
International Journal of Security and Networks.

Strong Password-Based Authentication in TLS
using the Three-Party Group Diffie-Hellman Protocol

Michel Abdalla1, Emmanuel Bresson2, Olivier Chevassut3, Bodo Möller4, and David Pointcheval1

1 Département d’Informatique, École normale supérieure, Paris, France
2 Cryptology department, CELAR Technology Center, Bruz Cedex, France

3 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
4 Horst Görtz Institute for IT Security, Lehrstuhl für Kommunikationssicherheit,

Ruhr-Universität Bochum, Bochum, Germany

Abstract. The Internet has evolved into a very hostile ecosystem where “phishing” attacks are com-
mon practice. This paper shows that the three-party group Diffie-Hellman key exchange can help protect
against these attacks. We have developed password-based ciphersuites for the Transport Layer Security
(TLS) protocol that are not only provably secure but also believed to be free from patent and licensing
restrictions based on an analysis of relevant patents in the area.

Keywords: Password Authentication, Group Diffie-Hellman Key Exchange, TLS.

1 Introduction

An increasing number of distributed systems on the Internet are using open source software. For ex-
ample, widely fielded open source software products within their respective categories are the Linux
operating system, the Apache web server, the Mozilla Firefox web browser, the OpenOffice.org of-
fice suite, the OpenSSL toolkit for secure communication over the Internet, and finally the Globus
toolkit1 for building grid systems and applications over the Internet. Open source software is based
on the recognition that when programmers can read, redistribute, and modify the source code for a
piece of software, the software evolves. People improve it, people adapt it, people fix bugs. And this
can happen at a speed that, if one is used to the slow pace of conventional software development,
seems astonishing.2 This process not only produces better software but also frees users from pay-
ing royalties for running the software, for modifying and maintaining it to their liking, and even
re-distributing it. At the same time the Internet has grown into an extremely hostile ecosystem.

For various open-source based Internet applications, it is highly desirable to have a cryptographic
technology that allows users to securely identify themselves using short (memorable) password.
The obvious approach is to use the OpenSSL implementation of the TLS protocol’s unilateral-
authentication mode [27] and add a straightforward password check: the server sends its X.509
certificate for explicit verification, then the user sends his password through the TLS secure channel.
This is what happens in most of today’s “secure” WWW applications [25]. This approach, however,
provides a false sense of security because the privacy of the user’s password is lost if the server is
actually not authentic (“phishing” attacks), and, hence, anything protected through the password
could get compromised. The password can be exposed when a user accepts a bogus server certificate,
which usually takes just a single click of the mouse.

This is not all—security is in fact totally dependent on the X.509 public-key infrastructure used
for server authentication: any party with a certificate apparently issued to the legitimate server can
potentially obtain the password from the client. A single trusted Certification Authority (CA) that
is malicious or careless could do lot of damage! Sending a one-time password in place of the fixed
1 The Globus Alliance, http://www.globus.org/
2 Open Source Initiative, http://www.opensource.org/

c© Inderscience, 2006.

2

password would not help either since the bogus server could then use this password to impersonate
the user.

The secure way for the user to identify himself is to tie his authentication to the TLS secure
channel using some variant of the strong Password-based Authenticated Key Exchange (PAKE)
primitive [1, 4, 17, 21, 24, 26, 29–31, 33–35, 37, 39, 43–45]. This primitive come in various flavors that
have patent claims on them [9, 14, 32, 46] and/or are not supported by formal security arguments [35,
43–45]. The very first PAKE patent is due to Bellovin and Merritt, and is currently owned by
Lucent Technologies. The Bellovin and Merritte patent entitled “Cryptographic Protocol for Secure
Communications” was filed with the U.S. Patent Office in 1991 and granted in 1993 [9], and with
the European Patent Office in 1992 and granted in 2002 [14]. It was also filed in various other
countries such as Australia, Japan, and Canada [10, 12, 13]. This patent is a major roadblock to
the adoption of a PAKE primitive by open source software.

A free software implementation of a patented PAKE primitive does not necessarily help either.
The Secure Remote Protocol (SRP) from Stanford University [45, 46], used either as a standalone
library3 or directly implemented in open source products4, may be considered problematic in that
agreeing to the terms and conditions of the License Agreement Form’s Indemnity clause is man-
dated5:

5. Indemnity
5.1 LICENSEE agrees to indemnify, hold harmless, and defend STANFORD, UCSF-Stanford Health Care

and Stanford Hospitals and Clinics and their respective trustees, officers, employees, students, and
agents against any and all claims for death, illness, personal injury, property damage, and improper
business practices arising out of the use or other disposition of Inventions(s), Licensed Patent(s), or
Software by LICENSEE.

A patent is an obstacle to the implementation of a PAKE primitive in open source software unless
a patent grant permits it. When SUN Microsystems Laboratories, for example, contributed elliptic-
curve technology to OpenSSL, SUN also added a “patent peace” license provision to clarify its
license grant [40] (patent issues are not explicitly addressed by the OpenSSL license). However, we
do not have to passively wait many years for PAKE patents [9, 14, 32, 46] to expire6 when “phishing”
attacks over the Internet are developing at a furious rate. In the present paper we argue that it is
indeed possible to develop PAKE-ciphersuites in TLS that achieve strong security notions and were
written in attempt to be free from patent and licensing restrictions.

Examining the first claim of Bellovin and Merritt European Patent entitled “A Cryptographic
Protocol for Secure Communications” [14] reveals that this patent describes the steps for generating
a cryptographic key between two parties A and B :

A method for communicating among plural parties at least a party A and a party B, each having access to
an authentication signal [. . .]:

a) A forms signal X based on a first signal RA and transmits signal X to B;
b) B receives signal X from A, and in response forms response signal Q based on a second signal RB ,

and transmits signal Q to A;
c) A receives signal Q from B;
d) B generates the cryptographic key based on RB and X; and
e) A generates the cryptographic key based on RA and Q

Claims 2 through 7 make this more specific, for example by using Diffie-Hellman public values
for certain signals.
3 Source code for the SRP protocol, http://srp.stanford.edu/download.html
4 Patches enabling SRP ciphersuites in TLS and SSH, http://srp.stanford.edu/links.html
5 The Licence Agreement Form for SRP, http://otl.stanford.edu/pdf/97006.pdf
6 The Bellovin and Merritt U.S. patent, for example has a duration of seventeen years from the date of issuance

which was 1993, thus it would expire August 31, 2010. U.S. patent law has since changed to have a patent term of
twenty years from the date of filing.

3

Contributions The present paper takes into account the aforementioned constraints to develop
provably secure PAKE-ciphersuites in TLS that are believed to not infringe the claims of Bellovin
and Merritt European patent [14]. This Bellovin and Merritt patent only involves two parties Alice
and Bob. We have specified a protocol for TLS authentication that uses a 3-party (dynamic) group
Diffie-Hellman key exchange [18–20] with the third party being the helper. The helper party could
be implemented by using an additional CPU or special-purpose cryptographic hardware such as
an accelerator card, connected to the server. (The ciphersuites could as well have been defined
the other way around with a user-side helper; however, it would cost an additional exponentiation
which may not be well suited to low-powered devices.)

