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A 2.5 m diameter centrifuge is presently being developed by the Japan Aerospace 
Exploration Agency (JAXA) for installation on the International Space Station (ISS). While 
this will enable biological experiments at variable gravity levels, if an imbalance in the large 
rotating mass of the centrifuge rotor is allowed to persist, it will cause vibrations that disturb 
the micro-gravity environment of the ISS. This paper presents an approach for automatic 
balancing and intelligent fault tolerance. It has been developed and tested in simulation on a 
model of an early centrifuge design prototype developed at NASA Ames Research Center. 
The high fidelity automatic balancing system (ABS) can sense the imbalance (both static and 
dynamic) and drive counterweights to minimize the effects of the imbalance. The algorithm 
consists of an on-line recursive least-squares (RLS) based imbalance estimator which 
outputs to a simple counterweight control system. The sensor fault detection, isolation, and 
reconfiguration (FDIR) system uses a maximum likelihood approach. The counterweight 
FDIR performs a simple check of the encoder and motion commands to detect sticking or 
skipping. These systems are developed and tested in MATLAB simulation. Extension of 
these algorithms for application on the present design of the ISS Centrifuge is 
straightforward and could result in a high performance and autonomously fault-tolerant 
ABS. 

Nomenclature 
A  – [matrix] a matrix in the general formulation of the LS problem, Ax b≅ . 
B  – [8-by-1 vector] of strain gauge biases [Newtons] 
b  – [vector] a vector in the general formulation of the LS problem, Ax b≅ . 
cψ  – [scalar] abbreviation for cosψ . [] 

NFNE  – [4-by-1 vector] of net force noise – unknown net forces and torques on the rotor [Newtons, Newton-meters] 

SFNE  – [8-by-1 vector] of strain gauge force noise – the difference between the -generated force and the actual 
force seen by the strain gauge (e.g., due to vibrations). [Newtons] 

netF

SSNE  – [8-by-1 vector] of strain gauge sensor noise – the difference between the actual force seen by the strain 
gauge and the sensor output. [Newtons] 

1 2( , , , )NF x x x  – [scalar] joint probability distribution function used in maximum likelihood SG FDIR 
derivation. [] 

1 2( , , , )Nf x x x  – [scalar] joint probability density function used in maximum likelihood SG FDIR derivation. [] 

netF  – [4-by-1 vector] net force and torque on the rotor, measured in the rotor frame. Equal to 
T

x y x yF F τ τ⎡⎣ ⎤⎦

                                                          

. [Newtons, Newton-meters] 
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xF  – [scalar] element of , net force on the rotor in the +x in the rotor frame. +y direction indicated by netF yF . 
[Newtons] 

G  – [8-by-4 matrix] constant matrix that accounts for the strain gauge locations in the transformation from  to 

. “G” is for “geometry.” 
netF

trueS
g  – [scalar] acceleration due to gravity. [meters/second2] 
I – [8-by-8 matrix] identity matrix. 
i  – [scalar] failure mode number. [] 

isolatedi  – [scalar] failure mode number that has been declared as the isolated fault (whether true or not). [] 
*i  – [scalar] true failure mode number. [] 
J  – [scalar] cost variable minimized in the least squares derivation. 
k  – [scalar] sample time counter. [] 
l  – [scalar] z-axis coordinate of the upper counterweight plane. Lower plane coordinate is . The origin of the z-

axis is defined as the midpoint between the upper and lower counterweight planes. [meters] 
l−

m  – [scalar] mass of the rotor. [kg] 

cm  – [scalar] mass of the MCI. Can be chosen arbitrarily. [kg] 

pm  – [scalar] mass of the PMI. Can be chosen arbitrarily. [kg] 

cCWm  – [scalar] mass of the mass-couple used to represent the effects of the counterweights. [kg] 

pCWm  – [scalar] mass of the point mass used to represent the effects of the counterweights. [kg] 

N  – [scalar] number of measurements in the window used in maximum likelihood SG FDIR. [] 

,i kr  – [scalar] residual corresponding to failure mode i , measured at time update , used for SG FDIR. [Newtons] k
S  – [8-by-1 vector] filtered and combined strain gauge force measurement vector. [Newtons] 

trueS  – [8-by-1 vector] the true forces carried by the strain gauge force transducers. [Newtons] 

AxfS  – [scalar] filtered and combined strain gauge reading indicating the force in the A strain gauge plane (upper) in 
the +x direction for the fixed pair of gauges. B plane, +y direction, spinning pairs of gauges indicated by 

. [Newtons] , , , , , ,Ayf Bxf Byf Axs Ays Bxs BysS S S S S S S
sψ  – [scalar] abbreviation for sinψ . [] 
T  – [8-by-8 matrix] transformation matrix that accounts for the angle of the rotor relative to the fixed gauges. “T” 

is for “transformation.” [] 
t - [scalar] time. [seconds] 
x  – [vector] a vector in the general formulation of the LS problem, Ax b≅ . 

, , , , ,c c xc yc xc ycx y v v a a  – [scalars] position, velocity, and acceleration, in x and y directions, of the MCI. No 
further subscripts implies the imbalance, the subscript CW indicates the counterweights. [meters, 
meters/second, meters/second2] 

, , , , ,p p xp yp xp ypx y v v a a  – [scalars] position, velocity, and acceleration, in x and y directions, of the PMI. No 
further subscripts implies the imbalance, the subscript CW indicates the counterweights. [meters, 
meters/second, meters/second2] 

W  – [diagonal matrix] weighting matrix in the batch LS solution, ( ) 1
ˆ T Tx A WA A Wb

−
= . [] 

Afz – [scalar] z-axis coordinate of the  and  strain gauges. Coordinates of the B plane and spinning pairs 

of gauges indicated by . [meters] 
AxfS AyfS

, ,Bf As Bsz z z

mz  – [scalar] z-axis coordinate of the rotor center of mass. [meters] 
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m xz φ  – [scalar] linearizing identified variable, m x m xz zφ φ . m y m yz zφ φ  is the corresponding variable for the y-
axis. [meter-radians] 

 
α  – [scalar] rotor angular acceleration. [radians/second2] 
β  – [scalar] strain gauge bias. [Newtons] 
Γ  – [4-by-8 matrix] constant matrix that is a function of the fixed system geometry only (strain gauge locations, 

etc.), used in the estimation of n̂etF . . 1( )T TG G G−Γ
γ  – [scalar] the generalized likelihood ratio. [] 
δ  – [4-by-1 vector] of effective counterweight coordinates. Positions, velocities, and accelerations are indicated by 

1 2 3 4 1 2 3 4 1 2 3 4δ δ δ δ δ δ δ δ δ δ δ δ⎡ ⎤⎣ ⎦ . [meters, meters/second, meters/second2] 

ε  – [scalar or vector] noise. 

CWθ  – [4-by-1 to 12-by-1 vector] the vector of counterweight parameters. 

,pos desiredCWθ  – [4-by-1 vector] the vector of desired counterweight position parameters. 

IBθ  – [4-by-1 to 12-by-1 vector] the vector of imbalance parameters to be estimated. 

posIBθ  – [4-by-1 vector] the vector of imbalance position parameters. 

Misalignmentθ  – [4-by-1 vector] the vector of spin-axis misalignment parameters to be estimated. 

µ  – [scalar] mean of the Gaussian probability distribution used to approximate variability in the SG residuals. 
σ  – [scalar] standard deviation of the Gaussian probability distribution used to approximate variability in the SG 

residuals. 

xτ  – [scalar] element of , net torque on the rotor about the +x axis of the rotor frame, caused by the imbalance. 

+y direction indicated by 
netF

yτ . [Newton-meters] 

( ,p cm mΦ )  – [4-by-4 to 4-by-12 matrix] the Φ  matrix from netF θ= Φ , written as a function of the point mass 

and mass couple. Can represent either  or ( ,IB p cm mΦ = Φ ) ( , )CW pCW cCWm mΦ = Φ . 

IBΦ  – [4-by-4 to 4-by-12 matrix] the Φ  matrix from netF θ= Φ , for the imbalance. 

CWΦ  – [4-by-4 to 4-by-12 matrix] the  matrix from Φ netF θ= Φ , for the counterweights. 

MisalignmentΦ  – [4-by-4 matrix] the Φ  matrix from netF θ= Φ , for the spin-axis misalignment. 

xφ  – [scalar] spin-axis misalignment angle, about the x-axis. yφ  indicates misalignment about the y-axis. [radians] 

ψ  – [scalar] absolute rotor angle. [radians] 
ω  – [scalar] rotor angular rate. [radians/second] 
 
Frames: unless otherwise specified calculations are in the rotor frame. 
Subscripts: For  and its elements, no subscript means the total; additional subscripts, as in 

, indicate that part of the net force due to the imbalance (IB), counterweights 

(CW), and axial misalignment (Misalignment).  is broken down further into that part due to the PMI, 

netF
, ,netIB netCW netMisalignmentF F F

netIBF

pnetIBF , and that due to the MCI, . 
cnetIBF

Estimated/identified values are indicated with a ^. For example, n̂etF  is the estimate of , obtained through a 
least squares fit of the strain gauge measurements. 

netF

Units for each variable are given in [] at the end of each definition. If a variable is unit-less, empty brackets are 
drawn, if the units are not known exactly, no brackets are drawn. 

Abbreviations are listed in Appendix A. 
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I. Introduction 
The autobalancing control systems developed and presented here were developed initially for a centrifuge 

hardware prototype developed at NASA Ames, and before the ISS Centrifuge design was developed. This hardware 
prototype is described in detail in this section, along with comparison and explanation of relevance to the ISS 
Centrifuge design. 

A space based centrifuge will allow biological experiments below 1g (the ISS Centrifuge will allow a full range 
from 0-2g), for example, Mars (0.38g) and Moon (0.16g) levels of gravity, something not possible on Earth. Also, 
by running the centrifuge at 1g, it serves as a valuable control for comparison with experiments to be run in zero g 
on the ISS. Previous experiments from previous smaller space-based centrifuges have demonstrated the need for 
such a control. 

However, other experiments aboard the ISS require micro-gravity vibration isolation. So any imbalances in the 
centrifuge that might cause vibrational disturbances on the ISS must be attenuated by automatic on-line balancing as 
well as vibration isolation of the centrifuge. The research reported here focuses only on the automatic on-line 
balancing and the associated fault tolerance. In an automatic balancing system, feedback from sensors measuring 
rotor motions or forces (e.g., strain gauges, displacement sensors, or accelerometers) is used to drive active 
counterweights to null the imbalance and resulting vibrations. A supporting system may include a passive or active 
vibration isolation system to further attenuate any vibrations emanating from the centrifuge rotor. 

A. SSRL centrifuge laboratory prototype 

 

 
Figure 1. The SSRL centrifuge laboratory prototype - autobalancing hardware simulator 
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The NASA Ames Smart Systems Research Laboratory (SSRL) Centrifuge laboratory prototype, developed in 
1993-1995, is shown in Figure 1‡. It can float on four 8-inch diameter Fox Air Bearings with spherical air bearing 
pivots, allowing the vertical spin axis to translate in x and y in response to imbalances. The spin axis is permitted to 
rotate slightly, as discussed below, but it is a much stiffer spring suspension than the Vibration Isolation Mechanism 
(VIM) of the present ISS Centrifuge design. 

There are 12 counterweights (CWs) constructed of stepper motors (providing the counterbalance mass as well as 
actuation) and encoders that drive along lead screws (also known as ACME screws or trapezoidal screws–these are 
different from the ISS Centrifuge which uses ball screws). The CWs are located in upper and lower planes of 4 
radial CWs and 4 vertically moving CWs. The vertically moving ones are not used in this research, and the 8 
remaining CWs provide redundancy as only 4 are required. The redundant CWs may be used to simulate animal 
movement or creating disturbances. 

There are locations for 24 strain gauges (SGs) to measure imbalance forces. Eight of them do not rotate, and are 
for measuring the force between the stator and the air bearing platform. No SGs are installed at those 8 locations. 8 
SG locations rotate with the rotor, near the upper CW plane. Of these 8 locations, 4 SGs are installed, equally spaced 
through one rotation (90 degrees apart). Same goes for a plane near the lower CW plane, meaning that the hardware 
presently has a total of 8 rotating SGs. The SG assemblies are viscoelastic, allowing for slight displacement (on the 
order of 1-2 mm) and providing damping. The angular (tip-tilt) natural frequency of the rotor is on the order of 3 Hz, 
and the damping ratio is about 0.1. Planned, but not yet installed, are displacement sensors that would measure the 
base translations in the horizontal dimensions. 

Hardware implementation of this autobalancing technology on the SSRL Centrifuge began in 1996, but was 
tabled due to lack of funding. The project lay dormant until 2001-2002 when the FDIR capability was added to the 
MATLAB simulation. 

B. SSRL centrifuge research, historical overview 

In 1993, the SSRL initiated the development of a space centrifuge testbed. The purpose was to provide an in-
house capability to test advanced technologies that may greatly enhance centrifuge control and operation, and to 
demonstrate proof-of-concept operation. Due to funding cuts in 1995, the centrifuge testbed development effort was 
put on hold while the advanced technology development work continued at a lower level of effort. The testbed 
remains intact and can be reconfigured to reflect the current ISS Centrifuge Rotor design. 

The initial SSRL goals were focused on developing advanced technologies for “real-time adaptive control of 
time varying nonlinear systems with unknown structures.” The rationale was that the centrifuge rotor properties 
were time varying and not known well since there are random animal motions, dynamic fluid coupling loads, 
aerodynamic effects from different habitat configurations and placements, etc. The presumptions were that 
centrifuge rotor balancing had to be performed in as close to real-time as possible to achieve near-perfect balance 
condition, and that any residual vibrational disturbances (since it is impossible to completely cancel the effect of a 
sudden impact) will have to be vibration isolated from the ISS to preserve the microgravity environment required by 
other experiments on the ISS. 

One of the initial SSRL objectives was to determine the optimal configuration (of sensors, counterweights, 
vibration isolation actuators, and passive vibration isolation elements) for real-time centrifuge rotor balancing and 
vibration control and isolation. Engineering analyses were performed on various configurations including: 

• Counterweights on circular rings about the spin axis 

• Counterweights on linear tracks, both parallel to and radial to the spin axis 

• Vibration isolation actuators mounted on the oscillating centrifuge base 

• Vibration isolation actuators mounted on a stationary barrier that enclosed the oscillating centrifuge 
base 

Other SSRL objectives include developing, testing, and validating the performance of: 

• Real-time autobalancing algorithms 

                                                           
‡ NASA Ames SSRL engineer, Michael C. Guerrero of Guerrero Engineering (mguerrer@email.arc.nasa.gov) 
performed detailed mechanical design and fabrication of the SSRL Centrifuge prototype. SSRL engineer, 
Alessandro Galvagni developed the software for sensor and motor interfaces. 
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• Robust centrifuge operation in face of sensor failures: online fault detection isolation reconfiguration 
(FDIR) using online neural networks (NN) learning technology 

• Sensor noise reduction or cancellation using Adaptive Noise Cancellation technology 

• Robust centrifuge operation in face of balancing mechanism failures: detection and isolation of failure, 
followed by reconfiguration using the remaining counterweights 

• Optimum sensor configuration: rotating sensors vs. non-rotating sensors; force vs. displacement vs. 
acceleration; and combinations of the preceding options 

• Active vibration isolation control: using long stroke voice coil actuators mounted on stationary barrier 
or oscillating centrifuge base (C shaped end-effectors to prevent impact contact between stationary 
barrier and oscillating centrifuge base) 

Initial advanced technology algorithms under development have included: 

• Offline/online NN mapping of sensor readings to known imbalance (counterweight compensation is 
then required at location 180 degrees from identified imbalance; information on individual 
counterweight positioning is not determined here) 

• Offline/online NN pseudo inverse modeling (imbalance location, or sensor readings, to counterweight 
positions for the balance condition; calibrates counterweight positions for precise static/dynamic 
balancing) 

• Nonlinear restoring force that allows free oscillation of the centrifuge base at the center of an 
enclosure, re-centers the centrifuge base location, and prevents impact with the enclosure barrier 

Advanced technology software solutions under development employed the following: 

• Levenberg-Marquardt trained, multiple layer, feed forward neural networks 

• Cerebellar Model Articulation Controller (CMAC) 

• Radial basis neural networks 

• Maximum likelihood, recursive least squares 

C. Comparison of SSRL and ISS centrifuges 

During this period of technology development at the SSRL, the ISS Centrifuge design was developed by JAXA, 
along with contractors Toshiba and NT Space, and is now in a near final form1-5. Significant differences between the 
SSRL Centrifuge and the current ISS Centrifuge design are that: 

• The spin axis for the SSRL Centrifuge can translate freely in x and y, but not wobble (rotational motion of 
the spin axis is stiffly constrained – modeled as perfectly stiff for now), whereas the ISS centrifuge spin 
axis has 3 translational and 2 rotational degrees of freedom, supported by a very compliant vibration 
isolation mechanism consisting of springs and dampers (both passive and active). 

