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• Output variable is Cumulative Tons of Cargo Delivered
• Input variables (8) include Use Rate, Fuel Flow, ….

• A sample of plausible alternative input values generates
prediction-uncertainty band.

• Discover effect of setting one of the inputs (Use Rate) to
its nominal value in the runs.

• Discover that a combination of two inputs (Use Rate and
Fuel Flow) controls variability.

Day

To
ns

 o
f C

ar
go

See next slide
for examples

Introduction to input uncertainty by way of a simple
example with a discrete event simulation of movement of
cargo by aircraft
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Reduced (conditional)
uncertainty bands

All 8 inputs vary

1 input fixed at nominal

2 inputs fixed at
2 X 2 = 4 values

We want to find inputs
that control spread.

Full prediction-
uncertainty band

Focus: prediction-uncertainty bands and important inputs
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Introductory mathematical formulation

• System response is w.
• Physical conditions are u.
• Nature’s rules denoted by

w = M(u).
Footnotes:
• Realistically, system response is a

complex quantity W for which y
models features w = �(W).

• u may not be completely known (or
knowable) in advance.

• More than just u might be needed
to determine w.

• Model prediction is y.
• Model inputs are x.
• Calculation is denoted by

y = m(x).
Footnotes:
• Not knowing how to match x to u,

we treat x as a random variable.
• Finding a suitable probability

distribution for x is usually
difficult.
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Towards assessing quality of prediction :
Uncertainty quantification before model validation

• Objective of uncertainty quantification is determination of
how far apart w (real outcome) and y (predicted outcome)
are likely to be at a specific prediction point (x*, u*) in light
of evidence V at other, specific data points (xv, uv).

• Some reasons why w* and y* might be expected to differ:
– Principles (rules) assumed to produce w and/or the ways they are

incorporated in m are incomplete (modeling uncertainty).
– Specification of a single value for model inputs x in the

mathematical world does not adequately characterize actual
conditions u in the physical world (input uncertainty).

– Degree of agreement between w* and y* is warranted by strength of
evidence V (combining information: input uncertainty and
observed data).

(ongoing
research)

(future
research)
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                 x m y

Uncertainty region for
model prediction: yD

( )( ) ~ ,y yy m x f y y D= ∈

Probability function            describes input uncertainty
and           describes output or prediction uncertainty.
For now, we are looking at a single model.

( )xf x
( )yf y

Plausibility region for
model inputs:

( )~ ,x xx f x x D∈
xD

General description for input uncertainty
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p inputs I values # points in
input space

30 2 109

30 5 1021

84 5 1058

Why statistical methods?

• The space of possibilities that generates uncertainties is too
big to be enumerated.

• Suppose uncertainties are due to plausible alternative
values of p inputs defined on sets (intervals) characterized
by I values (low, high, etc.)
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Three types of experiments

• Laboratory Experiments. Factors affecting response
variables are controllable to within physical and budgetary
limitations.  Number of experiments is often small.

• Field Experiments.  (e.g., clinical trials) Combinations of
factors are usually only selectable.  Number of
experimental units is frequently quite large.

• Computer Experiments. Factors are completely
controllable, values are numerical quantities. Number of
runs may range from very few to very many.
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Analysis assumptions
stronger weaker

larger

smaller

Sample size

Nonparametric
methods

Smarter
methods

Methods of
necessity

Dumb
methods

Methodology grid



10

Question I:
Quantifying uncertainty

Estimate where y is likely to be and characteristics of its
probability distribution, for example:

•      , mean value     , variance      .

• Tolerance bounds          that have probability content

     p with confidence level                            .

• Density function or empirical distribution function

                                                 .( ) { }ˆ  Est. PryF t y t= ≤

( )1 100%α− ×

ˆ
yD

( )ˆˆ,a b
yµ 2

yσ
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• Full model prediction with (all)    :

• Partition                   where                        selects a subset
of input variables.