In this paper, we present a high-level description of these ciphersuites, and a security analysis
in the tradition of provable security. By analogy to Abdalla et al.’s simple open key exchange
ciphersuites [1], we named ours the 3-party group Simple Open Key Exchange (TLS-3SOKE) since
they run between two players (client and server) where the TLS server consists of two parties.
Using 3SOKE for TLS combines the following three advantages over previous PAKE-ciphersuites in
TLS [43, 44]:

1. TLS-3SOKE achieves strong security notions in the random oracle model under the compu-
tational Diffie-Hellman assumption in the formal model of Abdalla et al. [3]. The use of the
random oracles, however, is very limited since we only model a hash function as a random ora-
cle during the extraction of the pre-master secret from the Diffe-Hellman result. The password
is used in the key derivation process so that the forward-security of TLS-3SOKE can be proved
in concurrent executions and without having to restrict the size of the dictionary.

2. TLS-3SOKE is computationally efficient since it can work in an appropriate subgroup of the
multiplicative group of a prime field without requiring a “safe prime” or even over elliptic
curves or in other groups. Thus, the computations for 3SOKE can use smaller exponents than
those required for [43, 44]. (The protocol described in [43] does not need safe primes, but it
does not solely work in the subgroup. Rather, it involves an exponentiation to map arbitrary
elements of Z∗

p to subgroup elements: the smaller the subgroup, the larger the exponent for this
exponentiation. 3SOKE, in contrast, uses only the subgroup.) The 3-party group ciphersuites
cost only one more exponentiation on the server side than Abdalla et al.’s 2-party simple open
key exchange ciphersuites [1] and the Bellovin and al.’s EKE protocol.

3. TLS-3SOKE does not require conveying the user identity in the very first TLS handshake
messages (known as ClientHello). This feature (also present in [1, 43], but not in [44]) provides
additional protocol flexibility: the user does not have to specify a user identity and password
before a SOKE ciphersuite has actually been negotiated, so these values can be chosen depending
on the server identity transmitted by the server.

The 3SOKE ciphersuites for TLS (TLS-3SOKE) are essentially unauthenticated (dynamic) 3-
party group Diffie-Hellman ciphersuites where the client’s Diffie-Hellman ephemeral public value is
encrypted under the password shared with the server; the encryption primitive is a mask generation
function computed as the product of the message with a constant value raised to the power of the
password. Full TLS handshakes negotiating a 3SOKE ciphersuite require modifications to the usual
TLS handshake message flow to achieve security: the usual Finished messages of the TLS protocol,
which are sent under the newly negotiated cryptographic parameters (after ChangeCipherSpec),
are replaced by Authenticator messages, which are similar in meaning to the Finished messages,
but must be sent under the old cryptographic parameters (namely, before ChangeCipherSpec)—
that is, typically (in the case of an initial handshake) unencrypted. Also, while usually the client
sends its Finished message first, here the server has to send its Authenticator message first. The
client can only send its Authenticator message after having verified the server’s Authenticator

4

message (to avoid dictionary attacks since otherwise a rogue server could try a brute force attack
on the client’s password [43]).

Organization of the Paper The paper is organized as follows. In Section 2 we present the
mechanics of the 3SOKE ciphersuite for TLS (TLS-3SOKE). In Section 3, we analyze TLS-3SOKE
in the framework of provable security to show that the ciphersuite indeed achieves strong notions
of security. This treatment involves specifying the formal model, defining the appropriate security
notions and algorithmic assumptions, and finally exhibiting a reduction from TLS-3SOKE to the
computational Diffie-Hellman problem. In Section 4, we conclude the paper by discussing the use
of TLS-3SOKE in the United States.

Related Work on Provable Security The first formal model of security to analyze Password-
based Authenticated Key Exchange (PAKE) primitives is due to Bellare et al. [6] and was over the
years refined to lead to the strong model of Abdalla et al. [3]. In this model interactions between
the client and server, and the adversary occurs only via oracle queries. These queries indeed model
the capabilities of the adversary in real attacks (see literature for more details [3, 6, 22].) Schemes
proven secure in the model of Abdalla et al. are also secure in the model of Bellare et al. [6];
however, the reverse is not necessarily true due to the non tightness of the security reduction.

A PAKE is a key exchange [28, 42] with one [36] or two flows [15, 16] encrypted using the
password as a common symmetric key. Bellare et al. [6, 8], Boyko et al. [17], and MacKenzie [17, 38]
proposed and proved secure various PAKE structures. These structures were later proved forward-
secure under various computational assumptions [2, 21, 22, 34]. Instantiations for the encryption
primitive were either a password-keyed symmetric cipher or a mask generation function computed
as the product of the message with the hash of a password, until Abdalla et al. proposed the
Simple PAKE (SPAKE)-structure with a new mask generation function computed as the product
of the message with a constant value raised to the power of the password [1, 4]. Whereas earlier
mask generation functions need a full-domain hash function into the group, SPAKE provides high
flexibility in the choice of groups (e.g., this makes it easy to work with elliptic curves).

Security researchers have also tried to use their PAKE structures for TLS authentication [1,
43, 44]. These cryptographic algorithms, however, are not supported by formal security arguments,
and/or have patent claims of various breadth in certain countries [9–14, 46].

2 TLS-3SOKE Ciphersuites

Figure 1 illustrates the full TLS handshake for the case of our TLS ciphersuites. Since the abbrevi-
ated handshake for resuming a previously negotiated session is performed exactly as in other TLS
ciphersuites, we only discuss the details of the full handshake.

2.1 The Handshake

Choose Ciphersuite The client and the server negotiate the ciphersuite to use and exchange
nonces.

a) The client sends its list of supported ciphersuites, including our TLS ciphersuites, in the TLS
initial ClientHello message. It includes a nonce Nc. (In the TLS specification, this nonce is
known as ClientHello.random.)

b) The server specifies the ciphersuite to be used, selected from the client’s list, by using a TLS
ServerHello message. It also includes a nonce Ns (known as ServerHello.random).

5

Note. Each 3SOKE ciphersuite specifies a symmetric encryption algorithm (AES-CBC with
either 128-bit or 256-bit keys) to use once the handshake has completed, similar to other cipher-
suites. The protocol specification also provides for an integrity algorithm (HMAC-SHA1 with the
current versions of TLS). Also, appropriate prime-order groups are standardized in the ciphersuite
specification; they are equipped with two generators g and U that have been generated verifi-
ably pseudo-randomly to provide assurance that no-one knows logg U (see [5]). For this verifiably
pseudo-random parameter generation, a simple variant of the hash-based procedure intended for
standardization for the Digital Signature Standard [41, Appendix A.1] is used: The parameters are
derived from a seed bitstring, which is also provided by the specification. (TLS-3SOKE will always
use these standardized groups. The server cannot specify an alternative group since this would
impose a noticeable additional burden on the client for verifying such parameters on the fly.)

