 0.72789
100 0.25102 0.26050 0.25894 0.26048 0.26171 0.26245
20 26.76664 26.76669 26.76671 26.76671 26.76672 26.76672
40 9.94342 9.95151 9.95375 9.95459 9.95714 9.95758

1y 60 2.73935 2.75705 2.75735 2.76118 2.76518 2.76605
80 0.86273 0.88070 0.87961 0.88252 0.88505 0.88624
100 0.31452 0.32526 0.32365 0.32548 0.32692 0.32771
20 27.27492 27.27495 27.27496 27.27496 27.27497 27.27497
40 10.87110 10.87616 10.87773 10.87977 10.88132 10.88152

2y 60 3.15961 3.17480 3.17452 3.17947 3.18312 3.18418
80 1.01642 1.03463 1.03335 1.03674 1.03953 1.04085
100 0.37905 0.39048 0.38871 0.39084 0.39255 0.39344
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Table 10

Prices of European Call option on spot for the Geman-Roncoroni model using the
regularization method and Monte Carlo simulation.

maturity Strike binary- MC MC number of
exponentiation time steps

N = 700 3 million 1 million for MC
τ2 = 0.00000394 runs stderr runs stderr

20 26.02886 26.04722 0.13417 26.04811 0.23105
40 8.60105 8.62039 0.09921 8.62357 0.17056

1m 60 2.01957 2.01976 0.03531 2.03141 0.06018 500
80 0.57284 0.57628 0.01136 0.58606 0.01910
100 0.18252 0.18301 0.00368 0.18730 0.00611
20 25.25107 25.29484 0.14781 25.31287 0.25715
40 8.39780 8.43917 0.10625 8.46312 0.18486

2m 60 2.12845 2.14900 0.03995 2.16031 0.06968 1000
80 0.64396 0.65269 0.01405 0.65717 0.02457
100 0.22219 0.22625 0.00512 0.22734 0.00899
20 25.25675 25.28812 0.15083 25.29397 0.26033
40 8.48486 8.51468 0.10904 8.51871 0.18794

3m 60 2.19488 2.20630 0.04198 2.21403 0.07197 1500
80 0.67858 0.68213 0.01523 0.68825 0.02593
100 0.24026 0.24193 0.00575 0.24505 0.00967
20 25.50515 25.52919 0.16148 25.53177 0.26194
40 8.78666 8.79671 0.11521 8.80657 0.19286

6m 60 2.31994 2.32005 0.04345 2.32759 0.07586 3000
80 0.72789 0.72832 0.01688 0.73020 0.02785
100 0.26245 0.26462 0.00694 0.26968 0.01060
20 26.76672 26.80746 0.17119 26.82140 0.27284
40 9.95758 9.99812 0.12130 10.00884 0.21274

1y 60 2.76605 2.78785 0.05738 2.79466 0.08991 6000
80 0.88624 0.89090 0.01982 0.89603 0.03438
100 0.32771 0.32894 0.00843 0.33113 0.01364
20 27.27497 27.29581 0.18660 27.30452 0.28090
40 10.88152 10.89948 0.13638 10.90463 0.24058

2y 60 3.18418 3.19141 0.06644 3.19403 0.10440 12000
80 1.04085 1.04822 0.02338 1.05077 0.03969
100 0.39344 0.39447 0.00960 0.39660 0.01581
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Table 11

Regularization of the Markov Generator

This table presents the extent to which the four criteria described in the text are violated by the origi-
nal transition probability matrix and the regularized matrix. Criterion 1 measures the conservation of
probability,

∑
y p(x, t; y, T ) = 1. Criterion 2 measures whether the entries of the transition probability

matrix satisfy 0 ≥ p(x, t; y, T ) ≥ 1. Criterion 3 measures whether the entries in the transition proba-
bility matrix are real numbers. Criterion 4 measures whether the Chapman-Kolmogorov conditions are
satisfied. Time to maturity (T − t) = 1, spot price = $40/MWh, machine precision 10−9. The number
of discretization levels for the electricity price is 700.

Criteria original matrix by
matrix binary-exponentiation

1 0.999986 1
# violations 85 0

2 maximum absolute error 0.01 0
average absolute error 0.00085 0

# violations 199 0
3 maximum absolute error 0.05 0

average absolute error 0.006 0
4 violated satisfied

D. Bermudan Options: Optimal Exercise Boundary

A significant advantage of approximating the stochastic process with a Markov chain is the ease of

pricing options with more than one possible exercise dates, as well as determining the optimal exercise

boundary. In the case of options on electricity spot prices this boundary is not trivial, due to both the

mean-reversion of the diffusion part of the process and to the reversal of jumps around a threshold.

In Figure 2 we demonstrate the optimal exercise boundary for two options with 1 month maturity.

The first option is written on the on-peak average daily electricity price, which can be exercised once,

with possible exercise dates any weekday during the month (notice of exercise is delivered on the day

previous to exercise, i.e. for delivery on Tuesday, one needs to provide notice on Monday). The second

option is written on the same underlying but assume that it can be exercised everyday in the month

(assuming there are price fluctuations everyday).

One interesting feature uncovered by the numerical results is the non-monotonicity of the exercise

boundary for the weekday-exercise-only option. From Figure 2, it is clear that in the early days of

the month the option is exercised at lower prices on Thursday compared to the preceding Wednesday

or the following Sunday. The intuition for this behavior follows if one considers mean-reversion in

electricity prices as a state-dependent “dividend”: on every possible exercise day, other than Thursday,
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the “dividend” is calculated until the next possible exercise day, which is one day ahead. On Thursdays,

the “dividend” is larger, since it is calculated over 3 days; i.e., until Sunday, the next possible exercise

day. Since calls on assets that pay dividends are exercised at lower prices when the dividend increases,

the fact that on-peak prices only apply to delivery during weekdays leads to a non-monotonous exercise

boundary.

4. Conclusions

We have described a fast and accurate numerical method for pricing electricity options in a model

with mean-reverting diffusion and with jumps whose direction depends on the price level. The method

constructs an approximating Markov Chain for the stochastic process, discretizing the state-space, and

allowing for arbitrary timesteps. We calibrated the model using futures prices and used the method

to compute the price and hedge-ratios of European options, as well as determine the optimal exercise

strategy for Bermudan options.
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Figure 2. Exercise Boundaries for the weekday-exercise-only and everyday-exercise Bermudan call
option on spot.
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Figure 3. probability density function between 1 month to 2 years by applying the binary-
exponentiation algorithm.

Figure 4. Delta profiles of European call options on spot price with maturities between 15 days and
6 months, spot price equals 40.
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Figure 5. Gamma profiles of European call options on spot price with maturities between 15 days and
6 months, spot price equals 40.
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