• The imbalance sensors for the SSRL Centrifuge are strain gauges both in the rotor and the stator, measuring 
the imbalance forces, whereas the ISS Centrifuge uses eddy current displacement sensors to measure the 
displacements of the compliant vibration isolation mechanism (VIM) resulting from imbalance. 

Due to the differences between the two configurations, this research will need to be extended to enable 
application to the ISS Centrifuge. The following outlines steps towards completing this task. 

1. Removing the constraint that the spin axis is fixed, allowing free or passively/actively constrained motion 
of the spin-axis. 

2. Represent imbalance differently, to account for 3-D model – e.g., mass center location and inertia matrix 

3. Use the ISS Centrifuge counterweight locations. 

4. Use the ISS Centrifuge bearing displacement sensors (BDSs). 
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5. Model the ISS Centrifuge vibration isolation mechanism (VIM), including springs and dampers, both 
passive and active. 

6. Integrate with ADAMS from MSC Software for testing – thought is to have a simpler, medium fidelity 
model derived (by hand) for the autobalancer design, but then to test it on the ADAMS model that is fully 
nonlinear and models the rotor flexibility. 

Although the configuration change is significant, it should be possible to extend the basic approaches taken for 
the SSRL configuration to the ISS configuration, following the overall approach of the autobalancing and FDIR 
systems. 

The key novel concepts in the present design will apply directly to the updated design. These are: 
1. Modeling the rotor as a rigid body, and condensing all sensor measurements at each time update to a 

concise representation of the imbalance-induced forces and moments on the rotor. 

2. A control system that follows an indirect adaptive control architecture. It explicitly estimates the imbalance 
parameters, with the effect of counterweights calculated and subtracted out. Then a straightforward 
counterweight control system drives the CWs to null the total imbalance. 

3. The sensor FDIR system ties in directly with the estimation of imbalance forces and moments, allowing 
efficient fault detection and isolation, and then reconfiguration by ignoring the failed sensor. 

4. The actuator FDIR system ties in directly with the CW control system, allowing hardware redundancy to 
account for a stuck CW. 

5. The combined sensor and actuator FDIR systems should allow autonomous fault tolerance, allowing the 
system to continue operation in the face of sensor or actuator faults. The segmentation of 
sensing/identification and actuation/balancing facilitates this reconfiguration, as, for example, a failed 
actuator does not impact the identification at all. 

Brief summary of the autobalancing method presented in this report: 
1. The centrifuge rotor is modeled as a rigid body spinning about a fixed axis. 

2. The rotor imbalance is represented in a compact, intuitive way as the x- and y-locations of a point mass in a 
central plane and a pair of asymmetrically located point masses in off-central planes. This four-parameter 
representation is sufficient to represent an arbitrary imbalance and can be intuitively related to 
counterweight motions. 

3. The rotor imbalance (not including counterweights) is estimated at each sample period as follows: 

a. Sensor signals (strain gauges, counterweight positions, velocities, and accelerations, rotor angle 
encoder and tachometer) are combined, using a least-squares fit, to calculate the estimated net 
force and torque in x and y ( xIB yIB xIB yIBF F τ τ ) created by the imbalance. 

b. The four imbalance parameters (mentioned in (2) above) and their derivatives are estimated using 
these forces and torques. This uses a dynamic model of the rotor that calculates effects due to the 
position, velocity, and acceleration of the imbalance parameters. 

4. The counterweights are driven to exactly counteract the estimated rotor imbalance. 

This autobalancing approach can be considered an indirect method (analogous to indirect vs. direct adaptive 
control) since the sensor signals are used to build a model of the imbalance, then corrective action is taken based on 
the identified model parameters. In a direct method, (filtered, and mathematically manipulated) sensor signals would 
be used to directly drive the counterweights. Hopefully, this feedback loop would drive the counterweights until the 
sensors read zero. The increased complexity of the indirect method presented here enables more accurate fitting of 
the sensor data to the dynamic model of the imbalance. Whether the increased accuracy of the indirect method 
produces results that are sufficiently better than those of the direct method will depend on the characteristics of the 
imbalance (how fast it is moving, etc.) and sensor noise. 

A previous similar approach was developed by the author, concluding in October 1995. The major improvement 
made in the current version involves breaking up the identification so that all sensor signals are reduced (combined) 
to result in an intermediate estimation of the net forces and torques on the rotor. In the previous approach, all sensors 
were used directly to identify the imbalance parameters. In the present approach, all sensors (strain gauges, 
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counterweight positions, velocities, and accelerations, rotor angle encoder and tachometer) are used at each sample 
period to calculate four variables: the estimated net force and torque in x and y ( xIB yIB xIB yIBF F τ τ ) created 
by the imbalance. This process involves a least squares fit to the data, using a model of the sensor geometry and 
subtracting out known forces due to the counterweights. These four variables then pass to the imbalance 
identification algorithm. Benefits of segmenting the identification into these two parts are: 

1. Physically, the four imbalance parameters are directly related to these four intermediate variables 
( xIB yIB xIB yIBF F τ τ ). The relation between sensor values and these intermediate variables is more 
direct than that between sensor values and imbalance parameters. This logically separates estimation of 
forces and torques created by the imbalance from the estimation of imbalance parameters themselves. 

2. It is easier to identify failed sensors, since the analysis can be performed without regard to the imbalance 
dynamics – one can analyze the residuals in the estimation of the intermediate variables. 

3. If sensors change (e.g., on-line failure, design change, etc.), the second part of the identification (that finds 
imbalance parameters from estimated forces and torques) does not have to be changed. 

4. Overall complexity is reduced by breaking one large problem into two smaller ones. No accuracy is lost, 
due to the physical reasoning listed in (1) above. 

D. Related research 

Extensive literature exists on balancing rotating machinery, including centrifuges. Some of this literature relates 
to on-line automatic balancing, but there is very little published work related to balancing of a space-based 
centrifuge. The micro-gravity dynamics, extreme sensitivity to vibrations, and requirement to track moving 
imbalances (due to moving rodents in the centrifuge habitats) puts this research outside the region of relevance of 
much of the existing work. 

The developers of the actual ISS centrifuge autobalancing system at Toshiba, NEC Toshiba Space Systems, and 
JAXA have published summaries of their control systems1-5, which should be taken as the state of the art in this 
field. In any well designed control system there is an important balance between performance and complexity. 
Although direct comparison of the control system approach presented here with the ISS Centrifuge control system 
design has not been performed, it is judged that the authors’ approach will provide higher performance (faster 
response to imbalance changes and reduced vibration generation) and better fault tolerance at the expense of 
complexity of software implementation and support. 

E. Reader’s guide 

Section II briefly describes the control system architecture. 
Section III describes the imbalance parameter estimation in extensive detail. Many readers will prefer to skim 

this section, as it provides in-depth documentation of the various permutations of imbalance identification 
algorithms. Sensor FDIR is included here. 

Section IV describes the algorithms to calculate CW commands based on the identification results, along with 
CW FDIR. 

Section V describes the MATLAB software simulation implementation, along with example results. 
In this report, equations are numbered. Repeated equations share the number of the original equation, with the 

numbering italicized. 
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II. Control system architecture 

ID system:  use sensed variables
(ψ,ω,α , FxIB, FyIB, τxIB, τyIB)

and known parameters to estimate
imbalance parameters (xp, yp,

xc, yc), their derivatives,
and sensor biases (β1, ... , β8)

Filter, Estimator

Add, Subtract,
Scale, Filter

(possibly non-
causal filter),

Identify (Linear
Regression)

Calculate net
forces and

torques on the
disk that are due
to counterweights

only

Simple servo
control loop to

move
counterweights to
desired locations

Calculate desired
counterweight

positions
(possibly with
low-pass filter

on output)

encoder,
tachometer,

motor current
sensors

raw strain
gauge signals,

FAx1, FAx2, ...

counterweight
positions,
velocities,

accelerations

ψ,ω,α

Fx
Fy
τx

τy

xp
yp
xc
yc

CW1
CW2
CW3
CW4

CW - counterweight
IB - imbalance
FAx1 - strain gauge measurement
Fx - net force on disk in x-direction
τx - net torque on disk about x-axis
ψ, ω, α  - disk angle, angular rate, angular

acceleration
xp - x-location of imbalance point mass
xc - x-location of upper mass from

imbalance couple

FxIB
FyIB
τxIB

τyIB

FxCW
FyCW
τxCW

τyCW  
Figure 2. Simplified control system block diagram 

The control system architecture is presented in Figure 2. At the highest level the controller works in two steps: 1. 
the imbalance parameters are estimated ( , , , )p p c cx y x y ; and 2. the counterweight locations that null this identified 
imbalance are calculated and commanded. 

The imbalance parameter estimation first reduces all sensor inputs into a vector of net forces and torques on the 
rotor ( , , , )x y x yF F τ τ , subtracts out the force vector contributed by the CWs ( , , ,xCW yCW xCW yCWF F )τ τ , leaving 

the force vector attributable to the imbalance of the rotor itself, without CWs ( , , ,xIB yIB xIB yIBF F )τ τ . This vector 
(note that these are not physical vectors) is then used, along with a model of the centrifuge rotor, to identify the rotor 
imbalance parameters. 

Details of the identification are presented in Section III, with sensor FDIR presented in Section III.L, and details 
of the counterweight control and FDIR are presented in Section IV. 

III. Imbalance identification 
The basic approach taken here to identify the imbalance, or to estimate its parameters, is: 
1. Calculate (identify) the net forces and torques on the rotor at each sample period, based upon the strain 

gauge measurements. 
2. Subtract out the forces due to the counterweights, leaving the forces due only to the imbalances. 
3. Identify the “imbalance parameters” corresponding to these forces that define the state of imbalance in the 

rotor. 
An indirect, model-based approach like this should work well if the form of the model can be identified correctly 

and the sensors are not excessively noisy or biased. 
This section contains very detailed derivations of the imbalance parameter estimation algorithms, for a variety of 

configuration options. However, it is important to note that the algorithms have been optimized carefully for run-
time efficiency, and they reduce in the end to simple and straightforward matrix operations that are amenable to real-
time implementation. The simplified algorithms are summarized in Section III.J. 

The sensor FDIR system, which is tightly integrated with the imbalance parameter estimation, is described in 
Section III.L. 
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A. Least squares regression background 

Both the reduction of strain gauge measurements to net forces and torques, and the identification of imbalance 
parameters are achieved using least squares regression. The mathematics behind this approach is reviewed briefly 
here. The standard form for a linear least squares problem is given in Eq. (1) or (2) 

 Ax b ε= +  (1) 

 Ax b≅  (2) 

where  is a vector of (perfect) measurements, ε is a vector of measurement noise, b x  contains the parameters to be 
identified, and matrix A  contains known variables system parameter values (i.e., A  is noise-free). The ≅  in the 
Ax b≅  representation indicates that the left and right sides of the equation would be equal if noise were not 

present6. The LS ID solution, , minimizes the sum of the squares of the elements of the error, x̂ ˆAx b− . If the 
problem at hand can be put into the form of (1), with noise appearing only in the ε term,  can be solved directly 
(i.e., this is a closed-form solution, rather than an iterative optimization as might be required if the equations can not 
be put into this standard form) using one of the following approaches

x̂
6-8. 

 unweighted, batch algorithm: ( ) 1
ˆ T Tx A A A b

−
=  (3) 

 weighted, batch algorithm: ( ) 1
ˆ T Tx A WA A Wb

−
=  (4) 

where W is a diagonal weighting matrix. 
Either of these algorithms can be made recursive, and the weighting matrix, W, can be chosen to weight the data 

according to an exponentially decaying function – as is commonly done when implemented recursively. The 
recursive and batch solutions are identical since they minimize the same cost function. 

In practice, many times the governing equations do not immediately fit exactly the form Ax b ε= + , with, for 
example, noise being present in the A  matrix and the x  not being immediately and linearly separated from A  and 

 as required. So the basic approach to LS ID is to find some governing equations (the equations of motion, for 
example) that contain the parameter values to be identified and measurement data. Then these equations are 
manipulated to conform to the 

b

Ax b≅  formulation, possibly requiring approximations along the way (dropping 
higher order terms, for example). 

B. Estimation of the net forces and torques using strain gauge signals 

The goal in this section is to develop a procedure to produce net force and torque estimates, n̂etF , at each sample 

period based upon strain gauge measurements. n̂etF  contains the net force and torque acting on the rotor, measured 
in the (rotating) rotor frame. There will be between four and eight (and possibly more) strain gauge measurements 
used to produce the four net force and torque signals. Strain gauges may be spinning with the rotor or fixed in the 
base. Each strain gauge will have a bias, which must be accounted for. The approach taken here is to solve a least-
squares fit at each sample to get the net forces and torques, while keeping the bias terms separate so that they can be 
identified in the imbalance identification step. 

For now, assume the following strain gauge layout. There are 16 strain gauges: 8 fixed, 8 spinning. They are 
arranged in sets of four. The upper set of fixed strain gauges is shown in the following sketch. “S” indicates “strain 
gauge.” “A” or “B” (not shown here) indicates the upper or lower set. “x” or “y” indicates the axis of measurement. 
“f” or “s” (not shown here) indicates “fixed” or “spinning” gauges. “1” or “2” identify gauges on the same axis. “1” 
is on the positive side of the axis and “2” is on the negative side of the axis. When there is a force on the rotor in the 
positive direction, “1” will be in tension and “2” will be in compression. 
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SAxf1SAxf2

SAyf1

SAyf2

 
Figure 3. Strain gauge layout 

The first step is to combine two strain gauges on the same axis, which should yield exactly opposite readings. To 
improve accuracy, these readings will combined by subtraction. For example, 1 2(Axf Axf AxfS S S ) 2= − . If a force 

of +10 Newtons is applied to the rotor in the +x direction,  will be in tension, reading +10 N and  will 

be in compression, reading -10 N. The combined value, , will be (10 - (-10))/2 = 10 N. This combined value 
will also be filtered to reduce sensor noise and extraneous vibrations. For now, this operation is represented as 

. 