Compute Diffie-Hellman Secret

a) First, the helper generates the random private exponent x1 and computes the public key Y1 =
gx1 . The helper hands the public key over to the server.

b) The server generates the random private exponent x2 and computes the public key Y2 =
{gx1 , gx2 , gx1x2}. The public key is sent to the client in the form of a ServerKeyExchange
message along with the server’s identity.

c) If the server holds a private key and certificate suitable for signing, then in specific ciphersuites
the server additionally sends this certificate to the client in a Certificate message. In this
case, the ServerKeyExchange message additionally contains a signature on the ephemeral
Diffie-Hellman public key made with the server’s long-term key—similar to non-anonymous
standard Diffie-Hellman ciphersuites in TLS (cf. [27, Section 7.4]).

d) The server then sends an empty message in the form of a ServerHelloDone to indicate that
the “hello” phase is completed.

e) If the server has sent a Certificate message, the client verifies the signature.
f) The client generates its random private exponent x3 and computes its public key Y3 = gx1x3 .

This is precisely the dynamic group Diffie-Hellman key exchange protocol7 [18, 19, 23] wherein
the third player calls the deletion algorithm to remove the helper from the 3-party group.
(Alternatively the client could have chosen not to remove the helper from the group but to
form the group consisting of the helper, the server, and the client. In this case, and as specified
in the patent application [23], the public key would be Y3 = {gx1x3 , gx2x3}.) Then the client
encrypts the public key (using a password) as the product of the key with the password-
based mask: Y ?

3 = Y3 × Upw . The client encapsulated its name and the encrypted value in the
ClientKeyExchange message which is sent out.

g) The two parties can now compute the common Diffie-Hellman secret Z = gx1x2x3 from the
values received in the messages ClientKeyExchange and ServerKeyExchange.

Note. In the protocol description, C and S are strings giving the client identity and server
identity, respectively (i.e., a user name and a server or “realm” name). The password for the user
denoted by C is a string pw . Observe that the client identity C and the password pw are not
used within the protocol before the server has chosen the ciphersuite and transmitted the server
identity S. This means that a user only needs to provide C and pw after seeing that a handshake
with S is going on. For example, HTTP servers might required password-based ciphersuites only
for specific subtrees of their URL space by requesting a TLS renegotiation if necessary, and the
server identity might depend on the specific URL.

7 For [23], no patent application was filed outside of the United States.

6

A detail not shown in the figure is that the server, with its ServerKeyExchange message, will
also send an index into the list of standardized groups for our ciphersuite (such as 0, 1, 2, . . . for
standardized 1024-bit, 1536-bit, 2048-bit, . . . prime moduli with appropriate subgroups). The client
should display the server’s choice of group to the client, and the user should provide his password
only if he agrees with the group.

Note that when the client receives Y2 from the server and when the server receives Y3
? from

the client, it is implicit that the respective recipient performs a group membership test: it is a fatal
TLS handshake failure if Y2 or Y3

? is not a group member.

Compute Pre-Master Secret and Authentication Key

a) The parties extract the randomness in the Diffie-Hellman result to form the pre-master secret
as: PreMasterSecret = Hash(C,S, pw , Y2‖Y3

?‖Z).
b) The pre-master secret is used as a means to derive the authentication key AuthKey

used by the parties to perform the mutual authentication; we define AuthKey =
PRF1(PreMasterSecret, Nc‖Ns). This key derivation is performed based on the standard
TLS pseudo-random function PRF (see [27, Section 5]). The key derivation function
PRF1(PreMasterSecret, z) used here is specific to 3SOKE ciphersuites; its value is obtained
as PRF(PreMasterSecret, “authentication key”, z).

Note. Here the randomness extractor function Hash(z1, z2, z3, z4) is defined as a function with
multiple inputs. The reason for this is that while we assume that group elements can be represented
as fixed-length strings, the same does not hold for the strings C, S, and pw . A function Hash1(z)
in a single input can be used to implement Hash by defining

Hash(z1, z2, z3, z4) = Hash1

(
SHA1(z1)‖SHA1(z2)‖SHA1(z3)‖z4

)
.

The function Hash1(z), in turn, can be instantiated by using

SHA1(constant〈0〉‖z) ‖ SHA1(constant〈1〉‖z) ‖

Other ways to instantiate Hash1 are discussed in [7].

Compute Authenticators

a) Both parties use AuthKey to produce the authenticators AuthC and AuthS . More precisely, the
authenticator is set as a MAC on “finished label ‖ hash of handshake”, in which finished label
is the string “client finished” or “server finished”, depending on which party is sending the
respective message, and where hash of handshake denotes the hash of the concatenation of
all the handshake messages sent so far in both directions exactly as would be used for the
Finished message in other TLS ciphersuites (i.e., the MD5 hash concatenated with the SHA-1
hash). The server sends its Authenticator message first.

b) The client first checks the server’s authenticator, and, if it is correct, sends its own
Authenticator, and then proceeds to the ChangeCipherSpec message.

c) The server subsequently checks the client’s authenticator, and, if correct, replies by sending a
ChangeCipherSpec message as well.

Note. Usual TLS ciphersuites send Finished messages for authentication after switching to
the newly negotiated key material (KeyBlock) in the TLS record layer (which event is indi-
cated by a ChangeCipherSpec message). This approach, however, would violate the security no-
tion that 3SOKE ciphersuites are designed to achieve. Instead, 3SOKE ciphersuites make use of

7

Authenticator messages; the client does not send its Authenticator and ChangeCipherSpec be-
fore it has verified the server’s Authenticator, and the server delays its ChangeCipherSpec until
it has verified the client’s Authenticator. Note that the Authenticator message does not undergo
any processing using the KeyBlock, since it precedes the ChangeCipherSpec; this is different from
the handshake in other TLS ciphersuites where Finished is sent in an TLS record processed under
key material KeyBlock (see [27, Section 7.4]).

Compute Master Secret and Key Material The material KeyBlock is the bit string assigned to
the Initialization Vectors (IVs), MAC secrets, and encryption keys which will protect the application
sensitive messages. KeyBlock, exactly as in other TLS ciphersuites, is obtained indirectly, in two
steps:

a) Both parties compute a common MasterSecret, using a function PRF2(PreMasterSecret, z) that
is defined as PRF(PreMasterSecret, “master secret”, z).

b) The MasterSecret is then used to obtain KeyBlock as a function PRF3(MasterSecret, z), which
is defined as PRF(MasterSecret, “key expansion”, z). This two-stage derivation process is used
by TLS session resumption: a new connection with new client and server nonces Nc and Ns

can continue to use a previously negotiated MasterSecret and derive a new KeyBlock.

Note. Another change from the standard TLS handshake message flow, besides having
Authenticator sent before ChangeCipherSpec, is that for 3SOKE the server and not the client
provides its authentication message first. This is necessary to protect clients against dictionary at-
tacks: if the client was to make the start, its Authenticator message could be used by a malicious
server that does not know pw to try out different passwords in an off-line attack, looking which
one results in the Authenticator message as observed.

2.2 The Nitty-Gritty Details

Password derivation Remember that the protocol should allow using one out of a set of different
groups (the client likely wants to see the group being used before typing his password). So for group
i, of order qi, the effective password pw may be defined in the form pw i = hash(i‖password) mod qi.

