(Neutrino Indirect) Detection of Neutralino Dark Matter in (non-)Universals SUSY GUT Models.

Emmanuel Nezri

Laboratoire de Physique Corpusculaire de Clermont-Ferrand : Theory Centre de Physique des Particules de Marseille : Antares

- \Rightarrow V.Bertin, E.N., J.Orloff, non-Universal models, hep-ph/0210034
- \Rightarrow V.Bertin, E.N., J.Orloff, hep-ph/0204135 accepted in EPJ C (mSugra)
- see also: J.L.Feng, K.T. Matchev, F. Wilczek, PRD63(01)040524 V. Barger, F. Halzen, D. Hooper, C. Kao, PRD65(02)075022
 - and: L. Bergström, J. Edsjö, P. Gondolo; PRD58(98)103519 G. Jungman, M. Kamionkowski, K.Griest, Phys. Rep. 267 (96)

E. Nezri - LPC/CPPM

Detecting cold dark matter (WIMPS) in neutrino telescopes

mSugra summary

non-Universality :

Scalar sector

Gaugino sector

Conclusion

DM indirect detection with a neutrino telescope: ingredients

- * A cold dark matter canditate: choose χ , lightest neutralino in Constrained MSSM
- * A relic density: depends on (co-)annihilation processes σ_A
- * A cosmic storage ring: to re-start annihilation, need to concentrate n_{χ} ; halo, clumps? too small for ν 's! Need big, nearby, heavy body with large capture rate (*C*) \Rightarrow depends on $\sigma_{\chi p}^{el}$. Sun: OK! Earth: small.
- * χ = Majorana fermion: can self-annihilate, limiting the total population N_{χ} :

$$\dot{N_{\chi}} = C - C_A N_{\chi}^2$$

Annihilation rate: $\Gamma_A = \frac{1}{2} C_A N_{\chi}^2 = \frac{C}{2} \tanh^2 \sqrt{CC_A} t \stackrel{eq}{\sim} \frac{C}{2}$ can be insensitive to σ_A

- * among decay products $\chi\chi \to b\bar{b}, t\bar{t}, WW, ZZ, \ldots \to \nu + \cdots$, only ν 's can escape the sun and reach a detector. $\Phi(E_{\nu})$ depends on dominant annihilation channel
- \star Cerenkov detector watches for ν 's converted into μ

DM indirect detection with a neutrino telescope: picture

Neutralino

- group $SU(3) \times SU(2) \times U(1)$

SM
$$\xrightarrow{SUSY}$$
 MSSM - 2 Higgs doublets : $\tan \beta = \frac{v_u}{v_d}$, 5 scalars : h, A, H, H^{\pm}

- R-parity conservation → stable LSP
- $m_p \neq m_{\tilde{p}} \Rightarrow$ Soft breaking terms $\mathcal{L}_{\text{soft}}$

In the basis $(-i\tilde{B},-i\tilde{W^3},\tilde{H^0_1},\tilde{H^0_2})$:

$$M_{\chi} = \begin{pmatrix} M_{1} & 0 & -m_{Z}c\beta sW & m_{Z}s\beta sW \\ 0 & M_{2} & m_{Z}c\beta cW & -m_{Z}s\beta cW \\ -m_{Z}c\beta sW & m_{Z}c\beta cW & 0 & -\mu \\ m_{Z}s\beta sW & -m_{Z}s\beta cW & -\mu & 0 \end{pmatrix}$$

$$\chi = z_{11}\tilde{b} + z_{12}\tilde{W^{3}} + z_{13}\tilde{H_{1}^{0}} + z_{14}\tilde{H_{2}^{0}}$$
gaugino fraction : $f_{G} = z_{11}^{2} + z_{12}^{2}$
higgsino fraction : $f_{H} = z_{13}^{2} + z_{14}^{2}$

Parameters at GUT scale $\sim 2.10^{16}$ GeV:

