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QCD corrections, at
next-to-next-to-leading
logarithmic accuracy, to
production cross section of
a pseudoscalar Higgs
boson, in the heavy top
mass limit, at proton-proton
or proton anti-proton
collider.
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Starting point

◮ New Physics → QCD for both signal and background

◮ UV and IR divergences

◮ Regularization introduces µR and µF scales

◮ Predictions became scale dependent !!!
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Two kind of divergences

◮ Soft: Eg → 0 Soft gluon

◮ Collinear: cos θ = 1 Mass singularity
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Perturbative expansion reads

σ = σ(0) + αSσ(1) + αSσ(2) + . . .

Converges if αS << 1 and σ(i) ∼ O(1)

In processes with several scales, last condition might not hold

σ(i) ∼ Log j(y) ≡ Lj ; L → ∞ when y → 0

Where do these Logs appear? Two examples:

◮ Z production with qt : y =
q2

T
M2

Z

◮ Higgs production: y = 1 −
M2

H
sx1x2

→ soft gluon radiation
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Soft gluon contributions can be exponentiated. Schematically

∼ ∗e
[

soft

]

SUDAKOV FACTOR

σ = σ(0) Cqq̄ Exp[G] = σ(0) (1 +
∑

i

αS
iC (i)

qq̄ ) Exp[G]

◮ Cqq̄ → Hard contribution: Process dependent
◮ G → Sudakov Factor: Process independent
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Structure of resummation

Sudakov factor expansion reads
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2L αS
2L2 αS

2L3

. . . . . . . . . . . . . . . . . .

NiLO αS
i αS

iL . . . . . . αS
iLi αS

iLi+1

NLL LL
State of the art: g4 S.Moch, J.Vermaseren, A.Vogt (2005)
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MSSM Higgs sector

MSSM requires two Higgs doublets
Initially, 8 d.o.f ; after EWSB, only 5 d.o.f left.

◮ h: SM higgs
◮ H: heavy scalar
◮ H±: charged scalars
◮ A: pseudoscalar -> production cross section will be

resummed

Tree level parameters: MA and tan β = v2
v1

Experimental constraints (LEPII):
◮ MA > 91.9 GeV
◮ 0.6 < tan β < 2.4 excluded
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Higgs production

Main channel at hadron collider: gg fusion

Since Yukawa couplings are proportional
to the fermion mass, in the SM case we
only consider the top loop.

In MSSM, the A Yukawa couplings to fermions go as

∼ mu γ5 cotβ

u A

u

d A

d

∼ md γ5 tanβ

Naively, calculation reliable for tan β < 6.41



Theoretical Status

◮ LO : known from a long time ago F. Wilczek (1977) ;
H. Georgi, S. Glashow, M. Machacek, D. Nanopoulos (1978) ;
J. Ellis, M. Gaillard, D. Nanopoulos, C. Sachrajda (1979) ;
T. Rizzo (1980)

◮ NLO (exact) give an increase of almost 100 % !!!
M. Spira, A. Djouadi, D. Graundenz, P.Zerwas (1995)

◮ NNLO (heavy Mt limit): moderate numerical impact
R. Harlander, W.Kilgore (2002); C. Anastasiou, K. Melnikov (2002);
V. Ravindran, J.Smith, W. L. van Neerven (2003)

◮ NNLL (h): scale dependence greatly reduced! (10 %)
S. Catani, D. De Florian, M. Grazzini, P.Nason (2003)

Missing piece: NNLL result for A production.
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Effective Lagrangian, valid for MA < Mt

Leff =
1
4

[

1 −
αS

3π

H
v

(1 + ∆)
]

Tr(GµνGµν)

J. Ellis, M.K.Gaillard,D.V.Nanopoulos (1976)

M. Voloshin, V.Zakharov, M. Shifman (1979)

shrinks the loop into an effective vertex

⇒

We got rid of the Loop: trainless Chicago!!!



