Search for Gauge-Mediated Supersymmetry in the Di-Photon Channel

presented by

Stilianos Kesisoglou Department of Physics Brown University

April 13, 2006

华

Standard Model

Quantum Field Theory (Quantum Mechanics + Special Relativity)

Particles and Mediators described as excitations of Quantum Fields

Equations obtained from Action Principle and Local Gauge Invariance

✤ Mathematical group: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

Incorporates Strong and Electroweak interactions (no Gravity)

Classification scheme of particles (fermions) and mediators (bosons)

- Local Gauge Invariance in Electromagnetism
 - Classically: Electromagnetic field is invariant under gauge transformations

$$\label{eq:alpha} \clubsuit \ A_{\mu} \ \to A'_{\mu} = A_{\mu} + \partial_{\mu} \lambda(x) \qquad \qquad , \ F_{\mu\nu} \to F'_{\mu\nu} = F_{\mu\nu}$$

- > Classically: Field particle interaction is invariant under gauge transformations
 - ✤ $\partial_{\mu} j^{\mu} = 0$ (Noether's Theorem)
- > Quantum Mechanically: $\mathcal{L} = \mathcal{L}_{DIRAC} + \mathcal{L}_{FIELD} + \mathcal{L}_{INT}$
 - ★ $\mathcal{L}_{\text{DIRAC}}$ = i (ψ[†]γ⁰) γ^μ ∂_μψ m (ψ[†]γ⁰) ψ
 - $\begin{array}{l} \bigstar \quad \mathcal{L}_{\mathsf{FIELD}} = -1/4 \; \mathsf{F}^{\mu\nu} \, \mathsf{F}_{\mu\nu} & (\quad \text{invariant under } \mathsf{A}_{\mu} \to \mathsf{A}_{\mu} + \partial_{\mu} \lambda(\mathbf{x}) \;) \\ \\ \bigstar \quad \mathcal{L}_{\mathsf{INT}} = \mathsf{q} \; (\psi^{\dagger} \gamma^{0}) \, \gamma^{\mu} \psi \; \mathsf{A}_{\mu} & (\quad \text{not invariant under } \mathsf{A}_{\mu} \to \mathsf{A}_{\mu} + \partial_{\mu} \lambda(\mathbf{x}) \;) \end{array}$

• The total Lagrangian can remain invariant as long as <u>both</u> a local phase and gauge transformation applied (local gauge invariance):

 $\succ A_{\mu} \rightarrow A'_{\mu} = A_{\mu} + \partial_{\mu}\lambda(x) \qquad \text{ and } \qquad \psi \rightarrow \psi' = e^{-iq\lambda(x)}\psi$

- Experiment confirms phase transformations (Bohm-Aharonov), therefore this is a defining property of the EM field.
- Local gauge invariance is required for every interaction:
 - To preserve invariance additional fields are introduced (gauge fields)
 - Particle-Field interaction is uniquely determined
 - Field equations are uniquely determined (only gauge invariant terms)
 - Mass terms for the gauge fields are not gauge invariant
 - Gauge fields have zero mass

04/07/2006

• Strong Interaction

- Color is the conserved quantity
- Local gauge invariance under SU(3)_C
- A set of eight gauge fields (gluons) is predicted
- Interaction's short-range is explained (confinement)
- Weak Interaction
 - For gauge invariance to exist it had to be completed
 - Electroweak Interaction
 - \checkmark Local gauge invariance under ${\rm SU(2)_L} \otimes {\rm U(1)_Y}$
 - A set of four gauge fields W^{μ} , μ = 0, 1, 2, 3 is predicted
 - Interaction is short-range (massive mediators) and not explained by the model!
 - Fermions are prohibited to have mass! (Dirac mass term)
- Higgs
 - Extra field neither fermion nor gauge field
 - Breaks the electroweak symmetry for the observable states
 - Short-range of the weak forces is explained
 - Fermions acquire mass through the Higgs field

Model of Elementary Particles

- Standard Model problems
 - Hierarchy problem

Masses of particles are determined by the Higgs (~200 GeV)

✤ BUT the Higgs mass is not bounded, it can be up to 10¹² - 10¹⁸ GeV

♦ Why is so low?