The password string password actually should be hashed before being used as an exponent pw .
If the protocol is changed again to use (C,S, pw) instead of just password to derive the exponent,
we obtain a security improvement in practice in that a client can use the same password (string)
with multiple servers and yet the respective secrets (effective passwords) will be different. (However,
every server could then run a dictionary attack to recover the common underlying password.)

Exponent derivation Since the password pw appears as an exponent in the computations for
TLS-3SOKE ciphersuites, some additional hash is needed to obtain this exponent from the password
string password . In the protocol description, we do not care about details of the hash and simply use
the hash result pw (in the exponent space) as the “effective password” instead: anyone knowing pw
is actually able to impersonate the client or the server, and the security proof shows that attacking
the protocol reduces to finding pw . In other words, at the protocol level, pw is the password needed
for authentication and password is just a way to remember it.

Using Upw as the effective password A possible variant of 3SOKE is as follows. From the
description in Section 2.1, it can be noticed that, if we modify the input to Hash to use Upw instead
of pw , the server does not really have to store pw , it can store just Upw instead. Here Upw becomes

8

the “effective password” because the client too only needs Upw in its computations (whereas the
physical user, of course, will still memorize and type the short password). Unfortunately, the security
proof for this new scheme cannot be reduced to the CDH problem, because knowledge of the
password pw used in the query to the random oracle Hash is needed to perform the reduction.
There are, however, ways to circumvent this problem. We describe the most natural ones here.

One way is to assume small (polynomial-sized) dictionaries such that pw can be extracted from
the value Upw using an exhaustive search algorithm. With pw in hand the proof can then be per-
formed as before. Such solution is, however, quite constraining from the computational point of
view (N exponentiations are needed). Also note that when restricting to polynomial-sized dictio-
naries, one must avoid Upw being known by the adversary, since otherwise a trivial off-line attack
can be mounted.

Another way to preserve provable security while using Upw in the Hash is to use a random
oracle G when computing pw from the password string password : that is, the effective password is
UG(password). In this latter case, one could make use of the calls to the random oracle G to obtain
the value pw in order to complete the proof. Briefly speaking, for a given value θ being used as
input to the random oracle Hash, we have to test for each π output by G whether θ = Uπ. Thus,
the impact on the reduction would be an increase in the total computational time by an additive
factor qG · τe, where qG denotes the total number of calls to the the random oracle G and τe denotes
the computational time for an exponentiation in G.

3 Provable Security Results

3.1 Model and Security Notions for 2-Party

Model A password-based authenticated key-exchange protocol P runs between a client C ∈ client
and a server S ∈ server. Both the client and the server can have several instances involved in
distinct, possibly concurrent executions of the protocol. (An instance i, often termed oracle, of a
client or a server is referred to as P i.) A client C holds a password pwC and a server S holds the
derived password pwS [C] for this client [6]. (Protocols wherein pwS [C] = pwC are called symmetric;
in general, pwS [C] may differ from pwC . The value pwC and pwS [C] are often termed the long-lived
keys of the client and the server respectively.) Each password pwC is drawn from the dictionary
Password of size N according to the uniform distribution and, therefore, is a low-entropy string.

AKE Security In order to define the privacy (semantic security) of the session key, often termed
authenticated key exchange (AKE) security, we consider a game wherein the protocol P is executed
in the presence of the adversary A. In this game Gameake(A,P), we draw a password pw from
Password, provide coin tosses to the adversary, and give the adversary access to the oracles via the
following three oracle queries:

– Execute(Ci, Sj): The output of this query consists of the messages exchanged during the honest
execution of the protocol. This models passive attacks.

– Send(P i,m): The output of this query is the message that the instance P i would generate upon
receipt of message m. A query Send(P i, “start”) initializes the key exchange protocol, and thus
the adversary receives the initial flow that the initiator would send to the receiver. This models
active attacks.

– Test(P i): This query tries to capture the adversary’s ability to distinguish real keys from random
ones. In order to answer it, we need a private random coin b (unique for the whole game) and
then forward to the adversary either the session key sk held by P i if b = 1 or a random key of
the same size if b = 0. We emphasize that the adversary is allowed to ask several Test-queries.

9

The goal of the adversary in Gameake(A,P) is to guess the hidden bit b involved in the Test-
queries, by outputting a guess b′. Let Succ denote the event in which the adversary is successful
and correctly guesses the value of b. The AKE advantage of an adversary A is then defined as
Advake

P (A) = 2 Pr[Succ] − 1. The protocol P is said to be (t, ε)-AKE-secure if A’s advantage is
smaller than ε for any adversary A running with time t. Note that the advantage of an adversary
that simply guesses the bit b is 0 in the above definition due to the rescaling of the probabilities.

MA Security The notion of mutual authentication (MA) is also often of protocol. A protocol P
is said to achieve MA if each party can be ensured that it has established a session key with the
intended players. In the context of key-exchange protocols, authentication between the players is
often achieved via authenticators. Intuitively, an authenticator is a value that can only be computed
(except with small probability) with the knowledge of a secret. The idea is that if a party has
sent data in the clear, it must subsequently provide an authenticator relative to these data. We
denote by SuccauthS (A) the success probability of an adversary trying to impersonate the server
(i.e., the probability that a client will finish the key exchange protocol accepting the adversary as
an authenticated server).

FS Security Another security notion to look at is forward-secrecy (FS). A protocol P is said to
achieve forward-secrecy if the security of a session key between two participants is preserved even
if one of the two participants later is compromised. In order to consider forward-secrecy, one has to
account for a new type of query, the Corrupt-query, which models the compromise of a participant
by the adversary:

– Corrupt(P): This query returns to the adversary the long-lived password pwP for participant
P . As in [6], we assume the weak corruption model in which the internal states of all instances
of that user are not returned to the adversary.

Let Succ denote the event in which the adversary successfully guesses the hidden bit b used
by Test oracle. The FS-AKE advantage of an adversary A is then defined as Advake−fs

P (A) =
2 Pr[Succ]−1. (Defining Advake−fs

P (A) here means relaxing a restriction in Gameake(A,P): the real
session keys are used to answer to the Test-queries after a Corrupt-query.) The protocol P is said to
be (t, ε)-FS-AKE-secure if advantage Advake−fs

P (A) is smaller than ε for any adversary A running
with time t.

3.2 Assumptions

CDHg,G A (t, ε)-CDHg,G attacker, in a finite cyclic group G of prime order q with g as a generator,
is a probabilistic machine ∆ running in time t such that its success probability Succcdh

g,G(∆), given
random elements gx and gy to output gxy, is greater than ε:

Succcdh
g,G(∆) = Pr[∆(gx, gy) = gxy] ≥ ε.

We denote by Succcdh
g,G(t) the maximal success probability over every adversaries running within

time t. The CDH-Assumption states that Succcdh
g,G(t) ≤ ε for any t/ε not too large.

