COMPLEX EXPONENTIATION

PURPOSE

Carry out a complex exponentiation (element-by-element) of a complex variable.

DESCRIPTION

DATAPLOT stores all variables as reals. Complex variables are supported as a pair of real variables. That is, the pair Y1,Y2 of real variables can be thought of as the single complex variable $\mathrm{Y} 1+\mathrm{i}^{*} \mathrm{Y} 2$ where i is the square root of -1 .

Complex exponentiation is defined by the following equation:

$$
\begin{equation*}
\mathrm{e}^{(\mathrm{a}+\mathrm{bi})}=\left(\cos (\mathrm{b}) \mathrm{e}^{\mathrm{a}}\right)+\left(\sin (\mathrm{b}) \mathrm{e}^{\mathrm{a}}\right) \mathrm{i} \tag{EQ3-27}
\end{equation*}
$$

SYNTAX
LET <v3> <v4> = COMPLEX EXPONENTIATION <v1> <v2> <SUBSET/EXCEPT/FOR qualification>
where <v1> and <v2> are the real and imaginary components of the input variable;
<v3> and <v4> are the real and imaginary components of the output variable; and where the <SUBSET/EXCEPT/FOR qualification> is optional and rarely used in this context.

EXAMPLES

LET Y2R Y2I = COMPLEX EXPONENTIATION Y1R Y1I
LET Y3 Y4 = COMPLEX EXPONENT Y1 Y2 SUBSET Y1 > 8

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

COMPLEX ADDITION $=$ Carries out complex addition.
COMPLEX SUBTRACTION $=$ Carries out complex subtraction.
COMPLEX MULTIPLICATION $=$ Carries out complex multiplication.
COMPLEX DIVISION
$=\quad$ Carries out complex division.
COMPLEX SQUARE ROOT
$=$ Computes the complex square root.
COMPLEX CONJUGATE $=\quad$ Computes the complex conjugate.
COMPLEX ROOTS $=\quad$ Computes the complex roots.
COMPLEX CONJUGATE $=$ Computes the complex conjugate.

APPLICATIONS

Mathematics
IMPLEMENTATION DATE
87/10
PROGRAM
LET X1 = DATA 132
LET Y1 = DATA 252
LET X2 Y2 = COMPLEX EXPONENTIATION X1 Y1
WRITE X1 Y1 X2 Y2