1AxfS 2AxfS

AxfS

( )filter

 

( )
( )
( )
( )
( )
( )
( )
( )

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

filter ( ) 2

filter ( ) 2

filter ( ) 2

filter ( ) 2

filter ( ) 2

filter ( ) 2

filter ( ) 2

filter ( ) 2

Axf Axf Axf

Ayf Ayf Ayf

Bxf Bxf Bxf

Byf Byf Byf

Axs Axs Axs

Ays Ays Ays

Bxs Bxs Bxs

Bys Bys Bys

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

= −

= −

= −

= −

= −

= −

= −

= −

 (5) 

Assume that this force measurement is composed of three parts: 
 trueS S β ε= + +  (6) 

1) , the actual force transmitted by the combined pair of strain gauges (if the sensor were perfect, trueS trueS S= ). 

However,  may contain force disturbances that are not due to imbalances (such as structural vibrations). trueS

2) β , a bias term that represents the net bias of the combined pair of strain gauges (assumed to be non-time-
varying). With eight strain gauge pairs, there will be eight biases. 

3) ε , sensor noise, an unbiased white noise signal due to sensor error. 

Putting this in vector form: 
 true SSNS S B E= + +  (7) 
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1

2

3

4

5

6

7

8

; ;

true

true

true

true

true

true

true

true

Axf
Axf

Ayf
Ayf

BxfBxf

ByfByf
true

Axs Axs

Ays Ays

Bxs
Bxs

Bys
Bys

SS
SS
SS
SS

S S B
S S
S S
S S
S S

β
β
β
β
β
β
β
β

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

1

2

3

4

5

6

7

8

;

SSN

SSN

SSN

SSN
SSN

SSN

SSN

SSN

SSN

E

ε
ε
ε
ε
ε
ε
ε
ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥

⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥⎣ ⎦

 (8) 

The “SSN” subscript in  indicates Strain gauge Sensor Noise. SSNE
Since , the actual force at the strain gauge, can be directly calculated from the net forces and torques on the 

rotor, accounting for the rotation transformation and assuming random force noise (actual forces at the strain gauges, 
such as vibrations, that do not result in a net force or torque on the rotor), it can be put in equation form: 

trueS

 true net SFNS TGF E= + , (9) 

where, 

T  is an 8x8 transformation matrix that accounts for the angle of the rotor relative to the fixed gauges. It is a 
calculable direct function of ψ . The upper right and lower left quadrants are all zeros. The lower right 
quadrant is the identity matrix (since the spinning gauges do not require transformation). “T” is for 
“transformation.” 

G  is a constant 8x4 matrix that accounts for the strain gauge locations in the transformation from  to 

. It contains elements such as 

netF

trueS Bf

Af Bf

z
z z

−

−
. “G” is for “geometry.” 

[ T
net x y x yF F F ]τ τ=  is the vector of net forces and torques on the rotor, due to all causes (IB, CW, 

axis). 

[ ]1 2 3 4 5 6 7 8
T

SFN SFN SFN SFN SFN SFN SFN SFN SFNE ε ε ε ε ε ε ε ε= , where “SFN” indicates “Strain 
gauge Force Noise.” 

To derive G, first assume the rotor angle, 0ψ = , so T I= , the identity matrix. In this case, 

 true netS GF=  (10) 
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

51 52 53 54

61 62 63 64

71 72 73 74

81 82 83 84

true

true

true

true

true

true

true

true

Axf

Ayf

Bxf

Byf

Axs

Ays

Bxs

Bys

S
G G G G

S G G G G
S G G G G
S G G G G

G G G GS
G G G GS
G G G GS
G G G GS

⎡ ⎤
⎡⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥ = ⎢⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥

⎢ ⎥
⎣⎢ ⎥⎣ ⎦

x

y

x

y

F
F
τ
τ

⎤
⎥
⎥
⎥ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥

⎢ ⎥⎥ ⎣ ⎦
⎥

⎢ ⎥
⎢ ⎥⎦

 (11) 

Each of the elements in G can now be identified by force and torque balance equations, where the SG geometry 
is specified as shown in Figure 3 and Figure 5. 

  (12) true true

true true

x Axf Bxf

y Axf Af Bxf B

F S S

S z S zτ

= +

= + f

Solving these two equations with two unknowns, 

 

1

1

true

true

Bf
Axf x y

Af Bf Af Bf

Af
Bxf x y

Af Bf Af Bf

z
S F

z z z z

z
S F

z z z z

τ

τ

−
= +

− −

−
= +

− −

 (13) 

Repeating for , y

  (14) true true

true true

y Ayf Byf

x Ayf Af Byf Bf

F S S

S z S zτ

= +

= − −

 

1

1

true

true

Bf
Ayf y x

Af Bf Af Bf

Af
Byf y x

Af Bf Af Bf

z
S F

z z z z

z
S F

z z z z

τ

τ

− −
= +

− −

= +
− −

 (15) 

With 0ψ = , the only difference for the spinning gauges is the different z-axis gauge locations, 

 

1

1

1

1

true

true

true

true

Bs
Axs x y

As Bs As Bs

As
Bxs x y

As Bs As Bs

Bs
Ays y x

As Bs As Bs

As
Bys y x

As Bs As Bs

zS F
z z z z

zS F
z z z z

zS F
z z z z

zS F
z z z z

τ

τ

τ

τ

−
= +

− −

−
= +

− −

− −
= +

− −

= +
− −

 (16) 

So the G matrix is: 
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10 0

10 0

10 0

10 0

10 0

10 0

10 0

10

Bf

Af Bf Af Bf

Bf

Af Bf Af Bf

Af

Af Bf Af Bf

Af

Af Bf Af Bf

Bs

As Bs As Bs

Bs

As Bs As Bs

As

As Bs As Bs

As

As Bs As Bs

z
z z z z

z
z z z z

z
z z z z

z
z z z zG

z
z z z z

z
z z z z

z
z z z z

z
z z z z

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ − −⎢

− −⎢
⎢

−⎢
⎢ − −
⎢
⎢
⎢ − −= ⎢
⎢ −
⎢

− −⎢
⎢ − −
⎢

− −⎢
⎢ −⎢

− −⎢
⎢
⎢

− −⎢⎣ ⎦
0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (17) 

Now allowing for 0ψ ≠ , find the transformation matrix T that performs, 

 0true trueS TS ψ ==  (18) 

The spinning gauge forces are independent of the rotor angle, so the lower right quadrant is a 4x4 identity 
matrix. There is no coupling between spinning and fixed gauge forces, so the upper right and lower left quadrants 
are all zeros. The upper left quadrant performs the following transformation, where the following abbreviations are 
made for cos and sin, as will be done throughout this document. 

 
c cos
s sin
ψ ψ
ψ ψ

 (19) 

 0

( ) 0
0 ( )true true

R
S

R ψ

ψ
ψ

S =

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (20) 

 

0

0

0

0

c s 0 0
s c 0 0
0 0 c s
0 0 s c

truetrue

truetrue

true true

true
true

AxfAxf

AyfAyf

Bxf Bxf

Byf
Byf

SS

SS

S S
S S

ψ

ψ

ψ

ψ

ψ ψ
ψ ψ

ψ ψ
ψ ψ

=

=

=

=

⎡ ⎤⎡ ⎤ −⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (21) 

So the T  matrix is, 
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  (22) 

c s 0 0 0 0 0 0
s c 0 0 0 0 0 0
0 0 c s 0 0 0 0
0 0 s c 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

T

ψ ψ
ψ ψ

ψ ψ
ψ ψ

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢= ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥

1T −  will be needed at each sample, so rather than calculate it numerically at run-time it is calculated analytically 
here. At each sample cosψ  and sinψ  need to be calculated once only. 

  (23) 1

c s 0 0 0 0 0 0
s c 0 0 0 0 0 0
0 0 c s 0 0 0 0
0 0 s c 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

T

ψ ψ
ψ ψ

ψ ψ
ψ ψ−

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢= ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥

Now that  and T  have been derived, Eq. (7) and (9) are repeated here and combined to yield, G
 true SSNS S B E= + +  (7) 

 true net SFNS TGF E= +  (9) 

 net SFN SSNS TGF B E E= + + +  (24) 

Rearranging, 
 (net SFN SSNS B TGF E E )− = + +  (25) 

  (26) 1 1( ) (net SFN SSNT S B GF T E E− −− = + + )

)  (27) 1 1( ) (net SFN SSNGF T S B T E E− −= − − +

This is now in the standard form for a least squares problem (“regression form”): Ax b ε= + , where 

 1

1

( )
( )

net

SFN SSN

A G
x F

b T S B
T E Eε

−

−

=
=

= −

= − +

 (28) 

The least-squares solution for this equation is ( ) 1
ˆ T Tx A A A b

−
= . The representation in Eq. (25), with ( )S B−  

as  and  as b TG A , could have been used; however, pre-multiplying by 1T −  keeps the A  matrix constant, so it 
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(and ( ) 1T TA A A
−

) does not need to be re-calculated at each update. The least-squares minimization will be derived 

here for this problem. 
 

Least squares problem statement 

Assume a system governed by the above equation. 1T −  and G  are known.§  is measured, but is corrupted by 

the bias and noise terms as shown. Find 

S
n̂etF  that can reproduce  by the equation 

, where the error ( )
1(T S B− − )

1 ˆ( ) netT S B GF− − = ( )1ˆ ˆ( ) (
T

net netGF T S B GF T S B− −− − − −1 )  is minimized. The idea is 

that by finding n̂etF  that minimizes this quadratic cost function will be close to the actual , and this problem 
formulation is mathematically easy to solve, as quickly derived below. 

netF

 ( ) ( )1
ˆ

ˆ ˆmin ( ) ( )
net

T

net netF
J GF T S B GF T S B− −= − − − −1  (29) 

The cost J  is minimized when 0
n̂et

J
F
∂

=
∂

. 

 

( )( ) ( )( )
( )( )
( )

( )

( ) ( ) ( ) ( )

1 1

1

1

1

1 1 1

ˆ ˆ0 2ˆ ˆ

ˆ0 2

ˆ0
ˆ

ˆ

T

net net
net net

T
net

T T
net

T T
net

T T T T
net

J GF T S B GF T S B
F F

G GF T S B

G GF G T S B

G GF G T S B

G G G G F G G G T S B

− −

−

−

−

− − −

∂ ∂
= = − − − −

∂ ∂

= − −

= − −

= −

= −

 (30) 

 ( )( ) ( )( )1 1ˆ T T
netF G G G T S B

− −= −

)

 (31) 

Summarizing, Eq. (32) shows how the filtered strain gauge signals can be processed, along with estimated SG 
biases, to produce the estimated net force and torque on the rotor at any given sample time. 

 1ˆ (netF T S B−= Γ −  (32) 

 

ˆ

ˆˆ
ˆ
ˆ

x

y
net

x

y

F

FF
τ
τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (33) 

                                                           
§ 1T −  is based on measurements of ψ , but this is highly accurate compared with other measurements. G  is based 
upon measurement of the strain gauge locations, which is assumed to be highly accurate. Additionally, the 
assumption that the system is governed by the given equation is an important one. Every effort has been made to 
account for all effects in the model, such as axis misalignment and sensor biases, but there are sure to be some 
effects that remain unaccounted for. 

 
American Institute of Aeronautics and Astronautics 

 

16



 

11 13 15 17

11 13 15 171

32 34 36 38

32 34 36 38

0 0 0
0 0 0 0

( )
0 0 0 0

0 0 0

T TG G G−

Γ Γ Γ Γ⎡ ⎤
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Γ Γ Γ⎢ ⎥Γ =
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Γ
Γ Γ Γ Γ
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 (34) 
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S
S
S
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S
S
S
S

B

βψ ψ
βψ ψ
βψ ψ
βψ ψ
β
β
β
β

−

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥− ⎢ ⎥ ⎢⎢ ⎥= ⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
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⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (35) 

The term,  is a constant 4x8 matrix that is a function of the fixed system geometry only (strain 

gauge locations, etc.). It is calculated once only, and renamed 

1( )TG G G− T

Γ , where . Due to symmetries, 
some of the elements of  are always zero, and other elements are duplicates. There are only 8 independent 
elements, as shown in Eq. (34). 

1( )TG G G−Γ T

Γ

1T −  is a function of ψ , and is calculated at each sample. This is an 8x8 matrix, but the inverse is performed 
analytically, so only eight terms need to be updated at each sample. There are only two independent elements. 

S  is the 8x1 vector of measurements resulting from the filtering and combination of strain gauge pairs, as 
shown in Eq. (8). 

B  is the 8x1 bias vector. In the calculation, the estimated value, , is used since  is not directly known.  
is calculated in Section III.I.4. 

B̂ B B̂

C. Parametric structure to model a general state of imbalance in the rotor 

A general form for the imbalance that is capable of representing any possible imbalance is required. An x-y-z 
point mass location combined with a 3x3 inertia matrix describing the spun portion of the centrifuge (the “rotor”) 
could be used, but a more compact** and intuitive representation is presented here. This arbitrarily chosen imbalance 
model structure has been proven to be sufficiently general to model any possible imbalance.††

The form chosen contains two specific perturbations to a perfectly balanced rotor. These “model imbalances” 
are: 

1) A “point-mass” imbalance (PMI) located on the plane equidistant from the two counterweight planes. 

2) A “mass-couple” imbalance (MCI) composed of two equal masses located symmetrically about the center 
of the coordinate system. Each mass is in one of the planes containing the counterweights. 

It is not possible to represent a general state of imbalance with only a single point mass located somewhere 
within the rotor. This is most easily demonstrated by considering a perfect rotor that has two equal masses added to 
it symmetrically about the mass center (similar to the “mass-couple” imbalance above). This situation can not be 
represented by a single point mass imbalance, proving that it is not a general representation. 

                                                           
** The structure presented is minimal (4 parameters), while still representing all mass properties that matter. For the 
case of a free spin axis, as with the current ISS Centrifuge design, this set is no longer sufficient. 
††See Appendix C. 
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The forces acting on each of these model imbalances (PMI, MCI) are due to gravity, rotor motion (centrifugal 
acceleration and angular acceleration), and imbalance motion (Coriolis effects, imbalance acceleration)‡‡. The 
imbalance-induced net forces and torques  on the rotor will be calculated as 

functions of the rotor motion (
[ , , , ]T

netIB xIB yIB xIB yIBF F F τ τ
, , )ψ ω α , fixed system parameters (gravity, g, and rotor geometry), and imbalance 

parameters. Once measurements of actual net forces torques and rotor motions are available, it will be possible to 
estimate the imbalance parameters. 

x, y, z are fixed in the disk frame
X, Y, Z are fixed on the de-spun portion of the

centrifuge
ψ(t) is the angle of the disk - the only rotational

degree of freedom
A, B represent the upper and lower portions of

the disk
z = 0 at the midpoint between the

counterweight planes

A

B

X
x

y

z

ψ

Z

 
Figure 4. Coordinate system used to describe imbalances and their effects 

The coordinate system is shown in Figure 4, with the z-axis locations shown in detail in Figure 5. An xyz 
Cartesian coordinate system is used to describe imbalance locations fixed within the rotor. The rotor angle, ( )tψ , 
describes the relative angular position of the rotor with respect to the non-spinning (i.e. “de-spun”) portion of the 
centrifuge§§. The rotor angular velocity, ( )tω , and angular acceleration, ( )tα , are the first and second derivatives 
of ( )tψ  with respect to time. 

