Culvert Design for Fish and Other Aquatic Organisms

Southeast Fish and Aquatic Species Barrier Assessment Workshop

November 15-16, 2006

Kozmo Ken Bates KB@AquaKoz.com

AOP Culvert Design for Fish Passage

- Hydraulic and Stream Simulation designs
 - Definitions, applications
- Design
 - Pre-design
 - Site context
 - Design method
 - Bed
 - Culvert
- Some examples
- How this relates to culvert assessments

Design method determined by project objectives

- Passage of fish
- Passage of other aquatic organisms
- Habitat protection, restoration
- River and stream continuity
- Wildlife passage
- Traffic, road, safety
- Funding limits and requirements
- Regulatory

Design methods

- Hydraulic
- Stream Simulation
- No slope
- Others

Hydraulic Design

• Premise: A structure with appropriate hydraulic conditions will allow target species to swim through it.

Hydraulic Design Option

Hydraulic Design Biological Parameters

- Target species; what are they?
 - Weakest fish and species of community? (Other species my limit due to timing.)
 - Migration timing?
 - Swimming ability?, behavior?
 - Default?

Hydraulic Design Biological Parameters

- What hydraulic conditions?
 - Velocity
 - Flow condition
 - Surface, submerged
 - Streaming, plunging
 - Turbulence
 - Occupied zone
- Minimum water depth
- Length of culvert

Example criteria:

	<u>Adult Trout >6in.</u> Maximum velocity,
<u>Culvert Length, ft</u>	fps
10 - 60	4
60 - 100	4
100 - 200	3
>200	2
Maximum hydraulic	drop in fishway 0.8 ft

Minimum water depth 0.8 ft

Example: Maine DOT Criteria

- Rehabilitated culverts
 - Max Velocity based on species Species table
 - Boundary layer acceptable
 - Depth
 - 1.5 times body depth
 - Hydrology: median flow during migration season
 - Design guide: default criteria
- New culverts
 - Reproduce hydraulic geometry of stream at BFW.