Higgs mass quadratically diverges in perturbation theory if the fermion and boson masses are not "near' equal"

 $m Imes M^2_h \sim M^2_{h0}$ + (g 2_F / 4 π^2) (m 2_F - m 2_S)

Gravity is not included

04/07/2006

- Supersymmetry
 - A gauge theory that combines all particles (fermions and bosons) into "superfields"
 - All superfields now have zero mass
 - Particles and their "superpartners" have all quantum numbers the same and they differ only by one-half unit of spin
 - Number of particles in the standard model doubles
 - Among known particles there are no superpartners
 - Supersymmetry must be broken
- If Supersymmetry is broken:
 - All particles (fermions, bosons and Higgs) acquire mass determined from the energy scale where supersymmetry is broken
 - \blacktriangleright Quadratic divergences of the Higgs mass are suppressed since $m_{\text{FERMIONS}} \approx m_{\text{SCALARS}}$

- Gauge Mediation of SUSY Breaking
 - SUSY is broken in a sector of superfields not containing the known particles or their superpartners (hidden sector)
 - Gauge interactions between the hidden sector and the rest of the superfields and known particles transmit SUSY breaking
 - Experimental predictions for this class of models, do not depend from the details of the SUSY breaking, but rather from the features of the of the model after the breaking
- GMSB model features
 - Few parameters define the phenomenology
 SUSY breaking scale in the messenger sector, F
 - Number of messenger pairs, N_{mess}
 - Messenger mass scale, M

04/07/2006

- GMSB model features (cont.)
 - \clubsuit Universal mass scale of SUSY particles, Λ
 - Ratio of Higgs vacuum expectation values, tanβ
 - * sign of the Higgs sector mixing parameter, sign(μ)
 - R-parity invariance
 - ✤ R = (-1)^{3(B-L)+2S} S = spin, B = baryon number, L = lepton number
 - Pair-production of SUSY particles that all finally decay
 - Lightest SUSY particle (LSP) must be absolutely stable
 - Cosmological constrains also require to be neutral
 - LSP in R-parity-conserving SUSY escapes the detector
 Experimental Signature
 Missing Transverse Energy

> Gravitino is the LSP:
$$m_G = 2.4 (\sqrt{F / 100 \text{ TeV}})^2 \text{ eV}$$

- GMSB model features (cont.)
 - Since LSP is stable, the next to LSP determines the phenomenology of GMSB models

• NLSP is either neutralino χ^0_1 or a slepton

- > NLSP lifetime is not fixed by the model
- Signatures depend on the NLSP type and decay length.

Non-pointing photons in photon plus jets final state.

Non-pointing Z's from the primary vertex in final state

• GMSB model features (cont.)

$$p\overline{p} \rightarrow gauginos \rightarrow W^{(*)}, Z^{(*)}, l + \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \gamma \gamma + \tilde{G}\tilde{G} + X$$

Run II - Tevatron Collider

- Run I 1992-95
- Run II 2001-09(?) 100 × larger dataset at increased energy
- Collision energy, $\sqrt{s} = 1.96 \text{ TeV}$
- Bunch crossing, $\Delta t = 396$ ns

04/07/2006

.

۲

•

•

•

Entries 50549 Mean 1.104 Events RMS 28.01 Interaction Point 500 Protons and antiprotons collide \geq 400 in bunches Gaussian distribution \geq 300 z = 0 with $\sigma = 28$ cm 200 100 Hubrid Design -400 100 -300 -200 -100 0 200 300 400 Barrels: For r - ϕ coverage \succ z_{interaction} (cm) \blacktriangleright Disks: For r- ϕ and r-z coverage H-DISKS Individual detectors 4 ...¹ Ladders (barrels) \succ **F-DISKS** Wedges (disks) p-side: +15° 12...9 8 7 n-side: -15 S⁴ Measured with Optical Gauging 2 3 Platform (OGP) H-DISKS 4 p-side: +7.5° n-side: -7.5 ARRELS Assembled under Coordinate Y Measuring Machine (CMM) 1* 04/07/2006 15

z_vertex

- Compensating sampling calorimeter
 e/h = 1 ± 0.02
- Liquid Argon
 - Active sampling medium
- Depleted Uranium
 > Absorber material
- Three types of modules
 - EM section
 - FH section
 - CH section
- Energy resolution
 > (σ/E)² = c² + S²/E^{1/2} + N²/E