- \star a common gaugino mass $m_{1/2}$
- \star a common scalar mass m_0
- \star a common trilinear coupling A_0
- \star a common bilinear coupling B_0
- **\star** Higgs parameter μ_0
- + Renormalization group equations and radiative ElectroWeak Symmetry Breaking:

$$\frac{1}{2}m_Z^2 = \frac{m_{H_d}^2 \Big|_{Q_{EWSB}} - m_{H_u}^2 \Big|_{Q_{EWSB}} \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2 |_{Q_{EWSB}}$$

achieved at
$$Q_{EWSB} \sim \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$$

 \Rightarrow Input parameters :

 $m_0, m_{1/2}, A_0, aneta, sgn(\mu)$

Advantages: REWSB, less free parameters, contact with acc. analyses, but also addressing CCB, Landau poles, high energy extrapoll. Thanks to Suspect authors http://www.lpm.univ-montp2.fr:7082/ kneur/suspect.html (study of the CMSSM with Suspect : hep-ph/0107316, A. Djouadi, M. Drees,J.L. Kneur)

mSugra/CMSSM models

Composition of the lightest neutralino :

★ bino χ : for low m_0 , RGE drive

$$M_{1}|_{Q_{EWSB}} = \frac{M_{2}|_{Q_{EWSB}}}{2} = 0.41m_{1/2} << |\mu|_{Q_{EWSB}}$$

mixed bino-higgsino
$$\chi$$
: EWSB
 $\sim -m_{H_u}^2 |_{Q_{EWSB}} - \mu^2 |_{Q_{EWSB}}$ if
 $\tan \beta \ge 5$
for m_0 large (> 1000),
increasing $m_0 \Rightarrow m_{H_u}^2$ less negative $\Rightarrow \mu$
decreases $\Rightarrow \mu \sim M_1$
"Focus point region" hep-ph/9909334 Feng,
Matchev, Moroi

Experiment sensitivities in the $(m_0, m_{1/2})$ plane

A0=0 ; tanβ)=45 ; μ >0

 $A_0 = 0$; $\tan \beta = 45$; $\mu > 0$

Calculation with Suspect + Darksusy package : http://www.lpm.univ-montp2.fr:7082/ kneur/suspect.html

http://www.physto.se/ edsjo/darksusy/

mSugra : Direct Detection Experiments vs Neutrino Telescopes

 μ flux $_{\odot}: m_{\chi}$

mSugra with 5 GeV threshold vs neutrino Indirect Dection

 $\sigma_{\chi-p}^{scal}: m_{\chi}$

mSugra models vs Direct Detection

Non-universal scalar soft terms

* Sfermions : non-universality in sfermions matrices can lead to light third generation sfermions \rightarrow coannihilations $\chi \tilde{\tau}$, $\chi \tilde{t}$ can modify the relic density but happend in region out of reach of detectors. Detection imply "real" quarks mainly on u and d valence and due to their low Yukawa couplings RGE evolutions of the first and second generation squarks depend on gaugino soft masses \rightarrow their masses can not be lowered by changing scalar soft terms to enhance $\sigma_{\chi-q}^{scal}$ and $\sigma_{\chi-q}^{spin}$ through the process $\chi q \xrightarrow{\tilde{q}} \chi q$.

★ Higgses : relax universality $m_{H_i}|_{M_{GUT}} = (1 + \delta_i)m_0 \rightarrow \text{modify REWSB}$ relation parameters , m_A , μ can change life.

non universal Higgs masses effects in the $(''m_0'', m_{1/2})$ plane

m_{H2}=m0 ; m_{H1}=0.5*m0 ; A0=0 ; tanβ)=45 ;μ >0

 $m_{H_2} = m_0$; $m_{H_1} = 0.5m_0$; $A_0 = 0$; $\tan \beta = 45$; $\mu > 0$

* wider noREWSB region * $m_{A(H)} < m_{A(H)}|_{mSugra} \rightarrow$ good for relic density ($\chi\chi \xrightarrow{A} b\bar{b}$) and direct detection at low m_0 ($\chi q \xrightarrow{H} \chi q$) * but lower indirect detection \neq Barger et al PRD65 2002, due to the low Isajet value of μ at high m_0 (Allanach, Kraml, Porod, susy 02, hep-ph/0207314) which increases the higgsino fraction (?).