2004 Draft http://www.maine.gov/mdot/community-programs/csd/waterbodies.php

Example: Maine DOT Criteria

Table 2. Maine Fish Species: Times of Impact and Related Data. ⁽¹⁾																									
Months				Fr	eb	M	ar	Ar	pr	M	ay	Ji	un	J	ul	A	ug	S	ер	0	lct	Nc	vc		
Stage/species	Body Length (inches)	Body Thickness (inches) (% bodylength)	Direction	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	Sustained Swim Speed (feet per second)	Basis of Swim Speed
adult smelt-landlocked	5.5 - 9.7*	0.9 - 1.5 (16%)#	U	S	S	S	S	S	S	S	S	{ /			\square	{ /		{]	<u>[_'</u>	{ /	<u>[</u> _'	! '	Ē'	1.8 - 3.2	L L
- Cnooloo	lifa at		n		\vdash	E	E	S E	E	E	\vdash	$\left\{ \cdot \right\}$	\vdash		\vdash	{ /	\vdash		\vdash	{ /	\vdash	{ /	\vdash	1.8 - 3.2	
	1110 St	aye 📷	D			F	F	F	F	F	\neg	\square	\vdash	$ \rightarrow $	\vdash		\vdash				\vdash	\square	\square	0.2 - 0.4	
juvenne eei (giass/ eivers)	2.3 - 5*	1/0-1/2	U				F	F	F	F	F	F	F	()	\square							17		0.8 - 2.6	L L
adult eel	7.8 - 26					<u> </u>			\square		\square		\Box		\square		S	S	S	S	S	\square	\square	5.2 - 9.1	L
adult alewife	2.6 - 9.4	Jady th	ial	'n	$\sim c$	\sim			\square	S	S	S	S		\Box		\Box		\Box	\Box	\Box		\square	3 - 5	Pb
adult alewife	2.6 - 9.4	30uy ur	ICr	117	8 5	55					F	F	F	F	\Box	1 /	\Box		\Box'	1 1	\Box'	1 '	\Box'	3 - 5	Pb
juvenile alewife	1.7-4.5			_			┛		لے		ال		\square		F	F	F	F	F	F	F		' ــــَ	0.6 - 1.0	L
adult shad	12-17*	2 - 3 (18%) +	U		┎┙				ل		S	S	S	S	لت						Ĺ		`_	2.3-7.2	Pb
adult shad	12-17*	2 - 3 (18%) +	D		Ц –		_	•	ľ		F	F	F	F	Ē	1 /	\square		<u>('</u>	1	('	1 7	Ĺ—'	2.3-7.2	Pb
juvenile shad	3*	0.6 (18%) +	D		4	- I I'	m	inr	a '		ليسه				F	F	F	F	F	F	F		– –'	1.0 - 1.8	L/Pb
adult blueback herring	9.4 +	2.2 (23%)	U I		4				2		S	S	S	S	\square	\square		\square	↓ ′	\square	↓ ′	₽	↓ '	3-5	РЬ
adult blueback herring	9.4 +	2.2 (23%)	D		\square	$\left(\begin{array}{c} \end{array} \right)$					F	F	F	F	\square	. '		\square	<u>–</u> ′		 '	1	└ ─′	3-5	РЬ
juvenile blueback herring	1.4 - 2.8*	0.3 - 0.7 (23%)	D		_'		ل			_	-	-											 '	0.4 - 0.8	L
adult salmon (searun/landlock)	15 - 36*	3 - 7.2 (20%)	<u> </u>		\vdash		ل	_	ليم	_	لي		$\mathbf{S}^{\mathbf{I}}$	۱۸ /i	m	m	in	n	٩r	٦Ο	Δ	11	<u></u>	5.0 - 8.8	L
juvenile salmon	4.5 - 6.8*	1 - 1.4 (20%)	Both		\vdash	$\{ - \}$	Ľ	F	F	(F)	(F)	F	U.	VV I			1111	9	24	10	σι	ן ג	F'	1.6 - 2.6	L
smolt salmon	7.8 - 15*	1.4-5 (20%)	D		\vdash		ل	F	F	F	F	F	—	—	—	—	—	Ē	-	—	—	┛	↓ '	2.5 - 4.4	L
adult white sucker	4-14+#	0.7 - 2.6 (18%)	<u> </u>		\vdash		Ļ	S	S	S	S		يا	P	ي		يا			<u> </u>			<u> </u>	12-21	
brown trout	6-16*+	1.6 - 3 (18%)+	Both		—'	4	<mark>ل</mark>	F	F	F	F	F	F	F	F	F	F	S	S		۱.	-:	~	- f in	
brook trout	6-16拜	1.5 - 4 (25%)	Both		\vdash	$\{ - \}$	ل	F	F	F	F	F	F	F	F	F	F	S	S	「て	ש'a	SI'	SI	JT SWITT	1 SDee(
sea-run brown trout	9-16*+	1.6 - 3 [18%]+	<u> </u>		\vdash		ل		┙	_	-					-		S	S	<u> </u>					• • • • •
sea-run brook trout	6-12#	1.5 - 4 (25%)	<u> </u>		←'		لينا		لي ا		لينا	{ /	\square		\square	4 /		S	S	S	S	s	S	2.0 - 3.5	L
rainbow trout	6-18 +*	1 - 3 (17%)	Both		⊢ '	1 5 1	S	S	S	S	S	{ /	\square		\square	{ /			\vdash	{ _ /	└ ′	1 /	└ _'	2.0 - 3.5	L/P+
resident fish movement	3 - 10#	Varies	Both		1 !	(F	F	FF	F	F	S	S	S	s	S	S	F	F	F	F	F	F	1.0 - 1.8	L

Turbulence

- Measured by Energy Dissipation Factor (EDF)
- Limits fish passage Roughness might just convert a velocity barrier into a turbulence barrier.

Low Flow

Examples of EDF

Adult salmon design flow EDF = 4 ft-lb/sec/ft3

Two times design flow EDF = 8 ft-lb/sec/ft3

Low Flow Baffles as weirs

Moderate Flow Baffles as roughness

Energy Dissipation Factor (EDF)

- Energy dissipation factor
 - A measure of turbulence
 - Energy dissipated per unit volume of water
 - Culvert EDF = (γ)(velocity)(slope)
- Recommended maximum EDF for adult salmon
 - Fishways: 4.0 ft-lb/sec/ft³
 - Baffled culverts: min: 3.0, max: 5.0 ft-lb/sec/ft³ (estimated)
 - Roughened channels: 7.0 ft-lb/sec/ft³ (estimated)

Example: Calculate EDF in a 3.0% channel with velocity of 2.7 fps $62.4 \text{ lb/ ft}^3 \times 2.7 \text{ fps } \times 0.03 = 5 \text{ ft-lb/sec/ft}^3$

Roughened Channel is Hydraulic Design

- Roughen channel with rock
- Use hydraulic culvert design
- Rigid structure

Fish passage hydrology At what flows must velocity criteria be applied?