- Electromagnetic showers develops through multiplication of photons and electrons
 - Bremsstrahlung
 - Electron-positron pair production
- Electron-originated and photon-originated showers have pretty much the same profile in the calorimeter

- Three level trigger
 - L1: Raw detector info
 - List of candidates from each subdetector (cal E_T towers, ca;trk match etc)
 - L2: Correlation Algorithms
 - List of trigger terms & physics objects
 - Combines correlations
 - L3: Event Filtering Algorithms
 - Online reconstructed e,μ, j
 - * "physics tools"
 - Event topologies

- Physics objects have to be reconstructed from detector readout
- Dedicated software for object reconstruction (DØReco)
- A set of identification variables is used in order to isolate the various candidates
- Only EM objects are used in this analysis (EMID variables)

- H-matrix variable
 - Takes into account the shape of the shower itself
 - Longitudinal shower shape
 - Transverse shower shape
 - Energy deposition within the cluster
 - It measures how similar the shower is to an electron (photon) or a hadronic shower
- Track match / veto
 - All the above variables are calorimeter based
 - Allow for QCD processes to contaminate the sample
 - Doesn't distinguishes electrons from photons
 - Tracking system (CFT and SMT) is used to reconstruct tracks
 - Tracks are matched with EM clusters spatially

•
$$\chi^2_{\text{spatial}} = (\delta \phi / \sigma_{\phi})^2 + (\delta z / \sigma_z)^2$$

Data Sample Selection

- Trigger Requirements
 - Single and di-EM triggers (threshold above 20 GeV)
 - Efficiency: $\epsilon_{trigger}(p_{T}>20 \text{ GeV}) = 0.97 \pm 0.01$
 - Luminosity: $\mathscr{L}_{RECO} = 263 \pm 17 \text{ pb}^{-1}$
- Identification offline cuts
 - Simple cone reconstruction algorithm "scone"
 - $\succ~E_T>20~GeV$, $|\eta_{Det}|<1.1$, $EM_{_{ISO}}<0.15$, $EM_{fract}>0.90$, $\chi^2_{HMx7}\!<15$
 - Track match
 - Electrons $\chi^2_{(\text{spatial})} > 10^{-3}$, photons otherwise
 - ◆ $ε_{track}$ = 0.936 ± 0.002 (stat) ± 0.004 (syst)
 - Track isolation
 - $(\sum_{\text{tracks}} p^{(\text{track})}) \overset{0.05 < R < 0.4}{|z_{\text{PV}} z_{\text{DCA}}| < 2 \text{ GeV} } < 2 \text{ GeV}$
 - ♦ $ε_{trk-iso} = 0.96 \pm 0.02$

04/07/2006

Data Sample Selection

- Identification offline cuts (cont.)
 - Jet reconstruction
 - Reconstructed within a 0.5 cone, and for jets passing standard cuts their energy was corrected
 - ♦ Reject events for which: ΣE_T (bad jets) > 30 GeV
 - $\varepsilon_{\text{bad jets}} = 0.97 \pm 0.02$ (sample independent)
 - Topological cuts
 - Misvertexing: $\Delta \phi$ (EM, MET) > 0.5
 - ♦ Mismeasured jets: $\Delta \phi$ (jet, MET) < 2.5

Data Sample Selection

SUSY Signal Generation

- Event generator packages
 - Branching fractions and sparticle masses with ISAJET v7.58
 - better than PYTHIA's SUSY generator
 - Event generation PYTHIA v6.202 with CTEQ5M structure functions
- Detector Simulation with DØGSTAR package
 - DØ GEANT Simulation of the Total Apparatus Response
 - Detector geometry and materials in each volume
 - Magnetic field
 - Simulates the passage of particles through the detector volume.
- Electronics Simulation with DØSim package
 - Digitization
 - Adds noise and detector inefficiencies
- Reconstruction with DØReco package
- Trigger Simulation with DØTrigSim

