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CMB Application



Topics

CMB Model
Examples of sources of input data (Note –
you will generate your own data for 
Hyderabad)
Protocol for applying and validating the model
Additional resources



Chemical Mass Balance
Equation:

Input:

• Ambient concentrations  (Ci)
and uncertainties  (σCj),
source profiles  (Fij),
and uncertainties  (σFij).

Output:

• Source contributions  (Sj)
and uncertainties  (σSj).

Measurements:

• Size-classified mass, elements, ions, and carbon 
concentrations on both ambient and source samples.
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CMB Solutions
Minimize differences between calculated and measured 
values for overdetermined set of equations

ϰ2 = minΣi [(Ci-Ci)2/ϭCi
2] + ΣiΣi [(Fij-Fij)2/ϭFij

2 ]
Britt and Luecke, (1973), single sample, bold=true value

ϰ2 =minΣi [(Ci-ΣjFijSj)2/(ϭCi
2+ΣjϭFij

2Sj
2)]

Effective Variance, Watson et al., (1984), single sample

ϰ2 =minΣi [(Ci-ΣjFijSj)2/ϭCi
2)]

Ordinary Weighted Least Squares, Friedlander (1973), single 
sample



Other CMB Solutions

Sj=Ci/Fij
Tracer solution, Hidy and Friedlander (1971), Winchester and 

Nifong (1971), single sample

ϰ2 =minΣk [(Massk-ΣiCik/Fii)2]
Multiple Linear Regression, Kleinman et al (1980), multiple 

samples

ϰ2 =minΣi Σk [(Cik-ΣjFijSjk)2/ϭCik
2)]

Positive Matrix Factorization, Paatero (1997), multiple samples



Time-Integrated Sampling
Airmetrics portable 
MiniVol sampler

BGI FRM Omni

PM1, PM2.5, and PM10PM2.5 and PM10



Dilution Testing of Foundry 
Emissions



Source-Dominated Sampling
(Cooking)

Real-World Cooking Simulated Cooking



Inspection and Maintenance 
Compliance Tests

Roadside compliance test in India



Source Profiles
Commonly measured elements, ions, carbon (Zielinska et al., 1998)
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Organic Source Profiles Better Distinguish Among Sources
(lactones, hopanes, guaiacols, syringols, steranes, and sterols)
Zielinska et al. (1998)
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Source Properties can be Operationally 
Defined
(Thermally evolved carbon fractions, Watson et al., 1994)

Diesel-fueled vehiclesGasoline-fueled vehicles



Organic Compounds and Patterns 
can be Measured on Small Samples
(Example* Chromatograms of Thermal Desorption GC/MS)

Gasoline Coal Power Plant

Diesel Roadside Dust

*Ion 57 Chromatogram for alkanes

Ho and Yu, 2004, J. Chromatogr. A., 1059(1-2)



Microscopic Analysis

0.2 µm0.2 µm



Gases can be Included in Profiles
(Gertler et al., 1996)

C2

C10
LD Rate-  Tuscarora

LD Rate-  Ft. McHenry

-0.01
0

0.01
0.02
0.03
0.04
0.05
0.06

Compound (Light to Heavy)

Light Duty 
Emission Rates

C2 C5 C6
C7

C12 C13 C14
HD Rate- Tuscarora

HD Rate- Ft. McHenry

-0.02

0

0.02

0.04

0.06

0.08

Compound (Light to Heavy)

Heavy Duty 
Emission Rates



Source Composition Data 
Needs

Profiles for desired source types
Marker properties (elements, ions, carbon fractions, 
organic compounds, isotopic abundances, single 
particle properties)
Same particle size ranges and species as measured 
at receptor
Measurement methods equivalent to those of 
receptor samples
Documentation of source characteristics, fuels, and 
operating parameters
Source profile uncertainties
Profiles are as they would appear at the receptor



Source Profile Availability
Published articles and reports
U.S. EPA SPECIATE data base
Researcher data bases
Original measurements

Hot stack compliance sampling (ducted sources, misses 
condensed species)
Dilution stack sampling (ducted sources, more realistic of what is 
at receptor)
Laboratory simulation (dynamometers, test combustors, smog 
chambers)
Source dominated sampling (tunnel, roadside, wildfire plume)
Resuspension sampling (fugitive dust, hopper ash, road salt)



Ambient Data Availability
http://vista.cira.colostate.edu/views/Web/QueryWizard/QueryWizardClient.asp
http://www.arb.ca.gov/airways/Datamaintenance/default.asp



