Soft-gluon resummation for pseudoscalar Higgs boson production at hadron colliders Phys. Lett. B 659, 813 (2008)

José Francisco Zurita

¹Departamento de Física - FCEyN -Universidad de Buenos Aires

Seminar at Fermilab (June 12 2008)

Work done in collaboration with Daniel de Florian

QCD corrections, at next-to-next-to-leading logarithmic accuracy, to production cross section of a pseudoscalar Higgs boson, in the heavy top mass limit, at proton-proton or proton anti-proton collider.

(日)

Introduction

Higgs production at colliders

Results

Conclusions

Outline

Introduction

Higgs production at colliders

Results

Conclusions

Starting point

- \blacktriangleright New Physics \rightarrow QCD for both signal and background
- UV and IR divergences
- Regularization introduces µ_R and µ_F scales
- Predictions became scale dependent !!!

IR singularities

They come from

IR singularities

They come from

$$\frac{1}{(p+k)^2} = \frac{1}{2E_q E_g (1-\cos\theta)}$$

<ロ> <同> <同> <同> <同> < 同> < 同>

IR singularities

They come from

$$\frac{1}{(p+k)^2} = \frac{1}{2E_q E_g (1-\cos\theta)}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶

Two kind of divergences

Soft:
$$E_g \rightarrow 0$$
 Soft gluon

• Collinear: $cos \theta = 1$ Mass singularity

Perturbative expansion reads

$$\sigma = \sigma^{(0)} + \alpha_{\mathsf{S}} \sigma^{(1)} + \alpha_{\mathsf{S}} \sigma^{(2)} + \dots$$

Perturbative expansion reads

$$\sigma = \sigma^{(0)} + \alpha_{\mathsf{S}} \sigma^{(1)} + \alpha_{\mathsf{S}} \sigma^{(2)} + \dots$$

Converges if $\alpha_{S} \ll 1$ and $\sigma^{(i)} \sim \mathcal{O}(1)$

Perturbative expansion reads

$$\sigma = \sigma^{(0)} + \alpha_{\mathsf{S}} \sigma^{(1)} + \alpha_{\mathsf{S}} \sigma^{(2)} + \dots$$

Converges if $\alpha_{S} \ll 1$ and $\sigma^{(i)} \sim \mathcal{O}(1)$

In processes with several scales, last condition might not hold

$$\sigma^{(i)} \sim Log^j(y) \equiv L^j; \qquad L o \infty ext{ when } y o 0$$

Perturbative expansion reads

$$\sigma = \sigma^{(0)} + \alpha_{\mathsf{S}} \sigma^{(1)} + \alpha_{\mathsf{S}} \sigma^{(2)} + \dots$$

Converges if $\alpha_{S} \ll 1$ and $\sigma^{(i)} \sim \mathcal{O}(1)$

In processes with several scales, last condition might not hold

$$\sigma^{(i)} \sim Log^j(y) \equiv L^j; \qquad L o \infty ext{ when } y o 0$$

Where do these Logs appear? Two examples:

• Z production with
$$q_t$$
: $y = \frac{q_T^2}{M_z^2}$

• Higgs production:
$$y = 1 - \frac{M_H^2}{sx_1x_2} \rightarrow \text{soft gluon radiation}$$

・ロット (雪) ・ ヨ)

Exponentiation

Soft gluon contributions can be exponentiated. Schematically

Exponentiation

Soft gluon contributions can be exponentiated. Schematically

(日)

Exponentiation

Soft gluon contributions can be exponentiated. Schematically

$$\sigma = \sigma^{(0)} C_{q\bar{q}} \operatorname{Exp}[\mathcal{G}] = \sigma^{(0)} (1 + \sum_{i} \alpha_{\mathcal{S}}{}^{i}C_{q\bar{q}}^{(i)}) \operatorname{Exp}[\mathcal{G}]$$

• $C_{q\bar{q}} \rightarrow$ Hard contribution: Process dependent

• $\mathcal{G} \rightarrow$ Sudakov Factor: Process independent

Sudakov factor expansion reads

$$Exp[Lg_1(\alpha_{S}L) + g_2(\alpha_{S}L) + \frac{1}{I}g_3(\alpha_{S}L) + \dots]$$