- Adult salmonid fish passage design flow
 - Alaska, Canada DFO: Q2D2 during migration season.
 - Washington, Oregon: Satisfy fish passage criteria 90% of the time during fish passage season
 - Idaho: none defined
 - NOAA Fisheries SW Region and California Fish & Game:
 - 1% annual exceedance (preferred)
 - 50% of 2-year flood
 - Flow that fills the active channel
 - CF&G has criteria also for non-anadromous salmonids, juvenile salmonids, native non-salmonids, and non-native species.
 - Maine, Vermont: median flow during migration season.

Some Last Thoughts on Hydraulic Method

- Uncertainties
 - Target species? Other species present and their ecological roles?
 - Swimming ability, behavior, and migration timing of target species?
 - Hydrology; models have standard errors of 25 -100%?
 - Small scale hydraulics? Turbulence a barrier?
- Application:
 - Trend is to use for retrofits only. May be the "best reasonable" as retrofit in some situations with low to moderate slopes

Then biologists reminded us to observe and understand fish behavior.

And that organisms and processes other than fish must be considered in culvert design.

Stream Simulation Design

Premise of Stream Simulation

 <u>Stream Simulation</u>: A channel that simulates characteristics of the adjacent natural channel, will present no more of a challenge to movement of organisms than the natural channel.

What is stream simulation?

- Geomorphic design
- Simulate natural channel reference reach
 - Bankfull cross section shape and dimensions
 - Channel slope
 - Channel structure
 - Channel type
 - Mobility
- "Mobile bed in stable channel"

Stream Simulation Design Process

Assessment Stream simulation feasibility Project alignment and profile Verify reference reach Bed shape and material Structure width, elevation, details Mobility / stability Design profile control

- Watershed, Road
- Site assessment
- Physical survey
 - Continuity

25 Assess >>

Road Impounded Wetlands

- Continuity of channel geomorphic context
- Other culverts might apply

Suitable for Stream Simulation

- Rock, sediment dominated
- Equilibrium

Stream Simulation Design Process

Assessment Stream simulation feasibility Project alignment and profile Verify reference reach Bed shape and material Structure width, elevation, details Mobility / stability Design profile control

- Scour or incision, scale of the problem
 - Variability over time and distance
 - Sensitivity
 - Headcut issues

This applies to any in-stream design!

Project Profile

- Project profile is what is actually constructed
- Start with initial vertical adjustment potential from site assessment
- Consider profile and alignment issues concurrently
- A forced profile might be necessary

Case #1: Scour Pool

Case #2: Incised Channel

Channel regrade considerations

- Extent of regrade expected
- Adjacent channel
 - Upstream banks stability, riparian, impounded wetlands?
 - Is there value of culvert as nick point? Habitat, infrastructure
- Bed material
 - Backwater wedge?
 - Potential bedrock exposure?
- Culvert and channel capacity with sediment slug
- Potential passage barriers created upstream
- Construction access to build regrade
- Opportunities for downstream habitat restoration

Outlet Creek – 2005

Upstream channel

Downstream channel incised

Headcut issues Bed material

Wynoochee trib - 1983

Culvert replaced

Headcut issues Bed material

Wynoochee trib – 2002

Channel regraded to bedrock

Alignment

- Design concurrently with profile
- Important factor for debris blockage and failure
- Choose reasonable alignment for existing and future stream channel.
- Disturbance, stability, length, cost are often a compromise.
- Consider: shorten culvert using headwall, change road alignment, or switch to bridge option.

Estimate channel adjustments for life of project

Time (Years? Decades?)

Newbury Creek Project Profile

Newbury Creek Project Profile With incised channel

Scenario B:

Regional incision. Vertical adjustment potential assumes no culvert.

Newbury Creek Project Profile With a forced profile

Scenario C:

Regional incision. Forced profile necessary.

