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CMB Application




Topics

e CMB Model

e Examples of sources of input data (Note —

you will generate your own data for
Hyderabad)

e Protocol for applying and validating the model
e Additional resources



Chemical Mass Balance

)
Equation: C; = Z F S, fori=1toN
Input: =

« Ambient concentrations (C))
and uncertainties (o),
source profiles (F;),
and uncertainties (o).

Output:

* Source contributions (S;)
and uncertainties (og;).

Measurements:

« Size-classified mass, elements, ions, and carbon
concentrations on both ambient and source samples.



CMB Solutions

Minimize differences between calculated and measured
values for overdetermined set of equations

x2 = minZ; [(C-C.)%/0:2] + . [(Fij'Fij)Z/OFijz]

Britt and Luecke, (1973), single sample, bold=true value

x2 =minZ; [(C-ZF;S)%/(0c2+Z062S?)
| j J Ci I~ Fij >~

Effective Variance, Watson et al., (1984), single sample

x2 =minZ; [(C-ZF;S)2/0.2)]

Ordinary Weighted Least Squares, Friedlander (1973), single
sample



Other CMB Solutions

S=C/F;
Tracer solution, Hidy and Friedlander (1971), Winchester and
Nifong (1971), single sample

X% =minZ, [(MaSSk'ziCik/Fii)z]

Multiple Linear Regression, Kleinman et al (1980), multiple
samples

X2 =minZ; X, [(Cik'sziijk)Z/UCikz)]

Positive Matrix Factorization, Paatero (1997), multiple samples



Time-Integrated Sampling
Airmetrics portable BGI FRM Omni
MiniVol sampler

PM, - and PM,,
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Source-Dominated Sampling
(Cooking)

Real-World Cooking Simulated Cooking



Inspection and Maintenance
Compliance Tests

-

Roadside compliance test in India

22 12:09pH

—



Source Profiles

Commonly measured elements, ions, carbon (Zielinska et al., 199
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Organic Source Profiles Better Distinguish Among Sources

(lactones, hopanes
Zielinska et al. (1998)
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Organic Compounds and Patterns

can be Measured on Small Samples
(Example* Chromatograms of Thermal Desorption GC/MS)

Gasoline Coal Power Plant
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Ho and Yu, 2004, J. Chromatogr. A., 1059(1-2)



Microscopic Analysis




Gases can be Included in Profiles
(Gertler et al., 1996)

g/veh-mi

Light Duty
Emission Rates

LD Rate- Ft. McHenry
LD Rate- Tuscarora

Heavy Duty
Emission Rates

gfveh-mi

HD Rate- Ft. McHenry
HD Rate- Tuscarora




Source Composition Data
Needs

e Profiles for desired source types

e Marker properties (elements, ions, carbon fractions,
organic compounds, isotopic abundances, single
particle properties)

e Same particle size ranges and species as measured
at receptor

e Measurement methods equivalent to those of
receptor samples

° Documentation of source characteristics, fuels, and
operating parameters

e Source profile uncertainties
e Profiles are as they would appear at the receptor



Source Profile Availability

Published articles and reports
U.S. EPA SPECIATE data base
Researcher data bases

Original measurements

Hot stack compliance sampling (ducted sources, misses
condensed species)

Dilution stack sampling (ducted sources, more realistic of what is
at receptor)

Laboratory simulation (dynamometers, test combustors, smog
chambers)

Source dominated sampling (tunnel, roadside, wildfire plume)
Resuspension sampling (fugitive dust, hopper ash, road salt)



Ambient Data Availability

http://vista.cira.colostate.edu/views/Web/QueryWizard/QueryWizardClient.asp

http://www.arb.ca.gov/airways/Datamaintenance/default.asp

24 Visibility Database Query Wizard (VIEWS) - Microsoft Internet Explorer
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Examples of USA Receptor Model
Air Quality Findings and Results

Oregon wood stove emissions standard (Watson, 1979)

Midwest contributions to east coast sulfate and ozone (Wolff et al., 1977, Lioy et
al., 1980, Mueller et al., 1983, Rahn and Lowenthal, 1984)

Washoe County, Nevada, stove changeout, burning ban, and “squealer’” number
(Chow et al., 1989)