E. Nezri - LPC/CPPM

Free relations in gaugino mass parameters

$M_2|_{GUT}$ parameter

* essentially modify neutralino composition (and slightly low energy values of fields whitout SU(3) charge through RGE).

Increasing the wino component of the neutralino favours $\rightarrow \chi \chi \xrightarrow{\chi_1^+, \chi_2^0} W^+ W^-$, ZZ and enhance the annihilation cross section $\sigma_{\chi-\chi}^A$. the strong $\chi \chi_2^0$ and $\chi \chi_1^+$ coannihilations become actives and $\Omega_{\chi} h^2$ strongly decreases.

- $\star~$ larger coupling entering in $\sigma^{scal}_{\chi-p} \rightarrow$ increases the direct detection
- ★ favours neutralino annihilations into the hard W^+W^- spectrum→ increases the indirect detection muon fluxes
- However, the relevant value of M₂ is very critical : = fine-tunning (except moduli decays giving wino in AMSB models. Moroi, Randall hep-ph/9906527).

$M_3|_{GUT}$ parameter

* 1-loop RGE analyse $\rightarrow M_3|_{GUT}$ is the main parameter for non-universality in the MSSM (Kazakov, Moultaka hep-ph/9912271). $(M_{soft}^{scal}|_{low})^2 = (M_{soft}^{scal}|_{GUT})^2 + c_3f_3 + c_2f_2 + c_1f_1 + corrections$ with $f_i = \frac{(M_i^{GUT})^2}{b_i} \left(1 - \frac{1}{(1+b_i\alpha_0 t)^2}\right)$ and c_3 strongly dominant. $\rightarrow M_3|_{GUT} < m_{1/2}$ decreases m_A , $m_{H_2}^2$, μ (and $m_{\tilde{q}}$) * increase annihilation $\chi\chi \xrightarrow{A} b\bar{b} \quad (\chi\chi \xrightarrow{\tilde{f}} f\bar{f})$

 $\chi \chi \xrightarrow{Z} t\bar{t}, \chi \chi \xrightarrow{\chi_i^+, \chi_i} W^+ W^-, ZZ \propto \text{higgsino}$ fraction

ightarrow very favourable for $\Omega_{\chi} h^2$

Gain for detection :

* direct detection : increase $\sigma_{\chi-p}^{scal}$ via $\chi q \xrightarrow{H} \chi q$ (m_H lower and $z_{11(2)} z_{13(4)} \nearrow$) * indirect detection : increase capture $\sigma_{\chi-p}^{spin}$ via $\chi q \xrightarrow{Z} \chi q$ (higgsino fraction \nearrow) and annihilation $\chi \chi \to W^+ W^-$, ZZ, $t\bar{t}$ with energetic neutrinos

E. Nezri - LPC/CPPM

$M_3|_{GUT}$ effect on experiment sensitivities in the $(m_0, m_{1/2})$ plane

A0=0 ; tan(β)=45 ; μ >0 ; M₃/m_{1/2} = 0.63

 $\frac{M_3|_{GUT}}{m_{1/2}} = 0.63$; $\tan \beta = 45$

E. Nezri - LPC/CPPM

$M_3|_{GUT}$ effect on experiment sensitivities in the $(m_0, m_{1/2})$ plane

A0=0 ; tan(β)=10 ; μ >0 ; M₃/m_{1/2} = 0.55

 $\frac{M_3|_{GUT}}{m_{1/2}} = 0.55$; $\tan \beta = 10$

RGE models OK with neutrino indirect detection :

- * very heavy scalars (beyond reach of LHC)
- ★ neutrino telescope signal in mSugra $\rightarrow m_{\chi^+} < 300 350 \text{ GeV}$

* $\Omega h^2 \sim 0.15$ can be accomodated for all "mSugra" points using $x = M_3|_{GUT}/m_{1/2} \sim 0.6(\pm 0.1) + \operatorname{corrections}(m_0, \tan \beta, m_b)$ with a strong enhancement of detection rates improving the experiment possibilities.

- ★ Earth out of reach neutrino telescopes in those framework.
- ★ These models are compatible with the Standard Model value of $(g-2)_{\mu}$: $a_{\mu}^{SUSY} \simeq 0$.