Profile control options

Profile control options

•
0
0

		Slope	Advantages	Limitations
0	Fishway	10% or "vertical"	Small footprint	Species, Flow, Sediment, Debris
Ģ	Log sills	5%	Rigid, durable	Species, habitat
	Hybrid Roughened channel	Limited by durability, bedload	Passage diversity	Species, Failure risk
	Boulder weirs	5% (+)	Passage diversity, Habitat	Failure risk
•	Channel restoration	Limited by channel type	Passage diversity, Habitat	Scale
	Regrade	?		Regrade risk, Time to restore

Channel restoration for fish passage correction

Outlet Creek - 2002

Channel restoration for fish passage correction

Reference Channel

Stream Simulation

O'Grady Cr - 2002

Stream Simulation Design Process

Assessment Stream simulation feasibility Project alignment and profile Verify reference reach Bed shape and material Structure width, elevation, details Mobility / stability Design profile control

- Reference reach is simulated
- Template for dimensions, slope, bed, features
- Continuity with reference reach

Stream Simulation Design Process

Assessment Stream simulation feasibility Project alignment and profile Verify reference reach Bed shape and material Structure width, elevation, details Mobility / stability Design profile control

- Project objective
- Simulate reference channel bed material
- Margins, banklines, forcing features
- Bed forms, shape

Bed Design Objectives

- Simulate natural bed
 - Bed shapes
 - Diversity
 - Roughness
 - Mobility
 - Forcing features
 - Control of permeability

• Does the bed satisfy project objectives?

Bed Design by M&B* Channel Types

ncreasing slope Jecreasing mobilit Based on channel type of reference reach

- Dune-ripple; construct or recruit
- Pool-riffle / Plane-bed; construct and let form develop
- Step-pool, forced channels; construct steps
- Cascades; construct
 - Bedrock
 - Clay

* Montgomery and Buffington, 1997

Bed Material Design - Alluvial

- New installations: use undisturbed channel (consider contraction)
- Replacements: use reference reach gradation.
 - Pebble count of reference channel for D₁₀₀, D₈₄ and D₅₀
 - Include dense gradation based on D50 for smaller material and impermeability.
 - Fine-grained beds are special cases.
 - Compensate for stability of initial disturbed condition.
 - Account for large roughness and forcing features.

Bed Material Design - Alluvial

Larger particles sized directly from reference channel

Small grains derived by Fuller-Thompson curve based on D₅₀

Fuller-Thompson

 $P = \left[\frac{d}{D_{100}}\right]^n$

P = percent finer d = diameter of particle n = Fuller-Thompson density; varies 0.45 to 0.70

Simplify to: $D16 = 0.32^{1/n} \times D50$ $D5 = 0.10^{1/n} \times D50$

Verify 5% fines are included

Bed Material Example

- 1 scoop bank run dirt
- 4 scoops 4" minus pit run
- 4 scoops 8" minus cobbles (or quarry spalls)
- 2 scoops 1.5' minus rock
- 1.5 to 2.5 foot rock added during installation

W Fk Stossel Cr - 6.4% slope

Stream Simulation Bed Channel cross-section

Rock Bands

The (not) Rolling Stones

<image>

Step pool channel

"Set up" step pools and forcing features

Special Considerations

- Bed permeability
- Channel cross-section
- Banklines
- Key features
- Small-grain beds

Bed material example design and spec W Fk Stossel Cr

	Reference	Design
D95	30"	30"
D84	10"	10"
D50	3"	3"
D16	?	0.6"
D5	sand	0.1"
Fines		5-10%
Colluvium, debris	Spanning 6-12" debris at 50' spacing	24" rock scattered at 15' oc throughout
Banklines	Bankline root structure protrudes 3' at 25' spacing	36" bankline rock at 25' spacing or continuous each bank

Stream Simulation Design Process

Assessment Stream simulation feasibility Project alignment and profile Verify reference reach Bed shape and material Structure width, elevation, details Mobility / stability Design profile control

- Profile range
- Sustainability
- Floodplain function, connectivity
 - Safety factor

Stream Simulation First estimate of culvert width

Stream Simulation Design Process

Assessment Stream simulation feasibility Project alignment and profile Verify reference reach Bed shape and material Structure width, elevation, details Mobility / stability Design profile control

- Failure modes
- Sustainability of stream simulation (mobility)
- Stability of key pieces
- Culvert capacity (regardless of design method)

Mobility / Stability Analysis Three purposes

Mobility 1. Is channel shape and bed material stream simulation? – project objective

Stability

- 2. Does bed stay in place?
- 3. Is culvert stable?