California EMFAC emissions model revisions (Fujita et al., 1992, 1994)
SCAQMD (Los Angeles) grilling emission standard (Rogge, 1993)
SCAQMD (Los Angeles) street sweeper specification (Chow et al., 1990)

SCA()QMD (Los Angeles) Chino dairy reduction (NH3) regulation (SCAQMD,
1996

PM10 SIP implementation of wood burning, road dust, and industrial emission
reductions (Davis and Maughan, 1984, Houck et al., 1981, 1982, Cooper et al.,
1989)

Navajo Generating Station SO2 scrubbers (Malm et al., 1989)
Hayden Generating Station SO2 scrubbers (Watson et al., 1996)
Mohave Generating Station shutdown (Pitchford et al., 1999)
Denver Colorado urban visibility standard (Watson et al., 1988)



The CMB Receptor Model and its
derivatives are not Statistical

e They don't test hypotheses or determine statistical significance

e They are physically based with statements of simplifying
assumptions and evaluation of deviations from assumptions

e They infer mechanisms and interactions rather than explicitly
calculate them

e Receptor models recognize and elucidate patterns in measured
components, space and time that bound the types, quantities,
and locations of source contributions

e Some of them explicitly use input data uncertainties to weight
influence of inputs and estimate uncertainties of outputs



Receptor models can get at
secondaries under certain conditions

OC/EC enrichment factors used to estimate
secondary OC contributions (Turpin and Huntzicker,
1991, Gray et al., 1986)

Secondary organic marker end-products (Pandis,
2001)

Aerosol evolution to represent changes in profiles
(Lewis and Stevens, 1985, Watson et al., 2002)

34S or 35S isotopes to follow sulfate changes
(Forrest and Newmann, 1973, Hidy, 1987)

Regional source profiles (Rahn and Lowenthal,
1984, Eatough et al., 1997)

Eigenvector-derived profiles (Poirot et al., 2001)



CMB Model Assumptions

e Compositions of source emissions are
constant over the period of ambient and
source sampling.

e Chemical species do not react with each
other (i.e., they add linearly).

e All sources with a potential for significant
contribution to the receptor have been
identified and have had their emissions
characterized.



CMB Model Assumptions
(continued)

e The number of sources is less than or equal
to the number of chemical species.

e The source compositions are linearly
iIndependent of each other.

e Measurement errors are random,
uncorrelated, and normally distributed.



University and Community
College System of Mevada

CMBS
APPLICATIONS AND VALIDATION PROTOCOL
FOR PM2.5 AND VOCS

Desert Research Institute Document No. 1808.2F3

June 29,2001

PREPAREDEY

John G. Watson!
Norman F. Robinson!
Eric M. Fujita!
Judith C. Chow'
Thompson G. Pace?
Charles Lewis”
Thomas Coulter?

'Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512
U3 Environmental Protection Agency




Protocol for Applying and
Validating the CMB Model

1.Assess general applicability.

2.Configure with source types, source profiles,
and chemical species from receptor.

3.Examine model statistics and diagnostics.

4.Determine compliance with model
assumptions.



Protocol for Applying and Validating
the CMB Model (continued)

5.Modify model configuration to better comply
with assumptions.

6. Test the consistency and stability of CMB
results.

[ .Evaluate the validity of model results.



1. General Applicability

e Samples amenable to or have been
chemically speciated

e Potential source contributors identified
e Source profiles measured or approximated

e Marker species in source profiles and
receptor measurements

e More receptor species than source types



2. Model Configuration

e Receptor species:

A value and uncertainty is needed for each
species

Only one measurement of a given species should
be included in the solution (e.g., S and SO4)

Values below lower quantifiable limits may be
included if uncertainty is set to LQL



2. Model Configuration
(continued)

e Source type selection:

Common area sources (vehicle exhaust,
geological material, secondary sulfate and nitrate)

Natural sources (sea salt)

Point sources in emissions inventory (coal
combustion, residual oil combustion, smelting)

Sources identified in PCA or preliminary analysis



2. Model Configuration
(continued)

e Source profiles in CMB solution:
e Upwind point sources
o Seasonal emitters
e Non-collinear profiles




3. Model
Outputs,
Statistics, and
Diagnostics

Example of CMB Output

SOURCE CONTRIBUTION ESTIMATES - SITE: PACS1l DATE: 08/13/77 VERSION: 7.0
SAMPLE DURATION 24 START HOUR 0 SIZE: FINE
R SQUARE .98 PERCENT MASS 98.7
CHI SQUARE 1.12 DF 13
SOURCE