A (B) refers to the upper (lower) part of the disk
mp, mc are the imbalance masses
m is the mass of the disk
CWA, CWB are the planes of the counterweights (z = +/- l by

definition)
SAs is the plane of the upper (A) spinning (s) strain gauges (S)
SAf is the plane of the upper (A) fixed (f) strain gauges (S)
SBs is the plane of the lower (B) spinning (s) strain gauges (S)
SBf is the plane of the lower (B) fixed (f) strain gauges (S)
zm is the z-axis coordinate of the disk c.o.g.
zAs is the z-coordinate of SAs
zAf is the z-coordinate of SAf
zBs is the z-coordinate of SBs
zBf is the z-coordinate of SBf
z = 0 is chosen arbitrarily as the midpoint between CWA and CWB

A

B

z

l

l

SAs
CWA

SAf

zAsl
zAf

z = 0

mp

mc

mC

SBf
CWB
SBs

zBf
- l

zBs

zm
m

 
Figure 5. Z-axis locations of strain gauges, counterweights, and imbalances 

The origin of the xyz coordinate system is fixed on the axis of rotation at the midpoint between the upper (A) 
and lower (B) counterweight planes. The “mass-couple” imbalances, shown in Figure 5, are defined arbitrarily to lie 
in the same planes as the counterweights. The “point-mass” imbalance is chosen arbitrarily to lie in the plane 

                                                           
‡‡The rotor angular acceleration force, Coriolis force, and force due to imbalance acceleration are expected to be 
minimal, but will be included for completeness. 
§§Although the centrifuge base may actually rotate slightly, this will be a small effect, and it is neglected in this 
analysis. 
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equidistant between these two planes. The z-axis coordinate of this plane is defined to be . The z-axis 
coordinates of the upper and lower counterweight planes are defined to be 

0z =
z l=  and z l= − . 

Two types of strain gauges will be used on both the upper and lower parts of the rotor. “Fixed” gauges (  and 

) will be attached to the non-spinning base, and “spinning” gauges (  and ) will be mounted on the 
spinning rotor. As their z-axis coordinates may not be symmetric, each of the four strain gauge locations has its own 
coordinate label, , as shown in Figure 5. 

AfS

BfS AsS BsS

, , ,As Af Bs Bfz z z z
To summarize, the physical locations of the counterweight planes define the locations of the z-axis and the 

model imbalances (PMI and MCI). 
Fa is the force on the point masses

due to angular acceleration (not
shown in the figures)

Fc is the force on the point masses
due to centrifugal acceleration

Fg is the force on the point masses
due to gravity

Fx is the net force on the disk in the
+x direction (Fy is not shown)

τy is the net torque about the y axis

of the disk (τx is not shown)
Forces due to imbalance motion

(coriolis and acceleration) are
not shown here.

A

B

Fg

Fc

Fg

Fc

A

B
Fg

Fc

ω

Fx
τy Fx (= 0)

τy

 
Figure 6. Model imbalances 

Point-mass imbalance (PMI), Mass-couple imbalance (MCI), and their effects on the rotor.  
Figure 6 shows the model imbalances used to describe the general state of imbalance in the rotor. These discrete 

point masses, if placed in the correct locations, can produce the same effects as any imbalance in the rotor. The 
proof for this assumes that any state of imbalance can be described by a (possibly large) number of point masses of 
varying mass and location. The net forces and torques due to each of these many masses is calculated, summed, and 
shown to be equal to the net forces and torques due to the two model imbalances (PMI, MCI), provided the 

imbalance parameters are chosen correctly (for example, , where  and 
1

n

p p i i
i

m x m x
=

= ∑ im ix  represent the mass 

and x-coordinate of each of the many point masses). The effective net forces and torques on the rotor due to the 
model imbalances will be calculated next. 

D. Net forces and torques due to the model imbalance 

Even though the spin axis is not perfectly rigid, it is modeled as such in this analysis. 

1. Point-mass imbalance 

The first model imbalance, the point-mass imbalance, has a mass equal to  and is located in the x-y plane, 

with . The mass magnitude, x-y location, x-y velocity, and x-y-z acceleration all affect the net forces and 
torques on the rotor in the x and y directions (the effect due to acceleration in the z-direction is small, and will later 
be dropped). Therefore, [ ,  define the imbalance parameters for the PMI (the value of 

 is arbitrary). 

pm
0z =

, , , , ,p p p xp yp xp ypm x y v v a a ]

pm
Note that these forces and torques are computed in the rotor frame.  
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For example,  is the net force on the rotor aligned with the +x axis of the rotor. Since forces and torques 
aligned with the z-axis will not be measured by the strain gauges, they are not included here. The point-mass 
imbalance results in the following net forces and torques, with : 

xF

[ ]
p p p p

T
netIB xIB yIB xIB yIBF F F τ τ

p

gF , the force due to gravity. This acts straight down at all times*** and is independent of rotor motion. Its effect 

on the rotor appears as a torque equal to , where  is the radial distance from the axis of rotation. p pm gr pr

 
,

0 0
p g

T

netIB p p p pF m gy m gx⎡ ⎤= −⎣ ⎦  (36) 

cF , the centrifugal force. This acts radially outwards whenever the rotor is rotating, and is proportional to the 
angular velocity squared. Its effect on the rotor appears as a force in the direction of the point mass location 
vector ( , )p px y  and with a magnitude equal to 2

p pm r ω . 

 
,

2 2 0 0
p c

T

netIB p p p pF m x m yω ω⎡ ⎤= ⎣ ⎦  (37) 

Fα , the force due to rotor angular acceleration. This force acts perpendicular to the point mass location vector 

( , )p px y  whenever the rotor has an angular acceleration, and is proportional to the angular acceleration. Its 
effect on the rotor is a force in the direction perpendicular to the point mass location vector and with a 
magnitude equal to p pm r α . 

 
,

0 0
p

T

netIB p p p pF m y m x
α

α α⎡ ⎤= −⎣ ⎦  (38) 

vF , the Coriolis force due to the imbalance moving within the rotor. This force acts perpendicular to the 

imbalance velocity,  and is proportional to the imbalance velocity and the rotor angular velocity. ( , )xp ypv v

 
,

2 2 0
p v

T

netIB p yp p xpF m v m vω ω 0⎡ ⎤= −⎣ ⎦  (39) 

aF , the force due to the imbalance accelerating within the rotor. This acts in the opposite direction of the 

acceleration, ( , . , )xp yp zpa a a

  (40) 
,p a

T

netIB p xp p yp p zp p p zp pF m a m a m a y m a x⎡= − − −⎣ ⎤⎦

2. Mass-couple imbalance 

The second model imbalance, the mass-couple imbalance, consists of two point masses of mass . The z-axis 
location of the upper (lower) point mass is chosen arbitrarily to lie in the same plane as the upper (lower) 
counterweights. Since the masses are located symmetrically about the geometric center of the rotor by definition, the 
x-y location of the upper point mass 

cm

( , )c cx y  also determines the lower point mass location ( , )c cx y− − . There is 

no net force due to gravity, also due to symmetry. Positions ( , )c cx y , velocities ( , , and accelerations 

 of the imbalance masses are always equal and opposite by definition. Therefore, 

 define the imbalance parameters for the MCI. The MCI results in the following 
forces on the rotor in the rotor frame: 

)xc ycv v
( ,xc yca a )

]

                                                          

[ , , , , , ,c c c xc yc xc ycm x y v v a a

 
***Effects due to misalignment between the gravity vector and the axis of rotation are described in Section III.F 
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gF , the force due to gravity, is zero by definition. This is because the masses are defined to be symmetrically 
located about the center of the rotor coordinate system 

 [ ]
,

0 0 0 0
c g

T
netIBF =  (41) 

cF , the centrifugal force. This acts radially outwards whenever the rotor is rotating, and is proportional to the 
angular velocity squared. 

 
,

2 20 0 2 2
c c

T

netIB c c c cF m ly mω ω lx⎡ ⎤= −⎣ ⎦  (42) 

Fα , the force due to rotor angular acceleration. This force acts perpendicular to each point mass location vector 
whenever the rotor is accelerating, and is proportional to the angular acceleration. 

 [ ]
,

0 0 2 2
c

T
netIB c c c cF m lx m

α
α α= ly

lv

 (43) 

vF , the Coriolis force due to the imbalance moving within the rotor. This force acts perpendicular to the 

imbalance velocity,  and is proportional to the imbalance velocity and the rotor angular velocity. ( , )xc ycv v

 
,

0 0 4 4
c v

T

netIB c xc c ycF m lv mω ω⎡ ⎤= ⎣ ⎦  (44) 

aF , the force due to the imbalance accelerating within the rotor. This acts in the opposite direction of the 

acceleration, ( , . ,xc yc zca a a )

a x

,

,

  (45) 
,

0 0 2 ( ) 2 ( )
c a

T

netIB c yc zc c c xc zc cF m a l a y m a l⎡ ⎤= − − +⎣ ⎦
Adding the net forces and torques on the rotor that are created by the two imbalances (forces are calculated in the 

rotor frame): 

 
, , , ,

, , , ,

p p g p c p p v p a

c c g c c c c v

p c

netIB netIB netIB netIB netIB netIB

netIB netIB netIB netIB netIB netIB

netIB netIB netIB

F F F F F F

F F F F F F

F F F

α

α

= + + + +

= + + + +

= +
c a

)
)

 (46) 

 

2

2

2

2

2
2

0
0

                          
2 2 4 2 (

2 2

x p p p p p yp p xp

y p p p p p xp p yp

x p p p zp p

y p p p zp pIB

c c c c c xc c yc zc c

c c

F m x m y m v m a
F m y m x m v m a

m gy m a y
m gx m a x

m ly m lx m lv m a l a y
m lx

ω α ω
ω α ω

τ
τ

ω α ω
ω

⎡ ⎤+ + −⎡ ⎤
⎢ ⎥⎢ ⎥ − − −⎢ ⎥⎢ ⎥ = +⎢ ⎥⎢ ⎥ − −
⎢ ⎥⎢ ⎥

+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− + + + −
+ 4 2 (c c c yc c xc zc cm ly m lv m a l a xα ω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + − +⎢ ⎥⎣ ⎦

 (47) 
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2

2

2

2

2
2

2 2 4 2 (
2 2 4 2 (

x p p p p p yp p xp

y p p p p p xp p yp

x p p p zp p c c c c c xc c yc zc c

y p p p zp p c c c c c yc c xc zc cIB

F m x m y m v m a
F m y m x m v m a

m gy m a y m ly m lx m lv m a l a y
m gx m a x m lx m ly m lv m a l a x

ω α ω
ω α ω

τ ω α ω
τ ω α ω

⎡ ⎤+ + −⎡ ⎤
⎢ ⎥⎢ ⎥ − − −⎢ ⎥⎢ ⎥ = ⎢⎢ ⎥ − − − + + + −
⎢⎢ ⎥

+ + + + + − +⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦

)
)

⎥
⎥
⎥

 (48) 

Putting the equations in a linear form so that the linear regression can be applied later requires dropping the 
second order terms (containing products of imbalance parameters). These are some of the terms due to acceleration 
of the imbalance within the rotor frame—likely to be small. 

2

2

2

2

02
02

22 2 4 2
22 2 4 2

x p p p p p yp p xp

y p p p p p xp p yp

x p zp p c zc cp p c c c c c xc c yc

y p zp pp p c c c c c yc c xcIB

F m x m y m v m a
F m y m x m v m a

m a y m a ym gy m ly m lx m lv m la
m a x mm gx m lx m ly m lv m la

ω α ω
ω α ω

τ ω α ω
τ ω α ω

⎡ ⎤+ + −⎡ ⎤
⎢ ⎥⎢ ⎥ − − −⎢ ⎥⎢ ⎥ = +⎢ ⎥⎢ ⎥ − −− − + + +
⎢ ⎥⎢ ⎥ ++ + + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

2

2

2

2

2
2

2 2 4 2
2 2 4 2

c zc c

p p p p p yp p xp

p p p p p xp p yp

p p c c c c c xc c yc

p p c c c c c yc c xc

a x

m x m y m v m a
m y m x m v m a

m gy m ly m lx m lv m la
m gx m lx m ly m lv m la

ω α ω
ω α ω

ω α ω
ω α ω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤+ + −
⎢ ⎥− − −⎢ ⎥≈ ⎢ ⎥− − + + +
⎢ ⎥

+ + + −⎢ ⎥⎣ ⎦

 (49) 

Putting these equations in matrix form, separating known/measured variables from the parameters to be 
identified, 

 ( , )netIB IB IB p c IBF m mθ θ= Φ = Φ  (50) 

  (51) 

2

2

2

2

0 0
0 0

( , )
0 2 2

0 2 2

0 2 0 0 0 0 0
2 0 0 0 0 0

                
0 0 4 0 0 0 0 2
0 0 0 4 0 0 2 0

p p

p p
IB p c

p c c

p c c

p p

p p

c c

c c

m m
m m

m m
m g m l m l

m g m l m l

m m
m m

m l m l
m l m l

ω α
α ω

α ω
ω α

ω
ω

ω
ω

⎡
⎢−⎢Φ = Φ ⎢ − −
⎢
⎢⎣

− ⎤
⎥− − ⎥
⎥
⎥− ⎦

0

  (52) 
T

IB p p c c xp yp xc yc xp yp xc ycx y x y v v v v a a a aθ ⎡ ⎤⎣ ⎦

where IBθ  is a 12x1 column vector of the model-imbalance parameters. Φ  is a 4x12 matrix that is a function of 
them point-mass and mass-couple mass magnitudes chosen. Done this way, Φ  may be used later to model the 
counterweight forces and torques. 

pm , and  may be chosen arbitrarily, since they simply scale the values of the other parameters. In this 
analysis, they will be chosen to equal 1 (kilogram) so they will later drop out of the equations completely. 

cm

Note that the MCI produces torques only—no forces, and the PMI produces no torques except for the gravity 
effects. 

While this equation contains the full effects of the imbalance on the net force and torque applied to the rotor, it 
does not follow that all terms should be included in the identification to follow. If the forces and torques due to 
imbalance velocity and acceleration (vs. position) are relatively small, and are also relatively difficult to identify 
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accurately due to the presence of noise and other disturbances, better identification of the imbalance position terms 
may be achieved by omitting the velocity and acceleration terms. The following equation shows the simplified case 
where both velocity and acceleration terms have been dropped. 

 

2

2

2

2

0 0
0 0

,
0 2 2

0 2 2

netIB IB IB

pp p

pp p
IB IB

cp c c

cp c c

F

xm m
ym m
xm g m l m l
ym g m l m l

θ

ω α
α ω

θ
α ω
ω α

= Φ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥Φ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 (53) 

E. Net forces and torques due to the counterweights 

If the forces and torques due to the counterweights can be calculated and subtracted from the measured forces 
and torques, the remaining signal can be used to identify the imbalance alone. The basic approach to deriving the 
effects of the counterweights is to calculate the equivalent set of model-imbalance parameters and then use the 
equations already derived in Section III.D. 

Problem definition: 
Using the same structure used to model the imbalance, counterweight parameters, , , and pCWm cCWm CWθ , 

define the counterweight properties that result in net forces and torques on the rotor, where 

  (54) 
                                                      

CW pCW pCW cCW cCW xpCW ypCW xcCW ycCW

T

xpCW ypCW xcCW ycCW

x y x y v v v v

a a a a

θ ⎡⎣

⎤⎦

Unlike the model-imbalance parameters, which must be identified, the counterweight parameters can be 
calculated based on measurements of CW positions and/or motor command signals. These parameters can then be 
used, at each sample update, to calculate the net forces and torques applied to the rotor by the counterweights. 

The counterweights are arranged in the layout shown in Figure 7. The positions of each of the four 
counterweights are described by [ ]1 2 3 4δ δ δ δ . 1δ  is the counterweight in the upper plane in the +x 

direction, 2δ  is the counterweight in the upper plane in the +y direction, 3δ  is the counterweight in the lower plane 

in the +x direction, 4δ  is the counterweight in the lower plane, in the +y direction.  is the mass of the moving 

portion of the counterweight assembly. The origins of the axes for 
CWm

1δ , 2δ , 3δ , and 4δ  are chosen so that with 

0δ = , the net effect of the counterweight assembly is zero, regardless of where the counterweight actually is—this 
is the position where the moving counterweight is exactly counterbalanced by the corresponding fixed dead weight. 