PRFs A pseudo-random function family (PRF) is a family of functions F = (fk)k in Fm,n, the set of
the functions from {0, 1}m into {0, 1}n, indexed by a key k ∈ {0, 1}`, so that for a randomly chosen
`-bit key k, no adversary can distinguish the function fk from a truly random function in Fm,n: we

10

define the advantage Advprf
F (D, q) = |Prk[1← Dfk]−Prf [1← Df]|, where D is a distinguisher, with

an oracle access to either a random instance fk in the given family F or a truly random function f
in Fm,n, and must distinguish the two cases with at most q queries to the function oracle. We say
that such a family is a (q, ε, t)-PRF if for any distinguisher asking at most q queries to the oracle,
its advantage is less than ε, after a running time bounded by t.

MAC A Message Authentication Code, say MAC = (MAC.Sign,MAC.Verify), is made of the two
following algorithms, with a secret key sk uniformly distributed in {0, 1}`M :

– The MAC generation algorithm MAC.Sign. Given a message m and secret key sk ∈ {0, 1}`M ,
MAC.Sign produces an authenticator µ. This algorithm might be probabilistic.

– The MAC verification algorithm MAC.Verify. Given an authenticator µ, a message m and a
secret key sk, MAC.Verify tests whether µ has been produced using MAC.Sign on inputs m and
sk.

The classical security level for MAC is to prevent existential forgeries, even for an adversary which
has access to the generation and the verification oracles. We denote by Succmac(t, q) the maximum
success probability of a forger running within time t and making at most q queries to the MAC.Sign
oracle.

3.3 Security Results

Theorem 1 (FS-AKE Security). Let us consider protocol from Section 2.1 over a group of
prime order q, where Password is a dictionary of size N , equipped with the uniform distribution.
Let A be an adversary running within a time bound t that makes less than qactive active sessions
with the parties and qpassive passive eavesdropping queries, and asks qhash hash queries. Then we
have, first SuccauthS

3SOKE(A) upper bounded by

2qactive

N
+ (4qsessionqhash + qsession + 1)qhash × Succcdh(t + 2τe)

+2
qhash

2

2`M
+ 2qhash

2 × Succmac(t, 0) + 2qsession × Advprf(t, 2)

+
qactive

2

2q
+

qpassive
2

2q3
+

qhash
2

2`+1

and then Advake−fs
3SOKE(A) upper-bounded by

6qactive

N
+ 2(3qsessionqhash + qsession + 1)qhash × Succcdh(t + 2τe)

+6
qhash

2

2`M
+ 6qhash

2 × Succmac(t, 0) + 8qsession × Advprf(t, 2)

+
qactive

2

q
+

qpassive
2

q3
+

qhash
2

2`

where τe denotes the computational time for an exponentiation in G.

Proof. We are interested in the event S, which occurs if the adversary correctly guesses the bit b
involved in the Test-queries. We furthermore consider server (unilateral) authentication: event A is
set to true if a client instance accepts, without any server partner. Let us remember that in this
attack game, the adversary is allowed to use Corrupt-queries.

11

Game G0: This is the real protocol, in the random-oracle model:

Advake−fs
3SOKE(A) = 2 Pr[S0]− 1 AdvauthS

3SOKE(A) = Pr[A0].

Let us furthermore define the event Sw/tA = S ∧ ¬A, which means that the adversary wins the
Real-Or-Random game without breaking authentication.
Game G1: In this game, we simulate the hash oracles (Hash, but also an additional hash function
Hash′ : ({0, 1}?)3 → {0, 1}` that will appear in the Game G3) as usual by maintaining hash lists
ΛHash and ΛHash′ with all the queries-answers asked to the hash functions. We also simulate all
the instances, as the real players would do, for the Send-queries and for the Execute, Test and
Corrupt-queries.
Game G2: We cancel games in which some collisions appear on the transcripts (C,S, Y2, Y

?
3), and

on the master secrets. Regarding the transcripts, the distance follows from the birthday paradox
since at least one element of each transcript is generated by an honest participant (at least one of
them in each of the qactive active attacks, and all of them in the qpassive passive attacks). Likewise, in
the case of the master keys, a similar bound applies since Hash is assumed to behave like a random
oracle (which outputs `-bit bit-strings):

Pr[Coll2] ≤
qactive

2

2q
+

qpassive
2

2q3
+

qhash
2

2`+1
.

Game G3: In this game, we show that the success probability of the adversary is negligible in
passive attacks via Execute-queries. To do so, we modify the way in which we compute the pre-
master secret PreMasterSecret in passive sessions that take place before or after a Corrupt-query.
More precisely, whenever the adversary asks a Execute-query, we compute the pre-master secret
PreMasterSecret as Hash′(C,S, Y2‖Y ?

3) using the private oracle Hash′ instead of the oracle Hash.
As a result, it holds that any value of PreMasterSecret computed during a passive session becomes
completely independent of Hash and Z, which are no longer needed in these sessions. Please note
that the oracle Hash is still being used in active sessions.

The games G3 and G2 are indistinguishable unless the adversary A queries the hash func-
tion Hash on (C,S, pw, Y2‖Y ?

3 ‖Z), for such a passive transcript: this (bad) event is denoted
AskH-Passive-Exe. In order to upper-bound the probability of this event, we consider an auxil-
iary game G3’, using a CDHg,G-instance (U, V) as input, in which the simulation of the play-
ers changes—but the distributions remain perfectly identical (therefore, Pr[AskH-Passive-Exe3] =
Pr[AskH-Passive-Exe′3]): Since we do not need to compute Z for the simulation of Execute-queries,
we can simulate Y2 as {gx?

, V, V x?} and Y ?
3 as gy?

, for known values of x? and y?. This implicitly
sets x2 to be logg V , and U is still used for the mask. If event AskH-Passive-Exe occurs, the value
Z = CDHg,G(gy?

/Upw , V) can be extracted from ΛHash, by simply choosing at random among the
qhash elements. Since this value equals V y?

/CDHg,G(U, V)pw , the values y? and pw are known, and
the computation of CDHg,G(U, V) is assumed to be difficult, we get the following upper-bound:

Pr[AskH-Passive-Exe3] ≤ qhash × Succcdh
g,G(t + 2τe).

Game G4: In this game, we consider passive attacks via Send-queries, in which the adversary
simply forwards the messages it receives from the oracle instances. More precisely, we replace Hash
by Hash′ when computing the value of PreMasterSecret whenever the values (C,S, Y2, Y

?
3) were

generated by oracle instances. Note that we can safely do so due to the absence of collisions in the
transcript. Like in G3, any value PreMasterSecret computed during such passive sessions becomes
completely independent of Hash and Z.

12

As in previous games, we can upper-bound the difference in the success probabilities of A
in games G4 and G3 by upper-bounding the probability that A queries the hash function Hash
on (C,S, pw, Y2‖Y ?

3 ‖Z), for such a passive transcript; we call this (bad) event AskH-Passive-Send.
Toward this goal, we consider an auxiliary game G4’, in which the simulation of the players changes
slightly without affecting the view of the adversary. In this simulation, we are given a CDHg,G-
instance (U, V), and choose at random one of the Send(S, “start”)-queries being asked to S and we
reply with Y2 = {gx?

, V, V x?} for a known, random x?. On the client side, we change the simulation
whenever it receives as input a message that was generated by a server instance, by computing
Y ?