Bed Failure

Stimson Ck. Width ratio = 1.0 Slope = 2.2% (5%)

Original profile

Resulting profile

Culvert too narrow, bed material too small.

Note regrade

1. Design the channel and floodplain

Risk	Design/construction strategy			
All culverts				
Debris blockage, flows	Limit headwater depthEfficient upstream transition			
Stream diversion	Build sag in roadDesign for plugging, failure			
Stream simulation culverts				
Steeper than reference reach	 Minimize slope increase Increase bed material size * Increase bed culvert width * 			
Floodplain contraction	 Larger culvert, Additional culverts * Increase bed material size * 			
Lack of initial bed structure	 Compact bed Consolidate bed Increase bed material size 			
Downstream channel instability	 Verify potential profiles 			
Pressurized pipe	 Limit headwater depth * Larger culvert, additional culverts * 			
Long culvert	Minimize length Add safety factor to stability analysis *			

* = bed mobility / stability analysis required

Culvert Capacity

- Review range of project profiles.
- Analyze capacity with the high profile.
- Headroom for debris.
- Review risk of diversion.
- With debris, alignment is more important than culvert size (to a point).
- What are consequences of failure?

Culvert elevations, capacity

Furniss

Debris

In forested watersheds, debris is the most prevalent cause of culvert failure. Culvert alignment is a major contributor to debris-caused failures.

Solutions: Culvert width, alignment, and transition.

Bob Gubernick

Stream simulation regardless of type of structure

Not necessarily better just because it's a bridge.

Bottomless compared to pipe

Bottomless

- Can be placed over existing streambed or top loaded
- Can be placed over bedrock
- Footings can be shaped to bedrock.
- Concrete stemwall provides durability against abrasion and corrosion
- Construction duration increased by cast-in-place concrete
- High shear strength of bed reduces risk of bed failure
- Compaction easier without round shape

<u>Pipe</u> compared to bottomless

Pipe

- Pre-assembled pipe greatly reduces time for construction
- Structure not vulnerable to scour and headcut
- No measures needed to protect stream from fresh concrete
- Less costly and complex construction and less risk of error because no concrete footing
- Shape may allow narrower excavation
- Higher load capacity in poor foundation soils

Bankfull width structure after 16 years

Width ratio: 1.0, slope 4.5%

Johansen

Stream width 9.1 ft, slope 5% Culvert bed width 9.3 ft, slope 6% Unit Power = 6.3 ft-lb/sec/ft³

Barnard

And this is was our conclusion.

What does all this mean for barrier assessment?

- What are assessment objectives:
 - Fish, target species, aquatic organisms, ecological connectivity
- Assessments might be biological, <u>physical</u>, ecological

Objective: Target species

- Physical assessment: Back-calculate a hydraulic design
 - Calculate hydrology, hydraulics
 - How are uncertainties treated?
 - Estimate probability of passage/barrier

Objective: Aquatic organisms

- Physical assessment: Simulation of channel
 - Is there an appropriate reference reach?
 - Is bed material similar?
 - Are bed forms similar and cross-section?
 - Is channel self-sustaining?

Example - Stream Simulation WDFW Effectiveness Monitoring

- Comparison of 19 stream simulation approximations to natural channel
- Independent variables: Width ratio and slope ratio
- Dependent variables
 - Bed particle size distribution
 - Inlet contraction
 - Inlet scour
 - Depth distribution analysis
 - Pool spacing
 - Residual depth
 - Bed stability

Objective: Ecological connectivity

- Physical assessment: Channel context
 - Debris and sediment
 - "Fit" natural channel
 - Alignment
 - Potential vertical and lateral adjustment
 - Self-sustainability

Acknowledgements to:

For Stream Simulation

- Washington Fish and Wildlife
 - Bob Barnard
- USFS AOP project
 - Kim Clarkin, San Dimas Technical Development Center
 - Bob Gubernick, USFS Tongass National Forest
 - Dan Cenderelli, USFS Stream Systems Technology Center
 - Kim Johansen, USFS Siuslaw NF
 - Mark Weinhold, USFS White River NF

Stream simulation design guidelines

- Washington Department of Fish and Wildlife
 - 2003 http://wdfw.wa.gov/hab/engineer/cm/
- USDA Forest Service
 - Soon to be published
 - Training available
 - Contact kclarkin@fs.fed.us