• Restricted prediction with only    :

Question II:
Uncertainty importance (McKay 1997 Reliability Engineering and
System Safety)

( ) ( ) ( ) with ~ xy x m x x f x=

s sx x x= �

( ) ( ) ( )
( ) ( )

|  with ~

|s

s s s s
s
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m x f x x dx
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• How does knowing      reduce uncertainty, or
• How close is    to    (on average)?
• Measure uncertainty importance of      by

•      must be estimated from a sample of runs.

Uncertainty importance (continued)
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( ) Var( ) Var( )
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Correlation ratio Var( ) / Var( )

E y y y y
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− = −

=

� �

�

2η



13

The correlation ratio (Pearson 1903 Proceedings of the Royal Society of
London) as an importance measure
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Var( ) Var( ) [Var( | )]
Correlation ratio Var( ) / Var( )
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“R
estricted predictions”

Values of a subset xs

y=

( | )sE y xy= =�
Spread of    s Var( )y=

Var( | )sy x=Spread of   s around   

Var( )y= �Spread of    s

reduced(?) bands

full prediction-
uncertainty band

Note the I = 4 groups
of J = 3 values of y.

Input uncertainty is described by the probability function ( ).
Consider a partition of  .   may be a single input.s s s

f x
x x x x� �
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For each of  sample values , let  be  sample values of the
other inputs and  be the  corresponding output values.

1 1Let    and   .

Estimate  with 
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I = number of    and J = number of    for each

Sample estimates of components of correlation ratio, ����2
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Latin hypercube sampling (LHS)
(McKay, Conover and Beckman 1979 Technometrics)

• Range of each input is divided into n equal probability
intervals.

• Each interval is (conditionally) sampled once.
• Values are combined at random across input variables.

Property: each input variable is represented by n distinct
values that cover its range.
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x1
x2
x3

xp

y2yn y1

      1            2            3             …           n

n points in Dx from an LHS often produce better estimates
than a random sample, depending on model and statistic.

y

Parallel coordinates plot (Wegman 1990 Journal of the American
Statistical Association) of an LHS
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Replicated rLHS: J samples of size I
       Alternatively, orthogonal array designs

Same values     on each axis but different combinations. 

y21yI1 y13y23yI3y11 y22 yI2y12
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Practice:
Summary of a procedure

• Identify inputs.
• Define range of values and probability distributions.
• Generate sample values for inputs.
• Make computer runs and record output values.
• Analysis: estimate output probability function and

calculate R2 values for each input.
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Case study: finding a small subset of inputs that drives the
calculation

Compartmentalized environmental transport model
(84 real plus 16 fictitious input variables)

We first look at
single inputs



20

Prediction band:
Estimated density function of y
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In the best of worlds:
Pattern of ordered R2 values for 100 inputs
(from a sample of size 5000)

Pattern suggests 4 groups
of indistinguishable inputs
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What inputs do:
Patterns of average y (  ) for top 9 inputs
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             24                     84                     63

             35                     83                     67

             68                      1                     69
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Reduced prediction bands:
Conditional densities with 10 inputs fixed
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In the not-so-best of worlds:
Pattern of ordered R2 values for 100 inputs
(from a sample of size 10!)

Pattern suggests 1 group
of indistinguishable inputs
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Finding significantly large values of R2

• Critical value of R2 for testing H0: �2 = 0 can be derived
from the F distribution under assumptions of normality and
independent random sampling of inputs.

• Because we look simultaneously at many (p = 100) inputs,
we set the “experiment-wide” alpha level.  That is, we
want the probability of falsely detecting one or more
“important” inputs (out of 100) to be alpha.

• For a choice of � and p variables (tests), we use the critical
value corresponding to �* = 1 - (1 - �)1/p.  For example,
for � = .05 and  p = 100,  �* = 1 - (1 - .05)1/100 = .000513

• Since �2 = 0 is not likely for model-input variables, we
interpret the test as one of distinguishing among (sets of)
inputs with different values of �2.
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R2s and critical value (horizontal line) for 84 inputs plus
16 fictitious variables (*) in 9 experimental designs (I x J)
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Fictitious variables
• In the analysis, fictitious variables have I values each

repeated J times, like those of real inputs.  However, the
values are assigned at random to the computer runs, and
have nothing at all to do with computations.