The velocities and accelerations are described by the first and second derivatives of the position signals, 

1 2 3 4 1 2 3 4δ δ δ δ δ δ δ δ⎡⎣ ⎤⎦ . Sensors will not be used to measure these signals directly (i.e., no 

accelerometer or tachometer feedback), and since the velocity and acceleration effects are likely to be small, they 
will not be calculated in the autobalancing system. However, their effects are included here and in the simulation for 
completeness. For this analysis, the counterweight coordinate vector, 

1 2 3 4 1 2 3 4 1 2 3 4δ δ δ δ δ δ δ δ δ δ δ δ⎡ ⎤⎣ ⎦ , is assumed to be available at all times. 

The first step is to calculate the counterweight parameters, CWθ , from the counterweight coordinate vector. The 
basic approach is to add the individual effects of each of the counterweights and select the counterweight parameters 
to yield the same effects. The equations are simplified using the fact that the counterweights all have mass equal to 

 (this is the moving portion of the counterweights). CWm
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δ1

Point mass location
for counterweights

Moving
Counterweight #2

(xpCW, ypCW, 0)

Counterweight #1
fixed dead weight

Counterweight #2
fixed dead weight

δ2

δ1, δ2 coordinates describing position
of upper moving counterweights

δ3, δ4 are in lower plane, not shown.
xpCW, etc. are based upon δ3 =
δ1 and δ4 = 0.

xpCW, ypCW effective counterweight point
mass location ( = (δ1,δ2/2) for
the coordinates given)

xcCW, ycCW effective counterweight mass
couple location ( = (0, δ2/2) for
the coordinates given)

Mass couple locations
for counterweights

(xcCW, ycCW, l)

(-xcCW, -ycCW, -l)

 
Figure 7. Counterweight coordinates 
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( )
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=
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= = +
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1 3

2 4

1 3
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1 3

2 4

2
( ) 4
( ) 4

( )

( )

( )

( )

cCW CW

cCW

cCW

xcCW cCW

ycCW cCW

xcCW xcCW
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y

dv x
dt
dv y
dt
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dt
da v
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δ δ
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δ δ

δ δ

δ δ

δ δ

4

4

4

4

=

= −

= −

= = −

= = −

= = −

= = −

 (55) 

Since the counterweight parameters are defined the same as the imbalance parameters, a slightly modified 
version of Eq. (50) can be used to calculate the net CW force, without need to re-derive the physics. This means that 
the  from Eq. (51) can be used directly if  and  are used in place of  and . Φ pCWm cCWm pm cm

 ( , )netCW CW CW pCW cCW CWF m mθ θ= Φ = Φ  (56) 
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2

2

2

2

0 0
0 0

( , )
0 2 2

0 2 2

0 2 0 0 0 0 0
2 0 0 0 0 0

           
0 0 4 0 0 0 0 2
0 0 0 4 0 0 2 0

pCW pCW

pCW pCW
CW pCW cCW

pCW cCW cCW

pCW cCW cCW

pCW pCW

pCW pCW

cCW cCW

cCW cCW

m m
m m

m m
m g m l m l

m g m l m l

m m
m m

m l m l
m l m l

ω α
α ω

α ω
ω α

ω
ω

ω
ω

⎡
⎢−⎢Φ = Φ ⎢ − −
⎢
⎢⎣

− ⎤
⎥− − ⎥
⎥
⎥− ⎦

0

 (57) 

and CWθ  is defined in Eq. (54). 

Depending on the accuracy of estimating the velocity and acceleration of the counterweights, it may be better to 
drop those terms from the autobalancing controller. The following equation shows the simplified case where both 
velocity and acceleration terms have been dropped. 

 

2

2

2

2

0 0
0 0

,
0 2 2

0 2 2

netCW CW CW

pCWpCW pCW

pCWpCW pCW
CW CW

cCWpCW cCW cCW

cCWpCW cCW cCW

F

xm m
ym m
xm g m l m l
ym g m l m l

θ

ω α
α ω

θ
α ω
ω α

= Φ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢−⎢ ⎥ ⎢Φ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

⎥
⎥  (58) 

F. Net forces and torques due to axis misalignment during Earth-based testing 

The misalignment between the rotor axis of rotation and the gravity vector will cause strain gauge measurements 
that are not due to the imbalances. If significant, these forces must be accounted for so that the model imbalance 
parameters may be properly identified. The misalignment is quantified by the misalignment angle in the x and y 
directions, xφ  and yφ  as shown in Figure 8. This misalignment causes a constant force on the fixed strain gauges 
and oscillating forces on the spinning strain gauges. 

The misalignment causes forces due to the model imbalances and counterweights as well, but as these are second 
order effects, they will not be considered. These terms will not apply for the space station centrifuge, as it is in a 
micro-gravity environment. 
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ω

φx g

zm

 
Figure 8. Misalignment between the axis of rotation and the gravity vector results in additional forces that 

are not due to imbalances (during Earth-based testing only) 

netMisalignmentF , the force due to the axis misalignment, is affected by the total mass of the rotor, m, the z-axis 

location of the rotor center of mass (CM), , and the misalignment angles, mz xφ  and yφ . Angles are assumed to be 

small, so sinφ φ≈ . It results in the following net forces and torques on the rotor, measured in the base frame 
(indicated by the “base” superscript in the following equations). 

 
Tbase

netMisalignment x y y m x mF mg mg mg z mgφ φ φ φ z⎡ ⎤= −⎣ ⎦  (59) 

Unlike the forces due to imbalances, these forces do not rotate with the rotor. To calculate the forces in the rotor 
frame, they are rotated by an angle ψ− : 

  (60) 
( ) 0
0 ( )

base
netMisalignment netMisalignment

R
F

R
ψ

ψ
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
F

 

c sc s 0 0
s cs c 0 0
c s0 0 c s

s c0 0 s c

base
x yx

base
x yy

netMisalignment base
y m x mx

base
y m x my

mg mgF
mg mgF

F
mg z mg z

mg z mg z

φ ψ φ ψψ ψ
φ ψ φ ψψ ψ

φ ψ φ ψτψ ψ
φ ψ φ ψτψ ψ

+⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ − +− ⎢ ⎥ ⎢ ⎥⎢ ⎥= =⎢ ⎥ ⎢ ⎥− +⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ +− ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (61) 

The parameters describing the imbalance must appear linearly in the equation if they are to be identified using a 
linear regression, so the torque terms containing m xz φ  and m yz φ  must be changed. New variables m x m xz zφ φ  

and m y m yz zφ φ  are introduced to maintain linearity. 

 

c s
s c
c s

s c

x y

x y
netMisalignment

m y m x

m y m x

mg mg
mg mg

F
mgz mgz

mgz mgz
φ φ

φ φ

φ ψ φ ψ
φ ψ φ ψ

ψ ψ
ψ ψ

+⎡ ⎤
⎢ ⎥− +⎢ ⎥=
⎢ ⎥− +
⎢ ⎥+⎢ ⎥⎣ ⎦

 (62) 

Putting these equations in matrix form, separating variables from the parameters to be identified, 
 netMisalignment Misalignment MisalignmentF θ= Φ  (63) 
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c s 0 0
-s c 0 0

0 0 s -c
0 0 c s

Misalignment mg

ψ ψ
ψ ψ

ψ ψ
ψ ψ

⎡ ⎤
⎢ ⎥
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 (64) 
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y
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m x

m y

z
z

φ

φ

φ
φ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (65) 

 

c s 0 0
-s c 0 0

0 0 s -c
0 0 c s

x

y
netMisalignment

m x

m y

F mg
z
z

φ

φ

φψ ψ
φψ ψ

ψ ψ
ψ ψ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢= ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 (66) 

Since Misalignmentθ  will be identified (so that this effect may be subtracted out and not corrupt imbalance 
identification),  may be chosen arbitrarily, so exact knowledge of the total rotor mass is not required. For 

example, if the chosen mg  is too low, larger values for 

mg

Misalignmentθ  will result, but  will be the same. 
Using a fairly accurate value for  will make the identified misalignment angles accurate, in case they are desired 
for some other reason. 

netMisalignmentF
mg

G. Net force and torque noise 

There are likely to be unmodeled net forces and torques on the rotor. Hopefully these will be small, random, and 
uncorrelated. If they are not, they should be identified separately (as was done for the axial misalignment effects). 
Here, such unknown net forces and torques are modeled as a white Gaussian noise source, , where the “NFN” 
subscript indicates “Net Force Noise.” 

NFNE

 [ ]1 2 3 4
T

NFN NFN NFN NFN NFNE ε ε ε ε=  (67) 

H. Superposition of these forces 

The linear matrix Eq. (68) is formed by adding the net forces and torques on the rotor, 
[ T

net x y x yF F F ]τ τ , due to the model-imbalance parameters, IBθ , counterweight parameters, CWθ , and 

axis misalignment parameters, Misalignmentθ , 

  (68) 
( , ) ( , )

net netIB netCW netMisalignment NFN

p c IB pCW cCW CW Misalignment Misalignment NFN

F F F F E

m m m m Eθ θ θ

= + + +

= Φ + Φ + Φ +

where each term is specified in an earlier equation: 

( ,p cm mΦ )  – Equation (51) – calculable using known parameters and measurements 

IBθ  – Equation (52) – unknown, will be identified on-line 

( ,pCW cCWm mΦ )  – Equation (57) – calculable using known parameters and measurements 
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CWθ  – Equation (54) – calculable using known parameters and measurements 

MisalignmentΦ  – Equation (64) – calculable using known parameters and measurements 

Misalignmentθ  – Equation (65) – unknown, may be identified on-line or calibrated off-line 

NFNE  – Equation (67) – noise 

Section III.A presented a linear regression method to estimate the net force, n̂etF , at each sample period using 
the available strain gauges. Note that that method operates completely independently of any consideration of 
imbalances, counterweights, etc. 

The following sections are aimed at manipulating Eq. (68) to enable identification of IBθ  and Misalignmentθ  so 

that ÎBθ  may be used to guide the counterweight positioning. 

I. Identification of the unknown parameters 

The net forces and torques on the rotor are due to the sum of the imbalance, counterweight, and axial 
misalignment forces as shown in Eq. (68), repeated here. 

  (68) 
( , ) ( , )

net netIB netCW netMisalignment NFN

p c IB pCW cCW CW Misalignment Misalignment NFN

F F F F E

m m m m Eθ θ θ

= + + +

= Φ + Φ + Φ +

n̂etF  can be estimated based upon the strain gauge measurements, as shown in Eq. (32).  can be 
calculated based upon the counterweight coordinates, as shown in Eq. (56) or (58).  

netCWF

The basic approach of the steps to follow is to manipulate Eq. (68) into the “regression form” shown in Eq. (1) 
and then to solve for the unknown parameters. The choice of parameters to be included in this identification is a 
design issue that needs to be optimized through experimentation with simulation and actual data. This section 
derives the regression-form equations for selected groups of variables to be identified. 

Depending on the noise level present and the motion characteristics of the imbalance, it may not be practical to 
identify the imbalance velocity or acceleration parameters (elements 5-8 and 9-12, respectively in IBθ ). It may be 
that better results can be achieved by removing these parameters from the identification and treating their effects as 
noise. 

All terms are used in the simulation, whether or not they are identified. 
Regardless of how many parameters are to be identified, only the first 4 elements of IBθ  (imbalance position) 

are used for autobalancing. These 4 elements define the position of the PMI and MCI. Identifying extra parameters, 
if possible, is important since they prevent these useful parameters from being corrupted by the extra forces that they 
represent. 

1. Identifying imbalance position (only) 

In this approach, the simplest of the options presented, only p p c cx y x y⎡ ⎤⎣ ⎦  are identified. It is assumed 

that: 
• Strain gauge biases are available from some prior calibration or other method independent of this 

identification. 

• The axis misalignment parameters are available from some prior calibration or other method independent 
of this identification. 

• The counterweight parameters, CWθ , are known 

• The effects of the imbalance velocity and acceleration are sufficiently small or difficult to identify that 
better results are obtained by ignoring them, and treating them as unmodeled disturbances (noise). 
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Substituting n̂etF  from Eq. (32) for  in Eq. (68), and using , netF B̂ ĈWθ , and ˆ
Misalignmentθ  to indicate the 

parameters that are considered known. 
  (69) 1 ˆ ˆˆ( ) ( , ) ( , )p c IB pCW cCW CW Misalignment Misalignment NFNT S B m m m m Eθ θ θ−Γ − = Φ + Φ + Φ +

  (70) 1 ˆ ˆˆ( , ) ( ) ( , )p c IB pCW cCW CW Misalignment Misalignment NFNm m T S B m m Eθ θ−Φ = Γ − − Φ − Φ −θ

Separating IBθ  into parts that will be identified vs. ignored ( IBΦ  is also similarly partitioned), 

 
pos vel acc

T

IB IB IBθ θ θ
+

⎡ ⎤
⎣ ⎦  (71) 

 
pos

T

IB p p c cx y x yθ ⎡ ⎤⎣ ⎦  (72) 

  (73) 
vel acc

T

IB xp yp xc yc xp yp xc ycv v v v a a a aθ
+

⎡⎣ ⎤⎦

 
1 ˆ ˆˆ( ) ( , )

pos pos vel acc vel accIB IB IB IB IB IB

pCW cCW CW Misalignment Misalignment NFNT S B m m E

θ θ θ

θ θ
+ +

−

Φ = Φ + Φ =

Γ − − Φ − Φ −
 (74) 

  (75) 
1 ˆ ˆˆ( ) ( , )

pos pos

vel acc vel acc

IB IB pCW cCW CW Misalignment Misalignment

IB IB NFN

T S B m m

E

θ θ

θ
+ +

−Φ = Γ − − Φ − Φ

−Φ −

θ

As long as the assumption that 
vel acc vel accIB IBθ

+ +
Φ  can be treated as noise is true, all terms on the right (except the 

noise) are known parameters or measurements, and the unknown parameters on the left side appear linearly. So this 
is now in a form enabling least squares solution of the 

posIBθ  vector using the standard RLS algorithm presented 

earlier. The equation is now in regression form, Ax b ε= + , where 

 
1 ˆ ˆˆ( ) ( , )

pos

pos

vel acc vel acc

IB

IB

pCW cCW CW Misalignment Misalignment

IB IB NFN

A

x

b T S B m m

E

θ

θ θ

ε θ
+ +

−

= Φ

=

= Γ − − Φ − Φ

= −Φ −

 (76) 

It may be the case that axis misalignment forces are negligible, in which case that term can be omitted. 
Since the goal is to provide an imbalance estimate in real time, so that it can be corrected with counterweights, a 

recursive least squares (RLS) implementation is used, as presented in Ref. 8 and summarized in Appendix B. Since 
the goal is to track a moving imbalance, an exponentially weighted RLS is chosen, with the effective time window 
chosen according to the expected rate of imbalance change and desired control bandwidth. 

2. Identifying imbalance position and axial misalignment 

In this approach,  are identified. It is assumed that: p p c c x y m x m yx y x y z zφ φφ φ⎡ ⎤⎣ ⎦
• Strain gauge biases are available from some prior calibration or other method independent of this 

identification. 