Sudakov factor expansion reads

$$Exp[Lg_1(\alpha_{S}L) + g_2(\alpha_{S}L) + \frac{1}{L}g_3(\alpha_{S}L) + \dots]$$

LO 1

Sudakov factor expansion reads

$$Exp[Lg_1(\alpha_{S}L) + g_2(\alpha_{S}L) + \frac{1}{L}g_3(\alpha_{S}L) + \dots]$$

LO 1

NLO $\alpha_{S} \alpha_{S}L \alpha_{S}L^{2}$

Sudakov factor expansion reads

$$Exp[Lg_1(\alpha_{S}L) + g_2(\alpha_{S}L) + \frac{1}{I}g_3(\alpha_{S}L) + \dots]$$

LO 1

NLO $\alpha_{S} \quad \alpha_{S}L \quad \alpha_{S}L^{2}$

NNLO $\alpha_{s}^{2} \alpha_{s}^{2}L \alpha_{s}^{2}L^{2} \alpha_{s}^{2}L^{3}$

Sudakov factor expansion reads

$$Exp[Lg_1(\alpha_{S}L) + g_2(\alpha_{S}L) + \frac{1}{L}g_3(\alpha_{S}L) + \dots]$$

LO 1 NLO $\alpha_{s} \quad \alpha_{s}L \quad \alpha_{s}L^{2}$ NNLO $\alpha_{s}^{2} \quad \alpha_{s}^{2}L \quad \alpha_{s}^{2}L^{2} \quad \alpha_{s}^{2}L^{3}$ NⁱLO $\alpha_{s}^{i} \quad \alpha_{s}^{i}L \quad ... \quad ... \quad \alpha_{s}^{i}L^{i} \quad \alpha_{s}^{i}L^{i+1}$

Sudakov factor expansion reads

$$Exp[Lg_1(\alpha_{S}L) + g_2(\alpha_{S}L) + \frac{1}{L}g_3(\alpha_{S}L) + \dots]$$

LO 1 NLO $\alpha_s \quad \alpha_s L \quad \alpha_s L^2$ NNLO $\alpha_s^2 \quad \alpha_s^2 L \quad \alpha_s^2 L^2 \quad \alpha_s^2 L^3$ NⁱLO $\alpha_s^i \quad \alpha_s^i L \quad ... \quad ... \quad \alpha_s^i L^i \quad \alpha_s^i L^{i+1}$

Sudakov factor expansion reads

$$Exp[Lg_1(\alpha_{S}L) + g_2(\alpha_{S}L) + \frac{1}{I}g_3(\alpha_{S}L) + \dots]$$

LO 1 NLO $\alpha_{\rm S} \alpha_{\rm S} L \alpha_{\rm S} L^2$

. . .

. . .

NNLO $\alpha_{s}^{2} \alpha_{s}^{2}L \alpha_{s}^{2}L^{2} \alpha_{s}^{2}L^{3}$

. . .

N^{*i*}LO $\alpha_{s}^{i} \alpha_{s}^{i}L$... $\alpha_{s}^{i}L^{i} \alpha_{s}^{i}L^{i+1}$

Sudakov factor expansion reads

. . .

. . .

$$Exp[Lg_{1}(\alpha_{S}L) + g_{2}(\alpha_{S}L) + \frac{1}{L}g_{3}(\alpha_{S}L) + \dots]$$
LO 1
NLO $\alpha_{S} \quad \alpha_{S}L \quad \alpha_{S}L^{2}$
NNLO $\alpha_{S}^{2} \quad \alpha_{S}^{2}L \quad \alpha_{S}^{2}L^{2} \quad \alpha_{S}^{2}L^{3}$

N^{*i*}LO $\alpha_{s}^{i} \alpha_{s}^{i}L$... $\alpha_{s}^{i}L^{i} \alpha_{s}^{i}L^{i+1}$

State of the art: g_4 S.Moch, J.Vermaseren, A.Vogt (2005)

・ロット (雪) () () () ()

Introduction

Higgs production at colliders

Results

Conclusions

MSSM requires two Higgs doublets Initially, 8 d.o.f ; after EWSB, only 5 d.o.f left.