• If fictitious variables appear among the top K with largest
R2, we would have reason to question whether those K are
statistically different from the rest.

• A statistical test based on the number k out of f fictitious
variables appearing in the top K out of n =  p + f  variables
in total can be constructed from the of the hypergeometric
distribution.

• Theoretical work is in progress.  Some observations
follow.
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What might happen:
Sample-to-sample and design variability

Columns are top K = 5 inputs with largest R2.  There are 4 samples from
each of 2 different designs, with  f  = 16 and p = 84 variables.

I=50 and J=10
#1 #2 #3 #4
1
69
68
24
35
…

1
69
68
24
84
…

69
68
1

63
84
…

69
1
68
84
35
…

I=5 and J=10
#1 #2 #3 #4
69
68
1
75
90
…

77
68
55
82
84
…

68
55
24
63
6
…

37
85
69
24
72
…
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Average number of fictitious variables in top K = 10 from
(only!) 9 simulations with p = 84 real and f = 16 fictitious
variables

Value of  J
Value
of  I 2 10 50

5 2.0 0.9 0.7

50 1.9 0.8 0.1

100 1.3 0.1 0.0
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Sample-to-sample variability

Top 3 inputs are the same for the 4 samples

I=50 and J=10
#1 #2 #3 #4
1
69
68
24
35
…

1
69
68
24
84
…

69
68
1

63
84
…

69
1
68
84
35
…
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Inputs that stand out:
Ordered R2 values for 100 inputs
(from a sample of size 5000)
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A story in patterns?

Conjecture---With the I=100 and J=50 design, the R2 statistic
identifies 4 groups of equivalent input variables of sizes 3,
3, 4, and the remaining 74.  Within each group, inputs are
not distinguishable.

Test---Examine the consistency of composition of sets of top
s =1, 2, 3 inputs with largest R2, for replicated independent
samples.
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Mean Squared Distance details

• Let         be a vector of length p (=100) with k (=1,2,…) 1s
and (p-k) 0s.  Typically, (0,1,1,…,1,0) indicates a set of k
out of p inputs.

•                                             is the (normalized) vector
    between sets i and j, and                        is the squared

distance between them.

•                                                                is the average or

 mean squared distance among n (=9) such sets.

•                                       if the 1s are assigned at random,

i.e.,  the inputs are not distinguishable.

( ) ( )
1

1 1

2( )
( 1)

n n
T

ij ij
i j i

MSD k d k d k
n n

−

= = +

=
− ��

( )s k

( ) ( )T
ij ijd k d k

[ ]( ) 2 1 kE MSD k
p

� �= −� �
� �

( ) 1 ( ) ( )ij i jd k s k s k
k
� �= −� �
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Groupings of important inputs:
MSD for I=100 and J=50 sample
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Remaining power & inconsistency:
MSD without top 10 inputs
(for I=100 and J=50)

Subset size (k)
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How many runs are needed?
Patterns of MSD for 9 designs
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Summary
• Variance of y is a measure of prediction uncertainty

induced by inputs.

• Uncertainty importance of a subset of inputs refers to their
contribution to prediction uncertainty.  It can be measured
by a variance ratio called the correlation ratio.

• The ratio of sums-of-squares called R2 is proportional to a
(biased) estimator of the correlation ratio.

• Sample or statistical variability of R2 depends on the
design parameters I and J.  It causes false indications of
importance as well failure to distinguish among inputs.

• Use of critical values with experiment-wide alpha level as
well as fictitious variables can help control and point out
ill effects due to sample design.
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Concluding Remarks

Characterizing causes of prediction uncertainty is only a
small part of a complex process called “model evaluation.”
This talk focused on an initial step of a procedure to search
for a small subset of model inputs that accounts for a
significant fraction of prediction uncertainty.  We saw how
conclusions based on a statistic (R2) about importance of
inputs can vary significantly depending on sample size and
design.  We saw how a mathematical understanding of
certain patterns could be used as a diagnostic tool to assess
the reliability of the analysis.