SUSY Signal Generation

Point	Λ	$\frac{M}{\Lambda}$	$tan\beta$	N_5	$m_{\chi_1^0}$	$m_{\chi_{t}^{+}}$	σ_{TOT}^{LO}	K-factor	Efficiency	95% CL Limit, pb
	${\rm TeV}$				${\rm GeV}$	GeV^1	$_{\rm pb}$			
1	55	2	5	1	69.4	122.0	0.861	1.240	0.081 ± 0.008	0.209
2	60	2	5	1	76.9	136.2	0.534	1.229	0.103 ± 0.010	0.165
3	65	2	5	1	84.5	150.5	0.338	1.219	0.118 ± 0.011	0.144
4	70	2	5	1	92.0	164.9	0.225	1.209	0.128 ± 0.012	0.133
5	75	2	5	1	99.4	179.1	0.150	1.199	0.137 ± 0.013	0.124
6	80	2	5	1	106.7	193.0	0.102	1.189	0.134 ± 0.013	0.126
7	85	2	5	1	114.1	207.2	0.070	1.179	0.126 ± 0.012	0.134
8	55	2	15	1	71.8	126.3	0.735	1.236	0.092 ± 0.009	0.184
9	60	2	15	1	79.1	140.2	0.468	1.227	0.100 ± 0.009	0.170
10	65	2	15	1	86.4	154.3	0.301	1.217	0.111 ± 0.011	0.153
11	70	2	15	1	93.7	168.2	0.204	1.207	0.124 ± 0.012	0.137
12	75	2	15	1	101.0	182.3	0.138	1.197	0.137 ± 0.013	0.124
13	80	2	15	1	108.2	196.0	0.094	1.187	0.149 ± 0.014	0.114
14	85	2	15	1	115.5	209.9	0.066	1.177	0.154 ± 0.015	0.110
15	36	10	5	2	88.4	153.1	0.311	1.217	0.119 ± 0.011	0.143
16	38	10	5	2	94.2	163.9	0.230	1.210	0.148 ± 0.014	0.115
17	40	10	5	2	100.0	174.7	0.171	1.202	0.141 ± 0.014	0.120
18	42	10	5	2	105.7	185.4	0.129	1.195	0.160 ± 0.015	0.106
19	44	10	5	2	111.4	196.0	0.099	1.187	0.143 ± 0.014	0.118
20	46	10	5	2	117.1	206.6	0.076	1.180	0.153 ± 0.015	0.111
21	48	10	5	2	122.7	217.3	0.058	1.172	0.138 ± 0.013	0.123

SUSY Signal Generation

Λ TeV	m(χ ⁰ 1) GeV	σ _{τΟτ} ^(LO) pb	Acceptance for given mE _T cut , %						
			> 25	> 30	> 35	> 40	> 45	> 50	
55	69.4	0.860	16.2	14.5	13.3	11.7	9.80	8.45	
60	77.0	0.532	17.2	15.9	14.6	13.2	11.2	10.1	
65	84.5	0.339	19.3	18.1	16.8	15.6	13.6	12.4	
70	92.0	0.225	21.8	21.0	20.0	18.5	17.0	15.5	
75	99.5	0.151	22.8	21.7	20.6	19.7	18.3	17.3	
80	106.8	0.103	22.0	21.3	20.5	19.5	18.3	17.2	
85	114.2	0.071	21.2	20.0	19.4	18.1	17.1	16.7	

Two sources of SM di-photon events with MET

Events where MET is due to mis-measurement

• QCD: $\gamma j, j j, \gamma \gamma$ (jet faking γ - dominant)

• mE_T resolution must be similar for γ and jet faking γ

Drell-Yan: electrons identified as photons due to lost tracks

Events with true MET and lost tracks

W γ → e ∨ γW j → e ∨ "γ"

 $\diamond Z \rightarrow \tau \tau \rightarrow e e + X$

✤ t t , W W , W Z etc.