MSSM requires two Higgs doublets Initially, 8 d.o.f ; after EWSB, only 5 d.o.f left.

- h: SM higgs
- H: heavy scalar
- ► H[±]: charged scalars
- A: pseudoscalar -> production cross section will be resummed

MSSM requires two Higgs doublets Initially, 8 d.o.f ; after EWSB, only 5 d.o.f left.

- h: SM higgs
- H: heavy scalar
- ► H[±]: charged scalars
- A: pseudoscalar -> production cross section will be resummed

Tree level parameters: M_A and $\tan \beta = \frac{V_2}{V_1}$

MSSM requires two Higgs doublets Initially, 8 d.o.f ; after EWSB, only 5 d.o.f left.

- h: SM higgs
- H: heavy scalar
- ► H[±]: charged scalars
- A: pseudoscalar -> production cross section will be resummed

Tree level parameters: M_A and $\tan \beta = \frac{v_2}{v_1}$

Experimental constraints (LEPII):

- ▶ *M*_A > 91.9 GeV
- ▶ 0.6 < tan β < 2.4 excluded</p>

Higgs production

Main channel at hadron collider: gg fusion

Since Yukawa couplings are proportional to the fermion mass, in the SM case we only consider the top loop.

Higgs production

Main channel at hadron collider: gg fusion

Since Yukawa couplings are proportional to the fermion mass, in the SM case we only consider the top loop.

In MSSM, the A Yukawa couplings to fermions go as

Naively, calculation reliable for tan β < 6.41

(日)

Theoretical Status

- LO: known from a long time ago F. Wilczek (1977);
 H. Georgi, S. Glashow, M. Machacek, D. Nanopoulos (1978);
 J. Ellis, M. Gaillard, D. Nanopoulos, C. Sachrajda (1979);
 T. Rizzo (1980)
- NLO (exact) give an increase of almost 100 % !!!
 M. Spira, A. Djouadi, D. Graundenz, P.Zerwas (1995)
- NNLO (heavy *M_t* limit): moderate numerical impact
 R. Harlander, W.Kilgore (2002); C. Anastasiou, K. Melnikov (2002);
 V. Ravindran, J.Smith, W. L. van Neerven (2003)
- NNLL (*h*): scale dependence greatly reduced! (10 %)
 S. Catani, D. De Florian, M. Grazzini, P.Nason (2003)

Missing piece: NNLL result for A production.

Large M_t approximation

Effective Lagrangian, valid for $M_A < M_t$

$$\mathcal{L}_{eff} = rac{1}{4} \Big[1 - rac{lpha_{S}}{3\pi} rac{H}{v} (1 + \Delta) \Big] \mathit{Tr}(G_{\mu
u} G^{\mu
u})$$

J. Ellis, M.K.Gaillard, D.V.Nanopoulos (1976) M. Voloshin, V.Zakharov, M. Shifman (1979)

shrinks the loop into an effective vertex

< D > < P > < D > < D < P</p>

Large M_t approximation

Effective Lagrangian, valid for $M_A < M_t$

$$\mathcal{L}_{eff} = rac{1}{4} \Big[1 - rac{lpha_{S}}{3\pi} rac{H}{v} (1 + \Delta) \Big] \mathit{Tr}(G_{\mu
u} G^{\mu
u})$$

J. Ellis, M.K.Gaillard, D.V.Nanopoulos (1976) M. Voloshin, V.Zakharov, M. Shifman (1979)

shrinks the loop into an effective vertex

We got rid of the Loop:

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Large M_t approximation

Effective Lagrangian, valid for $M_A < M_t$

$$\mathcal{L}_{eff} = rac{1}{4} \Big[1 - rac{lpha_{S}}{3\pi} rac{H}{v} (1 + \Delta) \Big] \mathit{Tr}(G_{\mu
u} G^{\mu
u})$$

J. Ellis, M.K.Gaillard, D.V.Nanopoulos (1976) M. Voloshin, V.Zakharov, M. Shifman (1979)

shrinks the loop into an effective vertex

We got rid of the Loop: trainless Chicago!!!