• The counterweight parameters, CWθ , are known 

• The effects of the imbalance velocity and acceleration are sufficiently small or difficult to identify that 
better results are obtained by ignoring them, and treating them as unmodeled disturbances (noise). 
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Again substituting n̂etF  from Eq. (32) for  in Eq. (68), and using , netF B̂ ĈWθ , and ˆ
Misalignmentθ  to indicate the 

parameters that are considered known. 
  (77) 1 ˆˆ( ) ( , ) ( , )p c IB pCW cCW CW Misalignment Misalignment NFNT S B m m m m Eθ θ θ−Γ − = Φ + Φ + Φ +

 
1 ˆˆ                       ( ) ( , )

pos pos vel acc vel accIB IB IB IB Misalignment Misalignment

pCW cCW CW NFNT S B m m E

θ θ θ

θ
+ +

−

Φ + Φ + Φ =

Γ − − Φ −
 (78) 

 
1 ˆˆ                       ( ) ( , )

pos pos

vel acc vel acc

IB IB Misalignment Misalignment

pCW cCW CW IB IB NFNT S B m m E

θ θ

θ θ
+ +

−

Φ + Φ =

Γ − − Φ − Φ −
 (79) 

The unknown parameters, 
posIBθ  and Misalignmentθ , in Eq. (79) will now be identified simultaneously, yielding the 

imbalance position and axial misalignment parameters. The misalignment parameters are not used for any purpose, 
but if their effect was not included in the identification, the imbalance estimation would be biased. This 
identification of imbalance parameters is only relevant for Earth-based testing, where gravity is significant. If 

Misalignmentθ  is found to be fairly constant, it may be better to identify that in an off-line process, which would reduce 
the degrees of freedom to be identified on-line, probably improving accuracy. 

Concatenating the Φ  matrices and θ  vectors, 

 
posIB Misalignment pos Misalignment+ ⎡ ⎤Φ Φ Φ⎣ ⎦  (80) 

 pos

pos

IB
IB Misalignment

Misalignment

θ
θ

θ+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (81) 

Equation (79) may be re-written as 

 
1 ˆˆ                       ( ) ( , )

pos pos

vel acc vel acc

IB Misalignment IB Misalignment

pCW cCW CW IB IB NFNT S B m m E

θ

θ θ
+ +

+ +

−

Φ =

Γ − − Φ − Φ −
 (82) 

which is in regression form with 

 
1 ˆˆ( ) ( , )

pos

pos

vel acc vel acc

IB Misalignment

IB Misalignment

pCW cCW CW

IB IB NFN

A

x

b T S B m m

E

θ

θ

ε θ
+ +

+

+

−

= Φ

=

= Γ − − Φ

= −Φ −

 (83) 

An unfortunate issue for ground-based experiments is that 
posIBθ  and Misalignmentθ  must be updated with the same 

RLS time constant, whereas it is likely that the imbalance requires faster tracking than the axial misalignment – so if 
the two sets of parameters are identified simultaneously, the Misalignmentθ  estimates will not be as accurate as they 
could be if the RLS time constant were increased. 

3. Comparison with Kalman Filter 

This highlights a difference between the least squares approach presented and the possibility of using a Kalman 
Filter (KF) for identification. With the present LS approach, there is no connection between the identified positions, 
velocities, and accelerations. For example, the position estimate may be constantly changing, but the velocity and 
acceleration estimates may be zero (not likely, but possible). However, in a KF approach, the positions, velocities, 
and accelerations are all coupled (for example, velocity would be an integration of acceleration, etc.), and the 
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statistical properties of imbalance motion could be specified. The KF filter would be optimized based on these 
statistical properties, whereas the RLS approach requires tuning of the exponential weighting time constant to 
achieve this result. Also, in a KF approach, the fact that misalignment parameters will vary much more slowly than 
imbalance parameters can be set directly, and the identification result will reflect this. 

The LS approach was chosen to avoid the added complexity of the KF, which is a concern both from a 
computational processing issue and reduced algorithmic robustness issue. But the KF design and implementation 
was not performed, so it should be considered an option for further exploration. 

4. Identifying imbalance, axial misalignment, and strain gauge biases 

The previous sections showed how imbalance (and axial misalignment) parameters can be identified, if the strain 
gauge biases are known through some prior calibration. This information is reflected in the calculation of n̂etF  in 
Eq. (32). This section derives the equations to identify the biases on-line simultaneously with the imbalance 
parameter ID. Depending on the bias drift rate, it may actually be better to identify the biases with a separate process 
that assumes the average imbalance force is zero (as it would be if the autobalancing system were operating 
correctly). Alternatively, if the bias drift rate is very slow, it may be possible to identify them with an off-line 
process. 

The derivation in this section also includes identification of velocity and acceleration imbalance parameters, and 
is the most complex option presented. 

In this approach, the following 24-element vector is identified, which includes all 12 imbalance parameters, the 4 
axial misalignment parameters, and the 8 strain gauge biases: 

 
IB

IB Misalignment B Misalignment

B

θ
θ θ+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (84) 

where 

  (52) 
T

IB p p c c xp yp xc yc xp yp xc ycx y x y v v v v a a a aθ ⎡ ⎤⎣ ⎦

 
T

Misalignment x y m x m yz zφ φθ φ φ⎡ ⎤⎣ ⎦  (65) 

 [ ]1 2 3 4 5 6 7 8
TB β β β β β β β β  (8) 

It is assumed that the counterweight parameters, CWθ , are known. 

Again substituting n̂etF  from Eq. (32) for  in Eq. (68), and using netF ĈWθ  to indicate the parameters that are 
considered known. 

  (85) 1 ˆ( ) ( , ) ( , )p c IB pCW cCW CW Misalignment Misalignment NFNT S B m m m m Eθ θ θ−Γ − = Φ + Φ + Φ +

  (86) 1 1( , ) ( , )p c IB Misalignment Misalignment pCW cCW CW NFNm m T B T S m m Eθ θ θ− −Φ + Φ + Γ = Γ − Φ −

The unknown parameters, IBθ , Misalignmentθ , and  in Eq. (86) will now be identified simultaneously, yielding 

the imbalance, axial misalignment, and strain gauge bias parameters. Concatenating the 

B
Φ  matrices and θ  vectors, 

 1( , )IB Misalignment B p c Misalignmentm m T −
+ + ⎡ ⎤Φ Φ Φ Γ⎣ ⎦  (87) 

Equation (86) may now be written as 
 1 ( , )IB Misalignment B IB Misalignment B pCW cCW CW NFNT S m m Eθ θ−

+ + + +Φ = Γ − Φ −  (88) 

which is in regression form with 

 
American Institute of Aeronautics and Astronautics 

 

31



 
1 ˆ( , )

IB Misalignment B

IB Misalignment B

pCW cCW CW

NFN

A

x

b T S m m

E

θ

θ

ε

+ +

+ +

−

= Φ

=

= Γ − Φ

= −

 (89) 

The  term in the preceding equations is a 4x8 matrix that can be calculated analytically to save run-time 
computation as follows. 

1T −Γ

  (90) 

11 13 15 17

11 13 15 171

32 34 36 38

32 34 36 38

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0

c s 0 0 0 0 0 0
s c 0 0 0 0 0 0
0 0 c s 0 0 0 0
0 0 s c 0 0 0 0

 
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

T

ψ ψ
ψ ψ

ψ ψ
ψ ψ

−

Γ Γ Γ Γ⎡ ⎤
⎢ ⎥Γ Γ Γ Γ⎢ ⎥Γ =
⎢ ⎥Γ Γ Γ Γ
⎢ ⎥−Γ −Γ −Γ −Γ⎣ ⎦
⎡ ⎤
⎢ ⎥−⎢
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥

0

0

  (91) 

11 11 13 13 15 17

11 11 13 13 15 171

32 32 34 34 36 38

32 32 34 34 36 38

c s c s 0
s c s c 0 0
s c s c 0 0
c s c s 0

T

ψ ψ ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

−

Γ Γ Γ Γ Γ Γ⎡ ⎤
⎢ ⎥−Γ Γ −Γ Γ Γ Γ⎢ ⎥Γ =
⎢ ⎥−Γ Γ −Γ Γ Γ Γ
⎢ ⎥−Γ −Γ −Γ −Γ −Γ −Γ⎣ ⎦

J. Summary of imbalance identification algorithms 

As mentioned earlier, there are some options regarding whether all 12 imbalance parameters are to be identified, 
whether axial misalignment is to be identified or calibrated beforehand, and whether the strain gauge biases are to be 
identified or calibrated beforehand. The equations corresponding to some of the permutations on these decisions are 
summarized here. 

One goal of this section is to repeat enough of the equations so that all the steps in implementing the algorithm 
can be seen, without concern for showing the complete derivation. 

1. Identification of 12 imbalance parameters, axial misalignment, and strain gauge biases 

This is the most complex case, using the regression equation derived in Section III.I.4 as Eq. (88), repeated here. 
Equations specifying these terms are repeated below. 

 1 ( , )IB Misalignment B IB Misalignment B pCW cCW CW NFNT S m m Eθ θ−
+ + + +Φ = Γ − Φ −  (88) 

 1( , )IB Misalignment B p c Misalignmentm m T −
+ + ⎡ ⎤Φ Φ Φ Γ⎣ ⎦  (87) 
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  (51) 

2

2

2

2

0 0
0 0

( , )
0 2 2

0 2 2

0 2 0 0 0 0 0
2 0 0 0 0 0

                
0 0 4 0 0 0 0 2
0 0 0 4 0 0 2 0

p p

p p
p c

p c c

p c c

p p

p p

c c

c c

m m
m m

m m
m g m l m l

m g m l m l

m m
m m

m l m l
m l m l

ω α
α ω

α ω
ω α

ω
ω

ω
ω

⎡
⎢−⎢Φ ⎢ − −
⎢
⎢⎣

− ⎤
⎥− − ⎥
⎥
⎥− ⎦

0

 

c s 0 0
-s c 0 0

0 0 s -c
0 0 c s

Misalignment mg

ψ ψ
ψ ψ

ψ ψ
ψ ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥Φ
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (64) 

 
c cos
s sin
ψ ψ
ψ ψ

 (19) 

  (91) 

11 11 13 13 15 17

11 11 13 13 15 171

32 32 34 34 36 38

32 32 34 34 36 38

c s c s 0
s c s c 0 0
s c s c 0 0
c s c s 0

T

ψ ψ ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

−

Γ Γ Γ Γ Γ Γ⎡ ⎤
⎢ ⎥−Γ Γ −Γ Γ Γ Γ⎢ ⎥Γ =
⎢ ⎥−Γ Γ −Γ Γ Γ Γ
⎢ ⎥−Γ −Γ −Γ −Γ −Γ −Γ⎣ ⎦

0

0

0

0

1T −Γ  can be calculated analytically, as shown here, to save computation time. The  are constant functions 
of the strain gauge geometry, so only need to be calculated once. 

ijΓ

 

11 13 15 17

11 13 15 171

32 34 36 38

32 34 36 38

0 0 0
0 0 0 0

( )
0 0 0 0

0 0 0

T TG G G−

Γ Γ Γ Γ⎡ ⎤
⎢ ⎥Γ Γ Γ⎢ ⎥Γ =
⎢ ⎥

Γ
Γ Γ Γ Γ

⎢ ⎥−Γ −Γ −Γ −Γ⎣ ⎦

 (34) 
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10 0

10 0

10 0

10 0

10 0

10 0

10 0

10 0

Bf

Af Bf Af Bf

Bf

Af Bf Af Bf

Af

Af Bf Af Bf

Af

Af Bf Af Bf

Bs

As Bs As Bs

Bs

As Bs As Bs

As

As Bs As Bs

As

As Bs As Bs

z
z z z z

z
z z z z

z
z z z z

z
z z z zG

z
z z z z

z
z z z z

z
z z z z

z
z z z z

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ − −⎢

− −⎢
⎢

−⎢
⎢ − −
⎢
⎢
⎢ − −= ⎢
⎢ −
⎢

− −⎢
⎢ − −
⎢

− −⎢
⎢ −⎢

− −⎢
⎢
⎢

− −⎢⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (17) 

So  is a function of the following constant known parameters:  

and time-varying variables which can be measured or estimated: 
IB Misalignment B+Φ + , , , , , , ,p c Af Bf As Bsm m g l z z z z

, ,ψ ω α . Since  are arbitrary, they may be 
set to 1 kg to reduce computations. 

,pm mc

 
IB

IB Misalignment B Misalignment

B

θ
θ θ+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (84) 

  (52) 
T

IB p p c c xp yp xc yc xp yp xc ycx y x y v v v v a a a aθ ⎡ ⎤⎣ ⎦

 

x

y
Misalignment

m x

m y

z
z

φ

φ

φ
φ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (65) 
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1

2

3

4

5

6

7

8

B

β
β
β
β
β
β
β
β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 

So the parameters to be identified consist of 4 positions, 4 velocities, 4 accelerations, 4 axial misalignment 
parameters, and 8 strain gauge biases. 

Continuing with the right side of the regression equation, 

 

Axf

Ayf

Bxf

Byf

Axs

Ays

Bxs

Bys

S
S
S
S

S
S
S
S
S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 

2

2

2

2

0 0
0 0

( , )
0 2 2

0 2 2

0 2 0 0 0 0 0
2 0 0 0 0 0

           
0 0 4 0 0 0 0 2
0 0 0 4 0 0 2 0

pCW pCW

pCW pCW
pCW cCW

pCW cCW cCW

pCW cCW cCW

pCW pCW

pCW pCW

cCW cCW

cCW cCW

m m
m m

m m
m g m l m l

m g m l m l

m m
m m

m l m l
m l m l

ω α
α ω

α ω
ω α

ω
ω

ω
ω

⎡
⎢−⎢Φ ⎢ − −
⎢
⎢⎣

− ⎤
⎥− − ⎥
⎥
⎥− ⎦

0

 (57) 

  (54) 
                                                      

CW pCW pCW cCW cCW xpCW ypCW xcCW ycCW

T

xpCW ypCW xcCW ycCW

x y x y v v v v

a a a a

θ ⎡⎣

⎤⎦
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1 3

2 4

1 3

2 4

1 3

2 4

4

( ) 4

( ) 4

( )

( )

( )

( )

pCW CW

pCW

pCW

xpCW pCW

ypCW pCW

xpCW xpCW

ypCW ypCW

m m

x

y

dv x
dt
dv y
dt
da v
dt
da v
dt

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

=

= +

= +

= = +

= = +

= = +

= = +

4

4

4

4

 

1 3

2 4

1 3

2 4

1 3

2 4

2
( ) 4
( ) 4

( )

( )

( )

( )

cCW CW

cCW

cCW

xcCW cCW

ycCW cCW

xcCW xcCW

ycCW ycCW

m m
x
y

dv x
dt
dv y
dt
da v
dt
da v
dt

δ δ
δ δ

δ δ

δ δ

δ δ

δ δ

4

4

4

4

=

= −

= −

= = −

= = −

= = −

= = −

 (55) 

So the right side of Eq. (88) is a function of the following constant known parameters: 
 and time-varying variables which can be measured or estimated: , , , , , ,CW Af Bf As Bsm g l z z z z

1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , , , , , , , , , , , , ,Axf Ayf Bxf Byf Axs Ays Bxs BysS S S S S S S Sψ ω α δ δ δ δ δ δ δ δ δ δ δ δ . The first 3 
variables are the rotor position, velocity, and acceleration. The next 8 are the 4 fixed and 4 spinning strain gauge 
measurements. The final 12 are the position, velocity, and acceleration of the counterweights. 
 

To implement this algorithm 
• Upon initialization, 

o Calculate Γ  
o Initialize the parameter estimation error covariance matrix, , referred to in Appendix B, and 

used by the RLS algorithm. Ref. 8 contains some suggestions for this. Setting it as a diagonal 
matrix with large values on the diagonal is probably not a bad guess – this implies no prior 
knowledge. 

0P

o Initialize IB Misalignment Bθ + +  with the best prior estimates. This may be a vector of zeros. 