3 as gy?
for a known, random y?. If the event AskH-Passive-Send occurs and our guess for the

passive session is correct (the adversary simply forwarded the messages), then we can extract
Z = CDHg,G(gy?

/Upw , V) = V y?
/CDHg,G(U, V)pw from ΛHash. Similarly to above, we get:

Pr[AskH-Passive-Send4] ≤ qsessionqhash × Succcdh
g,G(t + 2τe).

Game G5: In this game, we make one of the most significant modifications. We replace the oracle
Hash by the private oracle Hash′ whenever the input to this query contains an element that was
not generated by an oracle instance and no Corrupt-query has occurred. More precisely, if either the
value Y2 = {Y (1)

2 , Y
(2)
2 , Y

(3)
2 } or Y ?

3 in the Hash-query (C,S, pw, Y2‖Y ?
3 ‖Z) was generated by the

adversary, with Z = CDHg,G(Y ?
3 /Upw , Y

(2)
2), then we reply to this query using Hash′(C,S, Y2‖Y ?

3)
as long as no Corrupt-query has occurred. Note that we can check the value Z since we know
pw and at least x2 or x3. Clearly, the games G5 and G4 are indistinguishable as long as A does
not query the hash function Hash on an input (C,S, pw, Y2‖Y ?

3 ‖Z), for some execution transcript
(C,S, Y2‖Y ?

3). We denote this (bad) event by AskHbC-Active. Thus,

|Pr[A5]− Pr[A4] | ≤ Pr[AskHbC-Active5]
|Pr[Sw/tA5]− Pr[Sw/tA4] | ≤ Pr[AskHbC-Active5].

Game G6: In this game, we replace the pseudo-random functions by truly random functions for all
the sessions in which the value of PreMasterSecret has been derived with the private oracle Hash′.
Since the value PreMasterSecret that is being used as the secret key for the pseudo-random function
is independently and uniformly distributed, the distance can be proven by a classical sequence of
hybrid games, where the counter is on the pre-master secrets. That is, each time a new pre-master
secret is set, we increment the counter. Then, Pr[Sw/tA6] = 1

2 .

|Pr[A6]− Pr[A5] | ≤ qsession × Advprf(t, 1)
|Pr[Sw/tA6]− Pr[Sw/tA5] | ≤ qsession × Advprf(t, 2).

Game G7: In this game, we exclude collisions on MAC keys for all the sessions in which the
pre-master secret PreMasterSecret has been derived with the private oracle Hash′(which event is
denoted CollPRF). For these sessions, the MAC keys of length `M are independently and uniformly
distributed (because the PRF were replaced by random functions), so the probabilities differ from
those in the previous game by at most:

Pr[CollPRF7] ≤ qhash
2/2`M .

Game G8: In this game, we exclude games wherein for some transcript (C,S, Y2‖Y ?
3), there are

two passwords pw0 and pw1 such that the corresponding pre-master secrets lead to a collision of
the MAC-values (which event is denoted CollM).

Since we know that MAC-keys are truly random and different from each other at this point,
the event CollM means that a MAC with a random key (one of the qhash possible values) may be

13

a valid forgery for another random key. Thus, by randomly choosing the two indices for the hash
queries, we get the following upper-bound:

Pr[CollM8] ≤ qhash
2 × Succmac(t, 0).

Before proceeding with the rest of the analysis, we split the event AskHbC-Active into two
disjoint sub-cases depending on whether the adversary impersonates the client (and thus interacts
with the server) or the server (and thus interacts with the client). We denote these events AskHbCwS
and AskHbCwC, respectively. Also we denote by qfake−server (respectively, qfake−client) the number of
sessions in which the adversary impersonates the server (resp., the client). Obviously, one has
qfake−server + qfake−client ≤ qactive.
Game G9: In this game, we focus on AskHbCwC only. We now reject all the authenticators sent by
the adversary for all the sessions in which the pre-master secret PreMasterSecret has been derived
with the private oracle Hash′: Pr[A9] = 0. In order to evaluate the distance between the games G9

and G8, we consider the probability of the event AskHbCwC, in which the adversary succeeds in
faking the server by sending a valid authenticator to the client before a Corrupt-query.

To evaluate the probability of event AskHbCwC, we note that, up to the moment in which a
Corrupt-query occurs, no information on the password pw of a user is revealed to the adversary,
despite the fact that the password is still used in the computation of Y ?

3 . To see that, note that,
for any given transcript (C,S, Y2‖Y ?

3) in which Y ?
3 was created by an oracle instance and for each

password pw , there exists a value x ∈ Zq, such that Y ?
3 = gxUpw , which is never revealed to the

adversary. Moreover, since we have removed collisions on the pre-master secrets, on the MAC keys,
and on the MAC values, there is at most one password that can lead to a valid authenticator. As
a result, the probability that the adversary succeeds in sending a valid authenticator in each of
theses sessions is at most 1/N . Thus, we get

Pr[AskHbCwC9] ≤
qfake−server

N
.

Game G10: We finally concentrate on the success probability of the adversary in faking the client.
What we show in this game is that the adversary cannot eliminate more than one password in
the dictionary by impersonating a client. To do so, we first upper-bound the probability that,
for some transcript (C,S, Y2‖Y ?

3) in which Y2 was created by server instance, there are two hash
queries in ΛHash such that one has (Y2, Y

?
3 , pw0, Z0 = CDHg,G(Y ?

3 /Upw0 , Ŷ2)) and (Y ?
3 , Y2, pw1, Z1 =

CDHg,G(Y ?
3 /Upw1 , Ŷ2)). We denote this event CollH.

In order to upper-bound the probability of event CollH, we consider an auxiliary game in which
the simulation of the players changes slightly without affecting the view of the adversary. The goal
is to use the adversary to help us compute the computational Diffie-Hellman value of U and V . In
this simulation, we choose at random one of the Send(S, “start”)-queries being asked to S and we
reply with Y2 = {gx?

, V, V x?} in the hope that this is the session which leads to a collision in the
transcript. For all other sessions, Y2 is simulated as {gx1 , gx2 , gx1x2}. Now, let us assume that the
event CollH happens. If our guess for the Send(S, “start”)-query was correct, then we can extract
the value CDHg,G(U, V) as (Z1/Z0)u, where u is the inverse of (pw0− pw1), by simply guessing the
indices of the two hash queries involved in the collision. We note that u is guaranteed to exist since
pw0 6= pw1. It follows that

Pr[CollH] ≤ qsessionqhash
2 × Succcdh

g,G(t + τe).

When the event CollH does not happen, for each transcript (C,S, Y2‖Y ?
3) in which Y2 was

created by server instance, there is at most one password value pw such that the tuple (Y2, Y
?
3 , Z =

14

CDHg,G(Y ?
3 /Upw , Ŷ2)) is in ΛHash. As a result, the probability of the adversary in impersonating a

client reduces to trying one password at a time. Thus,

Pr[AskHbCwS10]≤
qfake−client

N
+ qsessionqhash

2 × Succcdh
g,G(t + τe).