Large Mt approximation accuracy

◮ NLO and NNLO are very well approximated by large Mt

limit.
S.Dawson (1991)

◮ The bulk of the QCD corrections comes from parton
radiation at low transverse momenta: weakly sensitive to
the top loop.
S. Catani, D. de Florian, M. Grazzini (2001)

◮ Hard effects (most sensitive to heavy quark loop) are about
2% at LHC and 4% at Tevatron (NNLO calculations).

◮ Mt approximation works with accuracy better than 10% for
Mh ≤ 1TeV .
M. Kramer, E.Laenen, M. Spira (1998)



Framework

By virtue of the factorization theorem, the cross section for
hahb → A + X may be written as a convolution of the partonic
cross section σ̂ab with the PDFs.

σ(s, M2
A) =

∑

a,b

∫ 1

0
dx1 dx2 fa / h1

(x1, µ
2
F ) fb / h2

(x2, µ
2
F )

∫ 1

0
dz δ

(

z −
M2

A

s x1x2

)

σ̂ab(z, αS(µ2
R), M2

A/µ2
R, M2

A/µ2
F )

High precision requires a good knowledge of both PDF’s and
partonic cross sections.
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Mellin transform technique

Convolutions are disentangled with the aid of Mellin transforms

gN =

∫ 1

0
dy yN−1 g(y) ≡ M[g(y)]

In N space, σ has a very simple (factorized!) form

σN(M2
A) =

∑

a,b

fa /h1,N(µ2
F ) fb /h2,N(µ2

F ) σ̂ab, N (αS(µ2
R), M2

A/µ2
R , M2

A/µ2
F )

and the resummed cross section also factorizes

σ̂res
ab, N = σ̂

(0)
ab, N ∆ab, N

Threshold limit: z = MA
2

sx1x2
→ 1 ≡ N → ∞



Threshold limit

αS
nLogmN dominate over constants and O(1/N)



Threshold limit

αS
nLogmN dominate over constants and O(1/N)

Singular contributions at threshold

Soft: M
[

[
lnk (1 − z)

1 − z
]+

]

=
(−1)k+1

k + 1
lnk+1 N + O(lnk N)

Virtual: M
[

[δ(1 − z)]+

]

= 1

Collinear: M
[

[lnk (1 − z)]+

]

=
(−1)k

N
lnk N + O

(

1
N

lnk−1 N
)

where
∫ 1

0 f (w)[g(w)]+dw =
∫ 1

0 (f (w) − f (1))g(w)dw
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Matching
How can we profit from the fixed order result?

σf .o = σ(0) + αS σ(1) + αS
2σ(2)

σres =
∞
∑

i=0

αS
iR(i)

Simply: by writing down

σmatched = σ(0) + αSσ(1) + αS
2σ(2) +

∞
∑

i=3

αS
iR(i)

Match = fixed order + Extra resummed terms

The matching is performed by computing the C(i)
gg coefficients.

Moreover, we can include the dominant collinear terms by doing

C(1)
gg → C(1)

gg + 6
ln N
N
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FORTRAN code that computes Higgs production cross
sections:

◮ includes both h and A higgs bosons

◮ cross sections and PDF’s written directly in N-space (no
need to deal with + distributions)

◮ PDF in Mellin

Toy PDF: f (x) = (1 − x)α xβ

Simple expression: M[f (x)] = Γ(b+1)Γ(a+N)
Γ(a+b+N+1)

◮ code available upon request
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Heavy quark mass effects

One can add finite Mt (and Mb) effects in Born cross section.

+ compare at NLO: exact result (HIGLU) with large Mt limit.
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Summary

◮ Gluon-gluon fusion is the dominant production channel for
neutral Higgs bosons at hadron colliders.

◮ Resummation provides not only more accurate predictions,
but it also reduces the scale dependence.

◮ Explicit results for inclusive A production at both Tevatron
and LHC were shown.

◮ Scale dependence is lower than 10%.

◮ THIGRES Fortran code available upon request.

◮ work in SLOW progress (pp → t t̄h)



”We haven’t the money, so
we’ve got to think”

Ernest Rutherford (1871-1937)
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