• At each update 
o Sample the rotor encoder, tachometer (if present), strain gauges, and CW encoders 
o Use the rotor encoder, tachometer (if present), and spin motor current (if available) to estimate 

, ,ψ ω α  
o Filter and combine the individual strain gauges as described in Section III.A 
o Use the CW encoder measurements and commands (if available) to estimate the position, velocity, 

and acceleration of the counterweights. 
o Calculate  using the known parameters and variables as summarized above. This 

will be a 4x24 matrix, represented by 

IB Misalignment B+Φ +

T
kφ  in the RLS algorithm in Appendix B. 

o Calculate 1 ( , )pCW cCW CWT S m m θ−Γ − Φ . This will be a 4x1 vector, represented by  in the 
RLS algorithm in Appendix B. 

y

o “Modification 2” from Appendix B applies here, so update ÎB Misalignment Bθ + +  as described there. 

o Use the first four elements of ÎB Misalignment Bθ + +  to drive the counterweights, as shown in Eq. (120), 
or in the case of counterweight failure, Eq. (122). 
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2. Identification of 4 imbalance parameters only 

This is the simplest case, using the regression equation derived in Section III.I.1 as Eq. (75), repeated here. 
Equations specifying these terms are repeated below. This is the simplest case. It assumes axial misalignment 
parameters and strain gauge biases are known, based on prior calibration. The imbalance velocities and accelerations 
are judged to be small enough that the identification degrees of freedom they provide do more harm than good. 

  (75) 
1 ˆ ˆˆ( ) ( , )

pos pos

vel acc vel acc

IB IB pCW cCW CW Misalignment Misalignment

IB IB NFN

T S B m m

E

θ θ

θ
+ +

−Φ = Γ − − Φ − Φ

−Φ −

θ

c

⎥
⎥  (92) 

2

2

2

2

0 0
0 0

0 2 2
0 2 2

pos

p p

p p
IB

p c c

p c

m m
m m

m g m l m l
m g m l m l

ω α
α ω

α ω
ω α

⎡ ⎤
⎢ ⎥−⎢Φ ⎢ − −
⎢ ⎥
⎢ ⎥⎣ ⎦

 
pos

T

IB p p c cx y x yθ ⎡ ⎤⎣ ⎦  (72) 

So 
posIBΦ  is a function of the following constant known parameters:  and time-varying variables 

which can be measured or estimated: 

, , ,p cm m g l

,ω α . Since  are arbitrary, they may be set to 1 kg to reduce 
computations. 

,pm mc

0

0

0

0

Continuing with the right side of the regression equation, 

  (91) 

11 11 13 13 15 17

11 11 13 13 15 171

32 32 34 34 36 38

32 32 34 34 36 38

c s c s 0
s c s c 0 0
s c s c 0 0
c s c s 0

T

ψ ψ ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

−

Γ Γ Γ Γ Γ Γ⎡ ⎤
⎢ ⎥−Γ Γ −Γ Γ Γ Γ⎢ ⎥Γ =
⎢ ⎥−Γ Γ −Γ Γ Γ Γ
⎢ ⎥−Γ −Γ −Γ −Γ −Γ −Γ⎣ ⎦

1T −Γ  can be calculated analytically, as shown here, to save computation time. The  are constant functions 
of the strain gauge geometry, so only need to be calculated once. 

ijΓ

 

11 13 15 17

11 13 15 171

32 34 36 38

32 34 36 38

0 0 0
0 0 0 0

( )
0 0 0 0

0 0 0

T TG G G−

Γ Γ Γ Γ⎡ ⎤
⎢ ⎥Γ Γ Γ⎢ ⎥Γ =
⎢ ⎥

Γ
Γ Γ Γ Γ

⎢ ⎥−Γ −Γ −Γ −Γ⎣ ⎦

 (34) 
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⎥
⎥

 (17) 

 
c cos
s sin
ψ ψ
ψ ψ

 (19) 
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Ayf
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Byf
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Ays
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Bys

S
S
S
S

S
S
S
S
S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 
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ˆ

ˆ

B

β
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⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
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⎢ ⎥
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 (93) 
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⎡
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⎥
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 (57) 

  (54) 
                                                      

CW pCW pCW cCW cCW xpCW ypCW xcCW ycCW
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=
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=

= −

= −

= = −

= = −

= = −

= = −

 (55) 
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 (64) 
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φ

φ
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (65) 

K. Summary of noise sources modeled 

NFNE  is the “Net-Force noise” signal, indicating a true net force and torque on the rotor. 

SFNE  is the “Strain gauge Force Noise” signal, indicating forces at the strain gauges that did not result in net 
forces. 

SSNE  is the “Strain gauge Sensor Noise” signal, indicating sensor errors not resulting from actual forces. 

L. SG fault detection isolation and reconfiguration (FDIR) 

The FDI approach taken here is based upon maximum likelihood theory. It is loosely analogous to the commonly 
applied bank of Kalman filters. A key advancement over an earlier attempt using this approach was to simplify the 
model to include only geometric relationships–so that imbalance ID results, dynamic modeling, etc. are not needed. 
This is very important for simplicity and robustness. 

The method for estimating n̂etF , derived in Section III.B and resulting in the following repeated equation, 

 ( )( ) ( )( )1 1ˆ T T
netF G G G T S B

− −= − , (31) 

is repeated once for each possible failure mode. For the problem statement studied and implemented in simulation, 9 
different conditions are considered: (1) the case of no failures, and then (2-9) once for each situation where a single 
strain gauge would have failed. The failure modes are modeled so that when a SG fails it reads zero plus noise. This 
is not really the case here, since it is assumed that each SG is in a pair reading the exact opposite force, but this 
assumption makes the FDI problem very challenging. For actual hardware implementation, the actual failure modes 
would be properly calculated. 

For the case where  has failed, the estimation of iS n̂etF  is re-derived here as follows. Recalling the governing 
equation, 

 ( )net SFN SSNS B TGF E E− = + +  (25) 

If  has failed so it reads zero plus noise, this equation can be re-written as iS
 (i net SFN SSNS B I TGF E E )− = + +  (94) 

where iI  is a modified identity matrix, with ones on the diagonal, except ( , ) 0iI i i = . So  will read zero plus 

noise, as desired.
iS

††† Unfortunately, iI T  is not invertible, so the equation cannot be pre-multiplied by 1( )iI T −  as 

was done before for computational efficiency. Note that iI T  is simply T  with the  row replaced with zeros. 
This equation is now in regression form where 

thi

                                                           
††† Another failure mode might be that the SG signal could read anything. In that case, a better model might be to 
remove the equation for that SG from the system of equations. That could be achieved by removing the  row 
from the T  matrix and the  and 

thi
S B  vectors, giving them each 7 rows. 
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( )

i

net

SFN SSN

A I TG
x F
b S B

E Eε

=
=
= −
= − +

. (95) 

So the least-squares solution for this equation is 

 ( ) ( )( ) ( ) (
1ˆ

i

T T
net i i i )F I TG I TG I TG S B

−

= − . (96) 

Unlike the solution for no failures, the ( ) 1T TA A A
−

 term is a function of T , which is a function of rotor angle, 

ψ , so it must be updated at each sample. 

Once  is calculated for each failure mode, i , (including the case of no failures), at each sample update, , 

the residual, , from the least squares calculation is found as follows. 

ˆ
inetF k

,i kr

 ( ) ( ), , ,i k measured k estimated assuming i failed k
r S B S B− − −

,
 (97) 

 ( )
,, ,

ˆ
i ki k i netmeasured k

r S B I TGF= − −  (98) 

 ( ) ( ) ( )( ) ( ) ( )
1

, , ,

T T
i k i k i k i k i kmeasured k measured k

r S B I T G I T G I T G I T G S B
−

= − − −  (99) 

As derived below, the one of the 9 candidate models that most closely matches the actual measurements 
(calculated as the minimum residual, averaged over a window of time) is selected as the correct one, providing 
detection and isolation of the failure mode.  

The uncertainty model for the maximum likelihood calculation is simplified as follows9. Since the uncertainty in 
SG measurements comes from multiple sources, as summarized earlier, for simplicity it is modeled as coming from 
a single combined source for the maximum likelihood tests. The residual in the preceding equations is considered to 
represent the single combined uncertainty. The variance of this (assumed Gaussian and un-correlated) distribution is 
calculated in simulation, for the case of no SG failures. 

At each sample time, , the residual, , for the true failure mode, , is modeled as a continuous random 

variable having the following normal probability density function 

k * ,i k
r *i

 ( )
2

2
( )

2
2

1
2

x

f x e
µ

σ

πσ

−
−

=  (100) 

Making the assumption that the residual will have zero mean for the true failure mode, 

 ( )
2

22
2

1
2

x

f x e σ

πσ

−
= , (101) 

where 2σ  is the variance calculated in simulation, as mentioned above. 
For  measurements at discrete times 1, , the joint probability distribution function is N 2, , N

 1 2

1 2 1 1 2 2

1 2 1 2

( , , , ) Pr( , , , )

( , , , )N

N N
x x x

N N

F x x x X x X x X xN

f x x x dx dx dx
−∞ −∞ −∞

= < < <

= ∫ ∫ ∫
, (102) 

where 1 2( , , , )Nf x x x  is the joint probability density function. Since the measurements are independent and 
identically distributed (IID), 
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 1 2 1 1 2 2( , , , ) Pr( ) Pr( ) Pr( ) Pr( )N NF x x x X x X x X xN= < < <

k

k

 (103) 

 . (104) 1 2
1

( , , , ) Pr( )
N

N k
k

F x x x X x
=

= <∏
The joint probability density function is 

 1 2
1

( , , , ) ( )
N

N
k

f x x x f x
=

= ∏ . (105) 

Substituting the individual probability density function from Eq. (101) 
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2

2

2
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1
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f x x x e
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σ
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σ

πσ

πσ

πσ =

−

=

−−

=

−−

=

=

∑
=

∏

∏  (106) 

The likelihood function corresponding to the 9 candidate cases, from 0 8i = … , is 
 1 2( ) ( , , , ; )NL i f x x x i= . (107) 

The maximum likelihood failure mode is chosen as the i  that maximizes this likelihood function, or, more 
conveniently (and equivalently), ln  ( )L i
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( )

( )

( )

2
,2
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2
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1 2

1
22 2

1
22 2

2 2
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ln ( ) ln ( , , , ; )

ln 2
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1ln 2
2 2

N

i k
k

N

i k
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N

N x

N x
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i k
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L i f x x x i

e

e

N x
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σ
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=
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−−

=

=

⎛ ⎞∑⎜ ⎟=
⎜ ⎟
⎝ ⎠

⎛ ∑⎛ ⎞ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= − − ∑

⎞  (108) 

With 2σ  and  known, this expression for  is maximized by minimizing the summation. The 
maximum likelihood failure mode is chosen with the following expression, 

N ln ( )L i

 *
,

1

min
N

i ki k

i
=

= 2x∑ , (109) 

where ,i kx  is the residual calculated at time , using k ( ) ,estimated assuming i failed k
S B−

, , (for example, ,i k i kx r=  from 

Eq. (98)).  determines the size of the window used (the number of most recent samples). N
A generalized likelihood ratio test is performed between the best and second best fit to prevent detection when 

signals and residuals are small (as is true in a balanced condition). The ratio is taken between the summations, as 
shown in Eq. (109). In simulation testing, this approach has proven sufficiently robust to detect intermittent and 
changing SG faults without requiring significant additional logic. 

In summary, the SG FDIR algorithm does the following during each pass through the sample loop: 

 
American Institute of Aeronautics and Astronautics 

 

42



1. Sample spin angle encoder and estimate ψ . Use this to calculate T  and 1T − . 

2. Sample strain gauges and calculate the ( )S B−  vector. 

3. Calculate n̂etF  for the case of no SG failures present, indicated as , using Eq. (32). 
0n̂etF

4. Calculate n̂etF  for each SG failure case to be considered, indicated as , using Eq. (96). 
1

ˆ ˆ
net netF F

8

k

r

5. Calculate the residuals associated with each potential fault mode, , using Eq. (98). 0, 8,kr r

6. Compute the running modified likelihood function for each potential fault mode, , as the 

sum over the most recent  samples (where  is tuned based on the desired rate of response in FDI vs. 
the noise level present). 

2 2
0 8, ,r∑ ∑

N N

7. Find the closest and second closest fault mode matches,  and closesti second closesti , corresponding to the 

lowest and second-to-lowest values of 2
ir∑ . Compute the generalized likelihood ratio as the ratio of 

these values, 
2

2
closest

second closest

i

i

r
r

γ = ∑
∑

. 

8. If γ  is below a specified threshold, and  is different than the presently isolated fault mode, , 

declare  as the isolated fault mode (set 
closesti isolatedi

closesti isolated closesti i= ). This step accomplishes the fault detection 
and isolation (FDI). Here, the detection and isolation are performed at the same step, which is not always 
the case. 

9. Use  (already calculated in step 4, above) as ˆ
i isolatednetF n̂etF  in the remaining autobalancing calculations 

(e.g., use  where  is used). This step implements the reconfiguration (R), if needed. ˆ
i isolatednetF 1 ˆ(T S B−Γ − )

An important result of the approach taken is that the calculations used for FDI (i.e., the calculation of ) can 

then be used directly in the reconfiguration (R). Reconfiguration involves simply using the  value 

corresponding to the failure mode isolated, , rather than the 

ˆ
inetF

ˆ
inetF

ˆ
i closestnetF n̂etF  for the case of no failures, . 

0n̂etF
Another key feature of this approach is that it is independent of the dynamical model and disturbance forces that 

may be acting on the rotor. It simply looks for self-consistency among the various redundant sensors that measure 
forces on the (assumed rigid) rotor. This approach can be applied directly to the ISS Centrifuge design, even though 
that has a compliant suspension and uses displacement sensors instead of force sensors. 

IV. Counterweight control and FDIR 
Counterweight control refers to the portion of the overall control system that takes in estimates of imbalance 

parameters and drives the CWs to null the total imbalance. The actual low level control system (e.g., servo loop or 
stepper motor drive system) to move the counterweights is not critical (as long as it has sufficient bandwidth) and is 
not discussed here. So this section refers to generating the commanded CW positions that are to be sent to the lower 
level control systems. 

The 12 parameters defining the position, velocity, and acceleration of the PMI and MCI are updated at each 
sample, based upon the calculations summarized in Section III.J. 

  (52) 
T

IB p p c c xp yp xc yc xp yp xc ycx y x y v v v v a a a aθ ⎡ ⎤⎣ ⎦
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Assuming that imbalance motions (if any) are basically random and likely to be faster than the control bandwidth 
of the counterweights, the goal here will be to move the counterweights to counteract the imbalance positions, 

pos

T

IB p p c cx y x yθ ⎡ ⎤⎣ ⎦  

For the counterweights to statically negate the imbalance, 
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0 0 0 0 0 0
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⎡ ⎤ ⎡ ⎤
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+ =
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. (110) 

Solving for 
,pos desiredCWθ , 
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⎥

. (111) 

Recalling the equations defining the counterweight (position) parameters, 
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. (55) 

In matrix form, 
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. (112) 

Solving for δ  in terms of 
posCWθ  
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Substituting 
,pos desiredCWθ  from Eq. (111) for 

posCWθ  in Eq. (114), 

 
American Institute of Aeronautics and Astronautics 

 

44



 

1

2

3

4

1

1

1

1

0 0 01 0 1 0
0 0 00 1 0 11
0 0 2 01 0 1 02
0 0 0 20 1 0 1

0 0 00 0 0
0 0 00 0 0 ˆ
0 0 00 0 0
0 0 00 0 0

pos

pCW

pCW

cCWCW

cCW

ppCW

ppCW
IB

ccCW

ccCW

m
m

mm
m

mm
mm

mm
mm

δ
δ
δ
δ

θ

−

−

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 (115) 

 

1

2

3

4

0 0 01 0 1 0
0 0 00 1 0 11 ˆ
0 0 2 01 0 1 02
0 0 0 20 1 0 1

pos

p

p
IB

cCW

c

m
m

mm
m

δ
δ

θ
δ
δ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

⎥  (116) 

 

1

2

3

4

ˆ ˆ2
ˆ ˆ21
ˆ 22
ˆ ˆ2

p p c c

p p c c

p p c cCW

p p c c

m x m x
m y m y
m x m xm
m y m y

δ
δ
δ
δ

+

ˆ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ +− ⎢ ⎥⎢ ⎥ =
⎢ ⎥−⎢ ⎥
⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣ ⎦

. (117) 

These are the desired counterweight coordinates to be sent to the servo control loop. 
Recall that  and  are arbitrary, and could be set to 1 kg to simplify the equations. Whichever values are 

chosen will directly scale 

pm cm

ÎBθ . This mapping between ÎBθ  and δ  is determined exactly because the CW control 
policy chosen has 4 degrees of freedom. If a different counterweight configuration, perhaps having more than 4 
degrees of freedom were chosen, there would be some added flexibility in this mapping. 