Since Pr[A10] = 0, this concludes the proof of Theorem 1. ut

4 Discussions and Recommendations

This paper describes efficient and provably secure ciphersuites for password-based authentication
in the TLS protocol. It is a first attempt at drafting provably secure PAKE ciphersuites for TLS
that are believed to not infringe existing patents [9, 14, 32, 46]; however, further investigation would
be needed before this technology can be used within the United States completely without fear of
infringement. Also, in the same vein as SUN Microsystems Laboratories’s contribution to OpenSSL,
contributing the TLS-3SOKE technology to OpenSSL would require a license grant permit from
the Lawrence Berkeley National Laboratory–which is not a commercial enterprise and whose main
purpose is not to make a profit.

At the time of this writing, it is not totally clear that the steps defined by the claims of Bellovin
and Merritt U.S. Patent involve only two parties [9]. Claim #1 through #24 appear to define
the steps of the 2-party encrypted Diffie-Hellman key exchange, but use the phrase “a plurality
of parties”. In typical U.S. patent law usage, a “plurality” refers to two or more. However, in the
context of the patent specification, only Alice and Bob are mentioned. It should be noted that
a review of the patent file history tells us that the U.S. patent required two office actions, which
resulted in the amendment of all the claims. Thus, only literal infringement would be possible under
current U.S. patent law. Furthermore in their corresponding European patent [14], Bellovin and
Merritt were forced to explicitly call out the two parties, Alice and Bob. Arguably, the European
limitations of using only Alice and Bob could be used as an estoppel argument in the U.S. case,
to infer that only two parties are ever used. If this argument were successful, then three-or-more
party would not infringe the U.S. Bellovin and Merritt patent.

Another argument could be made regarding the validity of the U.S. patent looking at
U.S. claim #1. Here, Bellovin and Merritt transmits a signal to one of the parties, but the “receiving
a response signal” step never states who sends the response signal. In present-day patent practice,
this could be viewed as “indefinite”, which could lead to an invalid and potentially unenforceable
patent:

A method for generating a cryptographic key to a first symmetric key cryptosystem by using an authenti-
cation signal, said authentication signal being available to a plurality of parties, said method compromising
the steps of:

– forming an outgoing signal by encrypting at least a portion of an excitation signal with a second
symmetric key cryptosystem using a key based on said authentication signal, said excitation signal
being based on first signal RA;

– transmitting said outgoing signal to one of said parties;
– receiving a response signal, Q, in response to said outgoing signal; and
– generating said cryptographic key based on said first signal and on said response signal.

Alternatively, the “receiving a response signal” element could be interpreted in the context of
the Bellovin and Merritt patent specification to only mean an interchange between Alice and Bob,
with no third party involved.

The arguments made above could give an impression of weakness or fear of invalidity in the
patent, thus perhaps making it less likely that a patent owner would attempt to enforce the patent.

15

Before the open source community at large can benefit from the ciphersuites presented in this
paper, investigations should also be performed in various other countries (e.g, Australia, Japan,
Canada [10, 12, 13]) where the Bellovin and Merritt patent was also filed.

It should also be noted that the U.S. Bellovin and Merritt patent expires on August 31, 2010
after which no patent infringement issue remains in the United States.

Acknowledgments

The authors want to thank Dr. Joseph R. Milner, a Patent Attorney at Lawrence Berkeley National
Laboratory, for suggesting this paper, for invaluable discussions on the patents (and licensing
issues), and for providing us with the Discussions and Recommendations Section.

The authors want to thank Abdelihah Essiari for developing and implementing a prototype of
this protocol within the OpenSSL open-source implementation of TLS. His work has provided us
with a meaningful practical feedback.

The first and fifth authors have been supported in part by the European Commission through
the IST Program under Contract IST-2002-507932 ECRYPT. The third author was supported by
the Director, Office of Science, Office of Advanced Scientific Computing Research, Mathematical
Information and Computing Sciences Division, of the U.S. Department of Energy under Contract
No. DE-AC03-76SF00098. This document is report LBNL-59947. See http://www-library.lbl.
gov/disclaimer.

References

1. Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, Bodo Möller, and David Pointcheval. Provably secure
password-based authentication in TLS. ACM Symposium on InformAtion, Computer and Communications
Security (ASIACCS’06), pages 35–45. ACM Press, March 2006.

2. Michel Abdalla, Olivier Chevassut, and David Pointcheval. One-time verifier-based encrypted key exchange. In
Serge Vaudenay, editor, PKC 2005: 8th International Workshop on Theory and Practice in Public Key Cryptog-
raphy, volume 3386 of Lecture Notes in Computer Science, pages 47–64. Springer-Verlag, January 2005.

3. Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based authenticated key exchange in the
three-party setting. In Serge Vaudenay, editor, PKC 2005: 8th International Workshop on Theory and Practice
in Public Key Cryptography, volume 3386 of Lecture Notes in Computer Science, pages 65–84. Springer-Verlag,
January 2005.

4. Michel Abdalla and David Pointcheval. Simple password-based encrypted key exchange protocols. In Alfred
Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science,
pages 191–208. Springer-Verlag, February 2005.

5. Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, Abdelilah Essiari, Bodo Möller and David Pointcheval.
Simple Open Key Exchange (SOKE) ciphersuites for password authentication in TLS. Work in progress, to be
published as Internet Draft. 2006.

6. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure against dictionary
attacks. In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 139–155. Springer-Verlag, May 2000.

7. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
ACM CCS 93: 1st Conference on Computer and Communications Security, pages 62–73. ACM Press, November
1993.

8. Mihir Bellare and Phillip Rogaway. The AuthA protocol for password-based authenticated key exchange. Con-
tributions to IEEE P1363, March 2000.

9. S. M. Bellovin and M. Merritt. Cryptographic protocol for secure communications. U.S. Patent #5,241,599,
August 1993. Available on-line at http://www.uspto.gov/.

10. S. M. Bellovin and M. Merritt. A cryptographic protocol for secure communications. Australian Patent
#648433B2, April 1994. Available on-line at http://www.ipaustralia.gov.au/patents/.

11. S. M. Bellovin and M. Merritt. Cryptographic protocol for remote authentication. U.S. Patent #5,440,635,
August 1995. Available on-line at http://www.uspto.gov/.

16

12. S. M. Bellovin and M. Merritt. Protocol and apparatus for safe communication. Japanese Patent #2599871B2B2,
April 1997. Available on-line at http://www.jpo.go.jp/index.htm.

13. S. M. Bellovin and M. Merritt. Cryptographic protocol for secure communications. Canadian Patent #2076252C,
August 1998. Available on-line at http://patents1.ic.gc.ca/intro-e.html.

14. S. M. Bellovin and M. Merritt. A cryptographic protocol for secure communications. European Patent
#0535863B1, January 2002. Available on-line at http://my.epoline.org/portal/public.

15. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols secure against
dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages 72–84. IEEE Computer Society
Press, May 1992.

16. Steven M. Bellovin and Michael Merritt. Augmented encrypted key exchange: A password-based protocol secure
against dictionary attacks and password file compromise. In ACM CCS 93: 1st Conference on Computer and
Communications Security, pages 244–250. ACM Press, November 1993.

17. Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-authenticated key exchange
using Diffie-Hellman. In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807 of
Lecture Notes in Computer Science, pages 156–171. Springer-Verlag, May 2000.

18. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Provably authenticated group Diffie-Hellman key
exchange – the dynamic case. In Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248
of Lecture Notes in Computer Science, pages 290–309. Springer-Verlag, December 2001.

19. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic group Diffie-Hellman key exchange
under standard assumptions. In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 321–336. Springer-Verlag, April 2002.

20. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Group Diffie-Hellman key exchange secure against
dictionary attacks. In Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 497–514. Springer-Verlag, December 2002.

21. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Security proofs for an efficient password-based
key exchange. In ACM CCS 03: 10th Conference on Computer and Communications Security, pages 241–250.
ACM Press, October 2003.

22. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. New security results on encrypted key exchange.
In Feng Bao, Robert Deng, and Jianying Zhou, editors, PKC 2004: 7th International Workshop on Theory
and Practice in Public Key Cryptography, volume 2947 of Lecture Notes in Computer Science, pages 145–158.
Springer-Verlag, March 2004.

23. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Cryptography for secure dynamic group commu-
nication. U.S. Patent Application 20050157874, November 30, 2004. Available on-line at http://www.lbl.gov/

Tech-Transfer/techs/lbnl1973.html.

24. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Universally composable
password-based key exchange. In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 404–421. Springer-Verlag, May 2005.

25. Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin Vuagnoux. Password interception in a SSL/TLS
channel. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 583–599. Springer-Verlag, August 2003.

26. Dario Catalano, David Pointcheval, and Thomas Pornin. IPAKE: Isomorphisms for password-based authenticated
key exchange. In Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture
Notes in Computer Science, pages 477–493. Springer-Verlag, August 2004.

27. Tim Dierks and Christopher Allen. RFC 2246 - The TLS Protocol Version 1.0. Internet Activities Board,
January 1999.

28. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22:644–654, 1978.

29. Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key exchange. In Eli Biham,
editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages
524–543. Springer-Verlag, May 2003. http://eprint.iacr.org/2003/032.ps.gz.

30. C. Gentry, P. MacKenzie, , and Z. Ramzan. Opake: Password authenticated key exchange based on the hidden
smooth subgroup assumption. ACM Computer and Communications Security, November 2005.

31. Oded Goldreich and Yehuda Lindell. Session-key generation using human passwords only. In Joe Kilian, editor,
Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 408–432.
Springer-Verlag, August 2001. http://eprint.iacr.org/2000/057.

32. D. Jablon. Cryptographic methods for remote authentication. U.S. Patent #6,226,383, January 2002. Available
on-line at http://www.uspto.gov/.

33. David P. Jablon. Password authentication using multiple servers. In David Naccache, editor, Topics in Cryptology
– CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science, pages 344–360. Springer-Verlag, April 2001.

17

34. Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Forward secrecy in password-only key exchange protocols.
In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN 02: 3rd International Conference on
Security in Communication Networks, volume 2576 of Lecture Notes in Computer Science, pages 29–44. Springer-
Verlag, September 2002.

35. T. Kwon. Authentication and key agreement via memorable password. Network and Distributed System Security
(NDSS) Symposium, February 2001.

36. Stefan Lucks. Open key exchange: How to defeat dictionary attacks without encrypting public keys. In Workshop
on Security Protocols, École Normale Supérieure, 1997.

37. Philip D. MacKenzie. More efficient password-authenticated key exchange. In David Naccache, editor, Topics in
Cryptology – CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science, pages 361–377. Springer-Verlag,
April 2001.

38. Philip D. MacKenzie. The PAK suite: Protocols for password-authenticated key exchange. Technical Report
2002-46, DIMACS, 2002.

39. Philip D. MacKenzie, Sarvar Patel, and Ram Swaminathan. Password-authenticated key exchange based on
RSA. In Tatsuaki Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes
in Computer Science, pages 599–613. Springer-Verlag, December 2000.

40. Sun Microsystems. Sun Microsystems contributed elliptic curve cryptographic algorithms to open source projects,
September 2002. See http://research.sun.com/projects/crypto/. See also http://www.sun.com/cddl/.

41. National Institute of Standards and Technology (NIST). Digital Signature Standard. Draft FIPS 186-3, March
2006.

42. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signature and public-key
cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

43. Michael Steiner, Peter Buhler, Thomas Eirich, and Michael Waidner. Secure password-based cipher suite for
TLS. ACM Transactions on Information and System Security, 4(2):134–157, 2001.

44. David Taylor, Tom Wu, Nikos Mavroyanopoulos, and Trevor Perrin. Using SRP for TLS authentication. IETF
Internet Draft, TLS Working Group, August 19, 2004.

45. T. Wu. The secure remote password protocol. Network and Distributed System Security (NDSS) Symposium,
March 1998.

46. T. J. Wu. System and method for securely logging onto a remotely located computer. U.S. Patent #6,539,479,
March 2003. Available on-line at http://www.uspto.gov/, see also http://stanfordtech.stanford.edu/4DCGI/

docket?docket=97-006.

18

Client C Server S
(password pw) (password pw)

Main CPU S2 Helper S1

accept← false accept← false

Choose ciphersuite:

choose Nc
R← {0, 1}∗

ClientHello : (Nc, . . .)−−−−−−−−−−−−−−−−−→
ServerHello : (Ns, . . .)←−−−−−−−−−−−−−−−−− choose Ns

R← {0, 1}∗

Compute Diffie-Hellman secret:

choose x2
R← Z?

q x1
R← Z?

q

Y2 ← {Y1, g
x2 , Y x2

1 }
Y1←−−−−−−−− Y1 ← gx1ServerKeyExchange : (S, Y2)

ServerHelloDone
←−−−−−−−−−−−−−−−−−−−−−

choose x3
R← Zq

compute Y3 ← Y x3
1

encrypt Y3
? ← Y3 × Upw ClientKeyExchange : (C, Y3

?)
−−−−−−−−−−−−−−−−−−−−−−→ decrypt Y3 ← Y3

?/Upw

Compute pre-master secret and authentication key:

Z = Y3
x2 = (Y x2

1)x3

PreMasterSecret = Hash(C, S, pw , Y2‖Y ?
3 ‖Z)

AuthKey = PRF1(PreMasterSecret, Nc‖Ns)

Compute authenticators:

AuthC = MAC.SignAuthKey(“client finished”, . . .) AuthS = MAC.SignAuthKey(“server finished”, . . .)

Abort if verification fails. Else:
Authenticator : AuthS←−−−−−−−−−−−−−−−−−

accept← true Authenticator : AuthC

[ChangeCipherSpec]
−−−−−−−−−−−−−−−−−→ Abort if verification fails. Else:

accept← true[ChangeCipherSpec]
←−−−−−−−−−−−−−−

Compute master secret and key material as in standard TLS:

MasterSecret = PRF2(PreMasterSecret, Nc‖Ns)
KeyBlock = PRF3(MasterSecret, Ns‖Nc)

←−−−−−−−−−− Secure Channel −−−−−−−−−−→

Fig. 1. The full handshake for TLS-3SOKE ciphersuites.