< ロ > < 同 > < 回 > < 回 >

Large M_t approximation accuracy

- NLO and NNLO are very well approximated by large M_t limit.
 S.Dawson (1991)
- The bulk of the QCD corrections comes from parton radiation at low transverse momenta: weakly sensitive to the top loop.
 S. Catani, D. de Florian, M. Grazzini (2001)
 - S. Catani, D. de Fiorian, IVI. Grazzini (2001)
- Hard effects (most sensitive to heavy quark loop) are about 2% at LHC and 4% at Tevatron (NNLO calculations).
- *M_t* approximation works with accuracy better than 10% for *M_h* ≤ 1*TeV*.
 M. Kramer, E.Laenen, M. Spira (1998)

Framework

By virtue of the factorization theorem, the cross section for $h_a h_b \rightarrow A + X$ may be written as a convolution of the partonic cross section $\hat{\sigma}_{ab}$ with the PDFs.

$$\sigma(s, M_A^2) = \sum_{a,b} \int_0^1 dx_1 \ dx_2 \ f_{a/h_1}(x_1, \mu_F^2) \ f_{b/h_2}(x_2, \mu_F^2)$$
$$\int_0^1 dz \ \delta\left(z - \frac{M_A^2}{s x_1 x_2}\right) \ \hat{\sigma}_{ab}(z, \alpha_S(\mu_R^2), M_A^2/\mu_R^2, M_A^2/\mu_F^2)$$

High precision requires a good knowledge of both PDF's and partonic cross sections.

Convolutions are disentangled with the aid of Mellin transforms

$$g_N = \int_0^1 dy \ y^{N-1} \ g(y) \equiv M[g(y)]$$

Convolutions are disentangled with the aid of Mellin transforms

$$g_N=\int_0^1 dy \ y^{N-1} \ g(y)\equiv M[g(y)]$$

In N space, σ has a very simple (factorized!) form

$$\sigma_{N}(M_{A}^{2}) = \sum_{a,b} f_{a/h_{1},N}(\mu_{F}^{2}) f_{b/h_{2},N}(\mu_{F}^{2}) \hat{\sigma}_{ab,N}(\alpha_{S}(\mu_{R}^{2}), M_{A}^{2}/\mu_{R}^{2}, M_{A}^{2}/\mu_{F}^{2})$$

Convolutions are disentangled with the aid of Mellin transforms

$$g_N = \int_0^1 \, dy \; y^{N-1} \; g(y) \equiv M[g(y)]$$

In N space, σ has a very simple (factorized!) form

$$\sigma_{N}(M_{A}^{2}) = \sum_{a,b} f_{a/h_{1},N}(\mu_{F}^{2}) f_{b/h_{2},N}(\mu_{F}^{2}) \hat{\sigma}_{ab,N}(\alpha_{S}(\mu_{R}^{2}), M_{A}^{2}/\mu_{R}^{2}, M_{A}^{2}/\mu_{F}^{2})$$

and the resummed cross section also factorizes

$$\hat{\sigma}_{ab,N}^{res} = \hat{\sigma}_{ab,N}^{(0)} \Delta_{ab,N}$$

・ロット (雪) ・ ヨ)

Convolutions are disentangled with the aid of Mellin transforms

$$g_N = \int_0^1 dy \ y^{N-1} \ g(y) \equiv M[g(y)]$$

In N space, σ has a very simple (factorized!) form

$$\sigma_{N}(M_{A}^{2}) = \sum_{a,b} f_{a/h_{1},N}(\mu_{F}^{2}) f_{b/h_{2},N}(\mu_{F}^{2}) \hat{\sigma}_{ab,N}(\alpha_{S}(\mu_{R}^{2}), M_{A}^{2}/\mu_{R}^{2}, M_{A}^{2}/\mu_{F}^{2})$$

and the resummed cross section also factorizes

$$\hat{\sigma}_{ab,N}^{res} = \hat{\sigma}_{ab,N}^{(0)} \Delta_{ab,N}$$

Threshold limit:
$$z = \frac{M_A^2}{sx_1x_2} \rightarrow 1 \equiv N \rightarrow \infty$$

・ロット (雪) ・ ヨ)