Examples of USA Receptor Model 
Air Quality Findings and Results

Oregon wood stove emissions standard (Watson, 1979)
Midwest contributions to east coast sulfate and ozone (Wolff et al., 1977, Lioy et 
al., 1980, Mueller et al., 1983, Rahn and Lowenthal, 1984)
Washoe County, Nevada, stove changeout, burning ban, and “squealer” number 
(Chow et al., 1989)
California EMFAC emissions model revisions (Fujita et al., 1992, 1994)
SCAQMD (Los Angeles) grilling emission standard (Rogge, 1993)
SCAQMD (Los Angeles) street sweeper specification (Chow et al., 1990)
SCAQMD (Los Angeles) Chino dairy reduction (NH3) regulation (SCAQMD, 
1996)
PM10 SIP implementation of wood burning, road dust, and industrial emission 
reductions (Davis and Maughan, 1984, Houck et al., 1981, 1982, Cooper et al., 
1989)
Navajo Generating Station SO2 scrubbers (Malm et al., 1989)
Hayden Generating Station SO2 scrubbers (Watson et al., 1996)
Mohave Generating Station shutdown (Pitchford et al., 1999)
Denver Colorado urban visibility standard (Watson et al., 1988)



The CMB Receptor Model and its 
derivatives are not Statistical

They don’t test hypotheses or determine statistical significance
They are physically based with statements of simplifying 
assumptions and evaluation of deviations from assumptions
They infer mechanisms and interactions rather than explicitly 
calculate them
Receptor models recognize and elucidate patterns in measured 
components, space and time that bound the types, quantities, 
and locations of source contributions
Some of them explicitly use input data uncertainties to weight 
influence of inputs and estimate uncertainties of outputs



Receptor models can get at 
secondaries under certain conditions

OC/EC enrichment factors used to estimate 
secondary OC contributions (Turpin and Huntzicker, 
1991, Gray et al., 1986)
Secondary organic marker end-products (Pandis, 
2001)
Aerosol evolution to represent changes in profiles 
(Lewis and Stevens, 1985, Watson et al., 2002)
34S or 35S isotopes to follow sulfate changes 
(Forrest and Newmann, 1973, Hidy, 1987)
Regional source profiles (Rahn and Lowenthal, 
1984, Eatough et al., 1997)
Eigenvector-derived profiles (Poirot et al., 2001)



CMB Model Assumptions

Compositions of source emissions are 
constant over the period of ambient and 
source sampling.
Chemical species do not react with each 
other (i.e., they add linearly).
All sources with a potential for significant 
contribution to the receptor have been 
identified and have had their emissions 
characterized.



CMB Model Assumptions 
(continued)

The number of sources is less than or equal 
to the number of chemical species.
The source compositions are linearly 
independent of each other.
Measurement errors are random, 
uncorrelated, and normally distributed.





Protocol for Applying and 
Validating the CMB Model

1.Assess general applicability.
2.Configure with source types, source profiles, 

and chemical species from receptor.
3.Examine model statistics and diagnostics.
4.Determine compliance with model 

assumptions.



Protocol for Applying and Validating 
the CMB Model (continued)

5.Modify model configuration to better comply 
with assumptions.

6.Test the consistency and stability of CMB 
results.

7.Evaluate the validity of model results.



1.  General Applicability

Samples amenable to or have been 
chemically speciated
Potential source contributors identified
Source profiles measured or approximated
Marker species in source profiles and 
receptor measurements
More receptor species than source types



2.  Model Configuration

Receptor species:
A value and uncertainty is needed for each 
species
Only one measurement of a given species should 
be included in the solution (e.g., S and SO4)
Values below lower quantifiable limits may be 
included if uncertainty is set to LQL



2.  Model Configuration 
(continued)

Source type selection:
Common area sources (vehicle exhaust, 
geological material, secondary sulfate and nitrate)
Natural sources (sea salt)
Point sources in emissions inventory (coal 
combustion, residual oil combustion, smelting)
Sources identified in PCA or preliminary analysis



2.  Model Configuration 
(continued)

Source profiles in CMB solution:
Upwind point sources
Seasonal emitters
Non-collinear profiles



3.  Model 
Outputs, 
Statistics, and 
Diagnostics



3.  Model Outputs, Statistics, 
and Diagnostics (cont.)

Source Contribution Display

Output/Statistic/Code Abbreviation Description

Source Contribution
Estimate

SCE Primary output:  Source contribution
(µg/m3).