A. Counterweight fault detection and isolation 

Since encoders measure the location of individual CWs for both the ISS and SSRL Centrifuges, CW FDI is 
relatively straightforward. The algorithm simply looks for a mismatch between the commanded and sensed 
positions. An enduring mismatch, with an unchanging sensed position indicates a failure, either of the CW or its 
encoder. The simple approach taken now is to consider that CW frozen, and stop trying to drive it. If needed, it 
should be possible to determine whether the CW encoder or drive system has failed, but it would be relatively 
difficult, and provide limited value considering that CW redundancy exists. 

B. Redundantly driven counterweights 

So far, the analysis follows the counterweight configuration shown in Figure 7, in which only one of the CWs in 
a redundant pair moves, and the other remains fixed. One simple alternative to this would be to drive both 
counterweights, where δ  indicates the total motion of each CW in the redundant pairs. The net δ  could then be 
calculated as 

 

1 1 1

2 2 2

3 3 3

4 4 4

A B

A

A B

A B

B

δ δ δ
δ δ δ
δ δ δ
δ δ δ

= +
= +
= +
= +

, (118) 
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where, for example, 1Aδ  is the position shown as 1δ  in Figure 7, and 1Bδ  is the position of the CW labeled 

“counterweight #1 fixed dead weight”, which is positive in the same direction as 1Aδ . Eq. (118) can be substituted 
into the preceding equations, including Eq. (117), as follows 
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⎢ ⎥⎢ ⎥ −+ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (119) 

This relation is used for standard CW control, in which the A and B CWs in each pair are nominally driven to 
have the same coordinates (i.e., 1 1command commandA Bδ δ= , etc.). So in this case, the desired δ  is calculated using Eq. 
(117), then individual CW desired positions are calculated as follows 
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. (120) 

C. Reconfiguration for counterweight failures 

If a CW fails by freezing in place, the other one in the pair will be commanded to make up the difference. With 
the CW geometry used here, the fault reconfiguration is fairly obvious. For example, CW 1A freezes at position 

1
frozen
Aδ , the commanded CW vector becomes 
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For other geometries, a more complex mapping may be required, but as long as there is physical redundancy for 
all degrees of freedom, such a mapping will exist. 

V. MATLAB simulation 
Basic results confirm that noise should not be a significant problem. One-Newton noise levels in the strain 

gauges can be tolerated easily. Gravity imbalance forces dominate. These are affected by the distance between the 
strain gauge clusters, as well as the rotation speed. Also, a higher speed will reduce the effect of sensor noise, as the 
centrifugal forces are increased by the square of the angular rate. 

The recursive least squares algorithm runs at 3 kHz on a 2.2 GHz Pentium 4 in MATLAB10, which includes 
simulation as well as the autobalancing calculations. This will slow down if more equations are added (more strain 
gauges), digital filtering is required, or a slower processor is used. However, the code could be sped up if 
programmed in C. 

Sample screen outputs from the graphical user interface shown in the following figures, which were taken from a 
simulation in which the centrifuge was generating 1.0 g (setpoint), the counterweight motion was not enabled 
(resulting in much higher imbalance forces), and strain gauge pair #4 (non-rotating, measuring y-axis force in the 
lower plane) has failed. 

upper force
lower force
rotor angle

rotor speed = 0.454 rps
artificial gravity = 0.995 g

16

 
Figure 9. Software simulation GUI – bearing forces 

This view shows the measured bearing forces, including sensor noise, vibrations, and imbalances. 
The blue line indicates the zero-degree angle of the rotor. The red and green lines are vectors 
indicating the measured forces in the upper and lower planes. Since SG #4 has failed, the green 
vector has very little y-component (only noise). The scale factor (16) indicates that the radius of 
the blue circle is 16 Newtons, very large because the counterweight motion has been disabled in 
this simulation. 
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Figure 10. Software simulation GUI – imbalance tracking, Strain gauge FDIR 

The state of imbalance, imbalance-identification, and imbalance-cancellation are shown in the left 
figure for upper and lower counterweight planes. The results of the strain gauge FDI are shown in 
the upper right, indicating correctly that SG #4 has failed. Automatic reconfiguration following 
the fault isolation enables the identification to remain very accurate, as shown. 
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Figure 11. Software simulation GUI – simulation control panel 

This control panel is used to control the simulation, starting/stopping the rotor spin, 
counterweights, and simulated random imbalance motion. Sensor and counterweight failures are 
also controlled. The imbalance may be “driven” manually (rather than the pseudo-random walk) 
by using the mouse to drag the blue circle joystick emulator on the right. 
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Figure 12. Software simulation GUI – strain gauge outputs 

The 8 strain gauge signals are shown, plotted against the rotor angle. The vertical red line shows 
the beginning/end of the most recent revolution. If the imbalance were not moving, there were no 
vibration or sensor noise, and no failures were present, the 4 rotating gauges would read constant 
values and the 4 fixed gauges would have sinusoidal values (2 pairs 90 degrees in phase apart). 
However, “stator lower y” has failed, resulting in a reading of zero + noise. 

 

VI. Conclusion 
Algorithms that provide automatic balancing and autonomous fault tolerance for a space-based centrifuge have 

been derived and successfully implemented in software simulation. Although developed for an Earth-based 
simulator, the underlying principles may be extended for application to the ISS Centrifuge design which has a 5-axis 
vibration isolation mechanism suspension and displacement sensors. 
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The architecture, which is similar to an indirect adaptive control architecture, allows careful and independent 
tuning of identification and control bandwidths, which is a key challenge for this application. 

The sensor FDIR method presented uses maximum likelihood theory and is integrated closely with the 
imbalance identification algorithms, facilitating reconfiguration in the case of a sensor fault. This method does not 
rely on the rotor dynamical model, and is independent of rotor disturbances, relying only on the self-consistency of 
the redundant sensor suite. 

The overall architecture and FDIR algorithms should be applicable to other aerospace systems that require 
automatic, fault tolerant, on-line identification and control of system properties. 

Appendix 

A. Abbreviations 

BDS: Bearing displacement sensor 
CM: Center of mass 
CW: Counterweight 
EOM: Equation(s) of motion 
FDI: Fault detection and isolation 
FDIR: Fault detection isolation and reconfiguration (or recovery) 
FIR: Finite impulse response (filter) 
GUI: Graphical user interface 
Hz: Hertz, cycles per second 
ID: Identification (system identification) 
IID: Independent and identically distributed 
ISS: International Space Station 
JAXA: Japan Aerospace Exploration Agency 
KF: Kalman Filter 
LVLH: Local vertical local horizontal 
LS: Least squares 
m: Meters 
MCI: Mass-couple imbalance 
N: Newtons 
NASA: National Aeronautics and Space Administration 
NFN: Net Force Noise 
PMI: Point-mass imbalance 
RBNB: Ring-buffered network bus 
RLS: Recursive least squares 
SFN: Strain gauge Force Noise 
SG: Strain gauge 
SNR: Signal to noise ratio 
SSN: Strain gauge Sensor Noise 
SSBRP: Space Station Biological Research Project 
SSRL: Smart Systems Research Lab 
UZGRV: Uncorrelated zero-mean Gaussian random variable 
VCM: Voice coil motor 
VIM: Vibration Isolation Mechanism 

 

B. Recursive least squares algorithm 

The identification algorithms make extensive use of recursive least squares estimation. This appendix presents 
the standard algorithm used, as published in Ref. 8, along with certain modifications made to increase run-time 
performance and simplicity at a slight expense of loss of accuracy. The following is paraphrased from Ref. 8, 
starting at p.375. 

The system of equations is 
 Y θ ε= Φ +  (123) 
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Note that differs from the Ax b ε= +  nomenclature used in the report. So , , ,Y b A xθ ε ε→ Φ → → → −  

Let mθ  and  indicate the number of rows in the mΦ θ̂  vector, and Φ  matrix, respectively. Then 

• m mθΦ >  so that the problem is over determined and a least squares fit will be chosen. 

•  is a  vector, generally containing the measurements. Y 1mΦ ×
•  is a Φ m mθΦ ×  vector, generally known parameters and some measurements (but ideally, should contain 

only known quantities). 
• θ  is a  vector of the parameters to be identified. 1mθ ×
• ε  is a  vector, containing noise. 1mΦ ×

 
The batch least squares solution to this is 
 . (124) 1ˆ ( )T T

LS Yθ −= Φ Φ Φ

The weighted batch least squares solution to this is 
 . (125) 1ˆ ( )T T

WLS W Wθ −= Φ Φ Φ Y

In the recursive least squares implementation, the rows in the matrix Eq. (123) are stepped through one at a time 
as follows (algorithm follows Ref. 8 almost exactly): 

1. Select  and a γ . 
2. Comment: 1a γ= =  is ordinary least squares; 1a γ= −  and 0 1γ< <  is exponentially weighted least 

squares. 
3. Select values for 0̂θ  and , the initial estimates for the parameters and their estimate error covariance. 0P
4. Calculate , the first row in the 1 (1,:)Tφ Φ Φ  matrix. 1

Tφ  is a 1 mθ×  row vector taken from Φ , 1φ  is a 
column vector, keeping with the standard notation used in Ref. 8. 

5.  0k =

6. 
1

1 1 1 1
1 Tk k

k k k k
P PL

a
φ φ φ

γ γ

−

+ + + +

⎛ ⎞
= +⎜

⎝ ⎠
⎟  (note that the inverse is of a scalar; L  is a  column vector, 

effectively acting as the gain for 

1mθ ×

θ̂  updates) 
7. Calculate  (  is a scalar) 1 ( 1)ky Y k+ + y

ˆ ˆ ˆT
k k k k kL y8. ( )1 1 1 1 kθ θ φ θ+ + + += + − ˆ (θ  is a 1mθ ×  column vector) 

9. ( )1 P+1 1
1 T

k k k kP I L φ
γ+ += −  ( P  is a m mθ θ×  matrix of the covariances in the identification parameter 

errors. However, it is based only upon  and the rows of 0P Φ  (but not Y ), so as far as using it as a 
measure of convergence, it reflects the information input, but not the closeness of fit. Analysis of the 
residuals calculated in step 8 may be more meaningful for that.) 

10. Calculate , the next row in the 2 ( 2,:T
k kφ + Φ + ) Φ  matrix. 

11.  1k k= +
12. Go to step 6. 

 

Modification 1 

If the regression equation changes so that each row of the Φ  matrix is used by multiple θ  vectors to produce 
multiple  scalars, the dimensions of the variables change as follows: y
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•  is a Y m nθΦ ×  matrix. 

• θ  is a m nθ θ×  matrix of the parameters to be identified. 

• ε  is a m nθΦ ×  matrix, containing noise. 

This effectively combines the multiple RLS IDs (for each column in θ ) into one regression. Each ID is really 
completely independent, but since they share the same Φ  matrix, they can be calculated together (as long as they 
can also share , as discussed below). If this is the situation, the previous equations can be used exactly, except 

that  becomes a 1
0P

y nθ×  row vector (and the above changes are made as well). The limitation that comes with this 

convenience is that the columns of θ  share the same  matrix. One  matrix of size mP 0P mθ θ×  initializes , and 

then, since each column of 

P
θ  uses the same row of Φ , the  matrix is appropriately updated. So the only real 

limitation is that each column of 
P

θ  should be able to share a common . If this does not hold, then different  

matrices should be propagated for each column of 
0P P

θ , effectively meaning each column is identified independently. 
 

Modification 2 (applicable in this case) 

In a second permutation on the original, covered in Eq. (8.70 – 8.72) of Ref. 8, the regression equation could 
change so that the θ  vector is shared by multiple rows of the Φ  matrix, producing a vector of measurements, , at 

each sample. Assuming  measurements are taken at each sample, the dimensions of the variables change as 
follows: 

y

ym

•  is now greater by a factor of . It is equal to  times the number of times at which samples are 

taken. This increases the number of rows in Y , 

mΦ ym ym
Φ , and ε . 

There are three approaches that can be taken in this case: 
Approach 1: (exact) As presented in Eq. (8.70 – 8.72) of Ref. 8, the original algorithm is modified as follows: 

•  becomes a diagonal matrix, so a 1a−  is needed instead of 
1
a

 in step 6, meaning that a matrix inversion is 

now required at each update. The inversion is of a square matrix with dimension equal to the number of 
measurements at each sample update. 

• T
kφ  becomes a ym mθ×  matrix of row vectors in steps 4, 6, 8, 9, and 10. 

• L  becomes a  gain matrix ym mθ ×

Approach 2: Run the original implementation one row at a time, ignoring the fact that  samples come in at the 
same time (the approach taken here). 

ym
γ  should be adjusted to account for the fact that the RLS ID will be updated 

 times for each sample update. The major benefit over Approach 1 is that the matrix inverse is avoided. ym

Approach 3: Same as Approach 2 except that the order of updating flips on each measurement update. So on the 
odd sample updates, the RLS is updated with rows 1,  taken one at a time, in that order. On the even 

updates, the RLS is updated with rows 

2, , ym
, 1, , 2y ym m ,1− . 

These different approaches give identical results if 1a γ= =  (no exponential weighting) since in that case, the 
sequence of measurements does not matter. For example, at the extreme, it does not matter if the measurements 
come in one at a time or all at once, as long as Y  and Φ  are the same. However, for the case where exponential 
weighting is applied, these approaches give different results. 
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If γ  is adjusted as mentioned above, the first two approaches will differ slightly, since in Approach 2, the ym th 
measurement will be weighted slightly more than the first measurement in each sample update (since it appears to be 
more recent, even though it is not). If γ  has been chosen to provide a relatively slow exponential decay (so the 

approximate sample window is much greater than ), this difference that Approach 2 gives is probably acceptable 
given the benefit of avoiding the matrix inverse. Approach 2 would be consistently biased towards weighting the last 
elements in the measurement vector higher than the first elements. 

ym

Approach 3 is aimed at reducing that potential problem in a way that still avoids the matrix inverse. In that case, 
the ordering of the RLS updates will flip on each sample update. The following plot shows the effective weightings 
applied to samples for the 3 different approaches. The weightings have been normalized so that the average 
weighting across all measurements in each Approach is 1.0. In this example, 10 measurements come in at each 
sample update. For the exact method, each of the 10 measurements taken at one time in each batch is weighted 
equally, as shown by the horizontal blue segments. In Approach 2, the weightings decrease exponentially going back 
in time/sequence (some of the Approach 2 points are covered with Approach 3 points). 
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