Threshold limit

 $\alpha_{S}^{n}Log^{m}N$ dominate over constants and $\mathcal{O}(1/N)$

Threshold limit

 $\alpha_{S}^{n}Log^{m}N$ dominate over constants and $\mathcal{O}(1/N)$

Singular contributions at threshold

Soft:
$$M\left[\left[\frac{\ln^{k}(1-z)}{1-z}\right]_{+}\right] = \frac{(-1)^{k+1}}{k+1}\ln^{k+1}N + \mathcal{O}(\ln^{k}N)$$

Virtual: $M\left[\left[\delta(1-z)\right]_{+}\right] = 1$
Collinear: $M\left[\left[\ln^{k}(1-z)\right]_{+}\right] = \frac{(-1)^{k}}{N}\ln^{k}N + \mathcal{O}\left(\frac{1}{N}\ln^{k-1}N\right)$

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

3

where $\int_0^1 f(w)[g(w)]_+ dw = \int_0^1 (f(w) - f(1))g(w)dw$

How can we profit from the fixed order result?

$$\sigma^{f.o} = \sigma^{(0)} + \alpha_{\rm S} \sigma^{(1)} + \alpha_{\rm S}^2 \sigma^{(2)}$$
$$\sigma^{res} = \sum_{i=0}^{\infty} \alpha_{\rm S}^i R^{(i)}$$

How can we profit from the fixed order result?

$$\sigma^{f.o} = \sigma^{(0)} + \alpha_{\rm S} \sigma^{(1)} + \alpha_{\rm S}^2 \sigma^{(2)}$$
$$\sigma^{\rm res} = \sum_{i=0}^{\infty} \alpha_{\rm S}^i R^{(i)}$$

Simply: by writing down

$$\sigma^{\textit{matched}} = \sigma^{(0)} + \alpha_{S}\sigma^{(1)} + \alpha_{S}^{2}\sigma^{(2)} + \sum_{i=3}^{\infty} \alpha_{S}^{i}R^{(i)}$$

Match = fixed order + Extra resummed terms

How can we profit from the fixed order result?

$$\sigma^{f.o} = \sigma^{(0)} + \alpha_{\rm S} \sigma^{(1)} + \alpha_{\rm S}^2 \sigma^{(2)}$$
$$\sigma^{\rm res} = \sum_{i=0}^{\infty} \alpha_{\rm S}^i R^{(i)}$$

Simply: by writing down

$$\sigma^{\text{matched}} = \sigma^{(0)} + \alpha_{\text{S}} \sigma^{(1)} + \alpha_{\text{S}}^2 \sigma^{(2)} + \sum_{i=3}^{\infty} \alpha_{\text{S}}^{i} R^{(i)}$$

Match = fixed order + Extra resummed terms

The matching is performed by computing the $C_{gg}^{(i)}$ coefficients.

How can we profit from the fixed order result?

$$\sigma^{f.o} = \sigma^{(0)} + \alpha_{\rm S} \sigma^{(1)} + \alpha_{\rm S}^2 \sigma^{(2)}$$
$$\sigma^{\rm res} = \sum_{i=0}^{\infty} \alpha_{\rm S}^i R^{(i)}$$

Simply: by writing down

$$\sigma^{\text{matched}} = \sigma^{(0)} + \alpha_{\text{S}} \sigma^{(1)} + \alpha_{\text{S}}^2 \sigma^{(2)} + \sum_{i=3}^{\infty} \alpha_{\text{S}}^{i} R^{(i)}$$

Match = fixed order + Extra resummed terms

The matching is performed by computing the $C_{gg}^{(i)}$ coefficients.

Moreover, we can include the dominant collinear terms by doing

$$C_{gg}^{(1)}
ightarrow C_{gg}^{(1)} + 6 rac{\ln N}{N}$$

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

FORTRAN code that computes Higgs production cross sections:

FORTRAN code that computes Higgs production cross sections:

includes both h and A higgs bosons

FORTRAN code that computes Higgs production cross sections:

- includes both h and A higgs bosons
- cross sections and PDF's written directly in N-space (no need to deal with + distributions)

FORTRAN code that computes Higgs production cross sections:

- includes both h and A higgs bosons
- cross sections and PDF's written directly in N-space (no need to deal with + distributions)