Standard Error STDERR Primary output:  The variance of the
SCE.  [Target:  << SCE]

t-statistic T-STAT Statistic:  The ratio of the SCE to its
STDERR.  A high T-STAT suggests a
non-zero SCE.  [Target:  > 2.0]

R-square R-SQUARE Statistic:  Used to measure the
variance in theambient species
concentrations which is explained by
the calculated species concentrations.
Ranges from 0 to 1.0.
[Target:  0.8 to 1.0]



3.  Model Outputs, Statistics, 
and Diagnostics (cont.)
Source Contribution Display (continued)

Output/Statistic/Code Abbreviation Description

Chi-square CHI-SQUARE Statistic:  Used to consider the
uncertainties of the calculated species
concentrations.  A high CHI-SQUARE
suggests that the model has not
explained the species data very well.
[Target:  1.0 to 4.0]

Percent Mass
Accounted For

PERCENT
MASS
or % MASS

Statistic:  Used to track the % of
ambient mass explained by the sum of
the SCEs.  A % MASS near 100% can
be misleading because a poor fit can
force a high % MASS.
[Target:  100% ± 20%]



3.  Model Outputs, Statistics, 
and Diagnostics (continued)

Source Contribution Display (continued)

Output/Statistic/Code Abbreviation Description

Degrees of Freedom DF Statistic:  Number of species in fit
minus number of sources in fit.

Site/Sample SITE, etc. Status:  Data being used in the fit.

Uncertainty/Similarity
Clusters

U/S Clusters Diagnostic:  Summary of singular
value decomposition analysis.  It
shows clusters of sources which the
model cannot easily distinguish
between and that are likely to be
interfering with the model’s ability to
provide a good set of SCEs.
[Target:  No Clusters]



3.  Model Outputs, Statistics, 
and Diagnostics (continued)

Source Contribution Display (continued)

Output/Statistic/Code Abbreviation Description

Sum of Combined
Sources

SUM ± Supplemental output:  Supplement to
U/S Clusters.  It estimates the sum of
SCEs of the sources in a cluster and
the standard error of the sum.  The
standard error of the sum follows the
±.



4.  Evaluate Model 
Assumptions

Source compositions constant
Chemical species add linearly
All contributing sources included
Source profiles linearly independent
Number of sources less than number of 
species
Measurement uncertainties random, 
uncorrelated, and normally distributed



CMB Model Test Methods and 
Results

Constant compositions (substitute different profiles, 
randomly perturb profiles)– can tolerate substantial 
variability
Non-reactive species (estimate profile fractionation, 
use )– little known
All source types identified (look for deficits in marker 
species, unusual values>LQL)– minor contributors 
can be left out
Number of sources less than number 
of species (always the case)– the larger the 
difference the better



CMB Model Test Methods and 
Results

Source contributions linearly independent 
(MPIN, collinearity clusters)– degree depends 
on variability of source profile
Measurement error distribution (randomized 
tests with non-normal distributions)– non 
much difference



5.  Adjust Model Inputs

Increase uncertainties of profile abundances 
or provide different profile composites
Create “aged” source profiles with aerosol 
evolution model
Identify and characterize missing sources.
Measure additional species at source and 
receptor.  Stratify samples by meteorological 
regime



6.  Verify Consistency and 
Stability

Substitute different profiles for the same 
source type
Add or drop species from the fit
Examine source contributions to species.
Examine modified psuedo inverse matrix



7.  Evaluate and Reconcile 
Source Apportionments

Compare source contributions among nearby 
sites
Compare source contribution variations over 
time with expected emissions and 
meteorological variations.
Apply other receptor methods and compare 
results
Apply dispersion models and compare results



Protocol for Reconciling Differences 
Among Receptor and Dispersion Models

1. Compare CMB and DM results.
2. Verify input data in both models.
3. Recompare results.
4. Refine CMB model inputs.
5. Recompare results.
6. Refine dispersion model inputs.
7. Recompare.
8. “… if it is clearly evident that the dispersion model is not valid, 

the CMB estimates should be used as the basis for control 
strategy development.  However, if the disparity is not clearly 
attributable to either model alone, the dispersion model should 
be used for control strategy development.”



Conclusions
The applications and validation protocol results in 
more accurate source apportionments.
Though the protocol does not solve every problem 
encountered in the CMB, it does identify that a 
problem exists and suggests some alternatives for 
solving it.
Reconciliation of CMB source apportionments with 
other source apportionment methods yields more 
accurate results.
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