% TYPE SCE(UG/M3) STD ERR TSTAT
1 MARIN 12.3889 2.2457 5.5167 Marine Aerosol
3 UDUST 9.5917 1.3876 6.9127 Urban Dust
4 AUTPB 10.0835 1.4942 6.7486 Leaded Motor Vehicle Exhaust
5 RDOIL 11.0603 1.9239 5.7490 Residual 01l Combustion
8 KRAFT 4.6896 5.0467 .9292 Kraft Recovery Boiler
11 ALPRO 10.6023 3.5896 2.9536 Aluminum Pot Line
12 STEEL 8.6729 1.3771 6.2979 Steel Blast Furnace
13 FERMN 11.8754 1.8321 6.4820 Ferromanganese Furnace

MEASURED CONCENTRATION FINE/COARSE/TOTAL:
80.0+- 8.0/ 80.0+- 8.0/

UNCERTAINTY/SIMILARITY CLUSTERS VERSION: 7.0 SUM OF CLUSTER SOURCES

160.0+- 11.3

1 8 17.078+- 4.241

1 5 8 28.139+- 3.833
SPECIES CONCENTRATIONS - SITE: PACS1 DATE: 08/13/77 VERSION: 7.0
SAMPLE DURATION 24 START HOUR 0 SIZE: FINE

R SQUARE .98 PERCENT MASS 98.7

CHI SQUARE 1.12 DF 13

SPECIES------- I -MEASP-- e e CALCP +vevcecnnns RATIO C/M----RATIO R/U
cl TOT T 80.00000+- 8.00000 78.96461+- 4.82449 .99+~ .12 -1
c9 F .88300+-  .08800 67644+~ 24792 JT74- .29 -.8
Cll  NA *  6.93000+- .69300 6.97025+-  .56446 1.01+- .13 .0
Ccl2 MG %* .43000+-  .04300 1.60951+-  .62627 3.74+- 1.50 .9
€13 AL *  4,66000+-  .46600 4.02418+-  .88919 .86+- .21 -6
c14  sI * 3,02000+-  .30200 2.92212+-  .13329 L97+- .11 -.3
C16 s 2.950004-  .29500 3.02466+-  .31807 1.03+- .15 .2
cl7 CL * 5.950004-  .59500 5.6938l+- 1.24836 .96+- .23 -2
c19 K *  1,64000+-  .16400 1.73084+-  .46411 1.06+- .30 .2
C20 cCA * 1.78000+- .17800 1.43537+-  .11366 .81+- .10 -1.6
c22 TI * .08300+-  .00800 .10088+-  .01630 1.22+- .23 1.0
c23 Vv * .37200+-  .03700 .39757+-  .08308 1.07+- .25 .3
C24  CR * .31500+-  .03200 .20976+-  .12151 674- .39 -.8
c25 MN *  2,99000+-  .29900  2.82844+-  .14115 .95+- .11 -.5
c26 FE *  4,53000+-  .45300 4.24446+-  .33269 94+~ .12 -.5
c28 NI * .76500+-  .07700 .6B246+-  ,13428 .89+- .20 -.5
c29 cu * .04400+-  .00400 .05274+-  .00510 1.20+- .16 1.3
c30 2N * .22500+-  .02300 .26786+-  .03966 1.19+- .21 .9
¢35 BR %* .41900+-  .04200 .56133+-  .17386  1.34+- .44 .8
c82 PB *  2.53000+- .25300 2.13749+- .30300 .84+~ 15 -1.0
€201 ocC *  7.54000+- .75400 8.50978+- 1.35632 1.13+- .21 .6
€202 EC *  1.42000+-  .14200 1.33579+-  .34012 .94+~ .26 -2
€203 S04 % 10.30000+- 1.03400 9.78819+- 1.47514 .954- .17 -.3
€204 ¥* .63800+-  .06400 .88402+-  .35938 1.39+- .58 .7

NO3



3. Model Outputs, Statistics,
and Diagnostics (cont.)

Source Contribution Display
Qutput/Statistic/Code  Abbreviation

Description

Source Contribution SCE
Estimate

Standard Error STDERR
t-statistic T-STAT
R-square R-SQUARE

Primary output: Source contribution
(ug/m’).