PDF in Mellin

Toy PDF: $f(x) = (1 - x)^{\alpha} x^{\beta}$

Simple expression: $M[f(x)] = \frac{\Gamma(b+1)\Gamma(a+N)}{\Gamma(a+b+N+1)}$

FORTRAN code that computes Higgs production cross sections:

- includes both h and A higgs bosons
- cross sections and PDF's written directly in N-space (no need to deal with + distributions)

PDF in Mellin

Toy PDF: $f(x) = (1 - x)^{\alpha} x^{\beta}$

Simple expression: $M[f(x)] = \frac{\Gamma(b+1)\Gamma(a+N)}{\Gamma(a+b+N+1)}$

code available upon request

Outline

Introduction

Higgs production at colliders

Results

Conclusions

Heavy quark mass effects

One can add finite M_t (and M_b) effects in Born cross section.

+ compare at NLO: exact result (HIGLU) with large M_t limit.

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨー ・

Fixed order σ scale dependence at LHC

▲□▶ ▲圖▶ ▲温▶ ▲温♪

Resummed σ scale dependence at LHC

Fixed order σ scale dependence at Tevatron

Resummed σ scale dependence at Tevatron

・ロ・・ (日・・ 日・・ 日)

K factors at LHC

K factors at Tevatron

Outline

Introduction

Higgs production at colliders

Results

Conclusions

- Gluon-gluon fusion is the dominant production channel for neutral Higgs bosons at hadron colliders.
- Resummation provides not only more accurate predictions, but it also reduces the scale dependence.
- Explicit results for inclusive A production at both Tevatron and LHC were shown.
- Scale dependence is lower than 10%.
- ► THIGRES Fortran code available upon request.

- Gluon-gluon fusion is the dominant production channel for neutral Higgs bosons at hadron colliders.
- Resummation provides not only more accurate predictions, but it also reduces the scale dependence.
- Explicit results for inclusive A production at both Tevatron and LHC were shown.
- Scale dependence is lower than 10%.
- THIGRES Fortran code available upon request.

- Gluon-gluon fusion is the dominant production channel for neutral Higgs bosons at hadron colliders.
- Resummation provides not only more accurate predictions, but it also reduces the scale dependence.
- Explicit results for inclusive A production at both Tevatron and LHC were shown.
- Scale dependence is lower than 10%.
- THIGRES Fortran code available upon request.

- Gluon-gluon fusion is the dominant production channel for neutral Higgs bosons at hadron colliders.
- Resummation provides not only more accurate predictions, but it also reduces the scale dependence.
- Explicit results for inclusive A production at both Tevatron and LHC were shown.
- Scale dependence is lower than 10%.
- THIGRES Fortran code available upon request.

- Gluon-gluon fusion is the dominant production channel for neutral Higgs bosons at hadron colliders.
- Resummation provides not only more accurate predictions, but it also reduces the scale dependence.
- Explicit results for inclusive A production at both Tevatron and LHC were shown.
- Scale dependence is lower than 10%.
- THIGRES Fortran code available upon request.

- Gluon-gluon fusion is the dominant production channel for neutral Higgs bosons at hadron colliders.
- Resummation provides not only more accurate predictions, but it also reduces the scale dependence.
- Explicit results for inclusive A production at both Tevatron and LHC were shown.
- Scale dependence is lower than 10%.
- THIGRES Fortran code available upon request.

- Gluon-gluon fusion is the dominant production channel for neutral Higgs bosons at hadron colliders.
- Resummation provides not only more accurate predictions, but it also reduces the scale dependence.
- Explicit results for inclusive A production at both Tevatron and LHC were shown.
- Scale dependence is lower than 10%.
- THIGRES Fortran code available upon request.
- work in SLOW progress

- Gluon-gluon fusion is the dominant production channel for neutral Higgs bosons at hadron colliders.
- Resummation provides not only more accurate predictions, but it also reduces the scale dependence.
- Explicit results for inclusive A production at both Tevatron and LHC were shown.
- Scale dependence is lower than 10%.
- THIGRES Fortran code available upon request.
- work in SLOW progress ($pp \rightarrow t\bar{t}h$)

"We haven't the money, so we've got to think"

Ernest Rutherford (1871-1937)

(日) (圖) (E) (E)