(dominant)

(jet faking γ - dominant)

- Di-photon sample (inclusive)
 - Simple cone reconstruction algorithm "scone"

 $\succ ~ {\sf E}_{\sf T} > 20~GeV ~,~ |\eta_{\sf Det}| < 1.1 ~,~ {\sf EM}_{_{\sf iso}} < 0.15 ~,~ {\sf EM}_{\sf fract} > 0.90 ~,~ \chi^2_{\sf HMx7} < 15$

➤ Topological cuts
 ❖ Misvertexing: Δϕ (EM, MET) > 0.5
 ❖ Mismeasured jets: Δϕ (jet, MET) < 2.5

- QCD Background (and Drell-Yan)
 - Require track veto to suppress Drell-Yan
 - Idea is that MET resolution is very similar for
 - di-photon events
 - photons plus jets faking photons
 - Estimate can be done if the same cuts are used as with di-photons but with at least one EM object having reverse-photon cuts
 - Same base sample as for di-photons
 - Require HMx7 > 20 and HMx8 < 200</p>
 - > EM objects with $EM_{iso} < 0.15$ and $EM_{fract} > 0.90$
- Use low MET region (MET < 15 GeV) to normalize QCD sample to di-photon
- Predict QCD background for high-p_T

- Electroweak background
 - Electron plus photon sample used
 - Same base sample as for di-photons
 - Require track match and track isolation

\therefore Electrons: $\chi^2_{(\text{spatial})} > 10^{-3}$, Photons: otherwise

♦ ($\sum_{\text{tracks}} p_T^{(\text{track})}$) ^{0.05<R<0.4}_{|ZPV-zDCA}|<2cm < 2 GeV

Contains QCD part that is extracted as in the di-photon case

- After extraction remaining sample is multiplied by ratio (1- ε_{trk})/ $\varepsilon_{trk:}$
 - > Probability an electron to be identified as photon, $(1-\varepsilon_{trk})$
 - Probability an electron to obtain background estimate to the di-photon, ε_{trk}

	Total events	$E_T < 15 \text{ GeV}$	$> 20 { m ~GeV}$	$> 30 { m ~GeV}$	$>40~{ m GeV}$	$> 45~{\rm GeV}$	$> 50 { m ~GeV}$	$> 55~{ m GeV}$
$\gamma\gamma$	1909	1800	34	6	2	1	1	1
$e\gamma$	889	782	70	34	15	10	5	4
QCD	18437	17379	343	73	27	22	15	11
(QCD BG	to $\gamma\gamma$	35.5 ± 2.1	7.6 ± 0.9	2.8 ± 0.5	2.3 ± 0.5	1.5 ± 0.4	1.1 ± 0.3
QCD BG to $e\gamma$			15.4 ± 1.0	3.3 ± 0.4	1.2 ± 0.2	1.0 ± 0.2	0.7 ± 0.2	0.5 ± 0.2
		$e\gamma$ total	54.6 ± 8.4	30.7 ± 5.8	13.8 ± 3.8	9.0 ± 3.2	4.3 ± 2.2	3.5 ± 2.0
	e	$\gamma \text{ BG to } \gamma \gamma$	3.7 ± 0.6	2.1 ± 0.4	0.9 ± 0.3	0.6 ± 0.2	0.3 ± 0.1	0.2 ± 0.1
Total I	BG to $\gamma\gamma$	(39.2 ± 2.2	9.7 ± 1.0	3.7 ± 0.6	2.9 ± 0.5	1.9 ± 0.4	1.4 ± 0.4

- Optimal missing E_T cut
 - Maximizing signal to background "significance"
 - Devise a measure of significance as a function of the missing E_T
 - Plot this measure for all signal points
 - Choose as optimal missing
 E_T the minimum
 - Optimal missing E_T cut was found to be 40 GeV
- Limit Setting
 - Standard prescription used by DØ
 - Uses Bayesian approach

Conclusions

- No excess of events above the Standard Model background prediction is found, for all missing E_T explored.
- From the observed number of events, lower limits have been set at the 95% C.L. for masses of the lightest neutralino and chargino.
 Lower limit of 107.7 GeV for the neutralino mass
 - Lower limit of 194.9 GeV for the chargino mass
- Results published in Phys. Rev. Lett.
 - Search for Supersymmetry with Gauge-Mediated Breaking in Diphoton Events at DØ, PRL 94, 041801 (2005).