Primary output: The variance of the
SCE. [Target: << SCE]

Statistic: The ratio of the SCE to its
STDERR. A high T-STAT suggests a
non-zero SCE. [Target: > 2.0]

Statistic: Used to measure the
variance in theambient species
concentrations which is explained by
the calculated species concentrations.
Ranges from 0 to 1.0.

[Target: 0.8 to 1.0]



3. Model Outputs, Statistics,
and Diagnostics (cont.)

Source Contribution Display (continued)

Output/Statistic/Code  Abbreviation

Chi-square CHI-SQUARE
Percent Mass PERCENT
Accounted For MASS

or % MASS

Description

Statistic: Used to consider the
uncertainties of the calculated species
concentrations. A high CHI-SQUARE
suggests that the model has not
explained the species data very well.
[Target: 1.0 to 4.0]

Statistic: Used to track the % of
ambient mass explained by the sum of
the SCEs. A % MASS near 100% can
be misleading because a poor fit can
force a high % MASS.

[Target: 100% =+ 20%]



3. Model Outputs, Statistics,
and Diagnostics (continued)

Source Contribution Display (continued)

Output/Statistic/Code  Abbreviation Description

Degrees of Freedom  DF Statistic: Number of species in fit
minus number of sources in fit.

Site/Sample SITE, etc. Status: Data being used in the fit.

Uncertainty/Similarity U/S Clusters Diagnostic: Summary of singular

Clusters value decomposition analysis. It
shows clusters of sources which the
model cannot easily distinguish
between and that are likely to be
Interfering with the model’s ability to
provide a good set of SCEs.
[Target: No Clusters]



000
. . 0000
3. Model Outputs, Statistics, |s:::
. . _ 4
and Diagnostics (continued)
Source Contribution Display (continued)
Output/Statistic/Code  Abbreviation  Description
Sum of Combined SUM = Supplemental output: Supplement to
Sources U/S Clusters. It estimates the sum of

SCEs of the sources in a cluster and
the standard error of the sum. The

standard error of the sum follows the
+



4. Evaluate Model
Assumptions

e Source compositions constant

e Chemical species add linearly

e All contributing sources included

e Source profiles linearly independent

e Number of sources less than number of
species

e Measurement uncertainties random,
uncorrelated, and normally distributed



CMB Model Test Methods and
Results

e Constant compositions (substitute different profiles,
randomly perturb profiles)— can tolerate substantial
variability

e Non-reactive species (estimate profile fractionation,
use )— little known

e All source types identified (look for deficits in marker
species, unusual values>LQL)— minor contributors
can be left out

e Number of sources less than number
of species (always the case)— the larger the
difference the better



CMB Model Test Methods and
Results

e Source contributions linearly independent
(MPIN, collinearity clusters)— degree depends
on variability of source profile

e Measurement error distribution (randomized
tests with non-normal distributions)— non
much difference



5. Adjust Model Inputs

e Increase uncertainties of profile abundances
or provide different profile composites

e Create "aged” source profiles with aerosol
evolution model

e |ldentify and characterize missing sources.

e Measure additional species at source and
receptor. Stratify samples by meteorological
regime



6. Verify Consistency and
Stability

e Substitute different profiles for the same
source type

e Add or drop species from the fit
e Examine source contributions to species.
e Examine modified psuedo inverse matrix




/. Evaluate and Reconcile
Source Apportionments

e Compare source contributions among nearby
sites

e Compare source contribution variations over
time with expected emissions and
meteorological variations.

e Apply other receptor methods and compare
results

e Apply dispersion models and compare results



Protocol for Reconciling Differences
Among Receptor and Dispersion Models

NN~

Compare CMB and DM results.
Verify input data in both models.
Recompare results.

Refine CMB model inputs.
Recompare results.

Refine dispersion model inputs.
Recompare.

“... if it is clearly evident that the dispersion model is not valid,
the CMB estimates should be used as the basis for control
strategy development. However, if the disparity is not clearly
attributable to either model alone, the dispersion model should
be used for control strategy development.”



Conclusions

e The applications and validation protocol results in
more accurate source apportionments.

e Though the protocol does not solve every problem
encountered in the CMB, it does identify that a
problem exists and suggests some alternatives for
solving it.

e Reconciliation of CMB source apportionments with

other source apportionment methods yields more
accurate results.
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