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Critical Issues to be Addressed in the 
Next Stage of Fusion Research

•  Burning Plasma Physics 
  - strong nonlinear coupling inherent in a fusion dominated plasma
 - access, explore and understand fusion dominated plasmas

•  Advanced Toroidal Physics
 - develop and test physics needed for an attractive MFE reactor
 - couple with burning plasma physics

•  Boundary Physics and Plasma Technology (coupled with above)
 - high particle and heat flux
 - couple core and divertor
 - fusion plasma - tritium inventory and helium pumping

•  Neutron-Resistant Low-Activation Materials 
 - high fluence material testing facility using “point”neutron source

 - high fluence component testing facility using volume neutron source

•  Superconducting Coil Technology does not have to be coupled to 
   physics experiments - only if needed for physics objectives



Three Large Tokamaks

Second Phase Third Phase

1985 2005 2020 2050

Advanced 
DEMO

Attractive
Commercial
Prototype

Long Pulse Adv. Stellarator

Non-Tokamak Configurations

Diversified International Portfolio for Magnetic Fusion

Reduced Technical Risk

Fourth Phase

Increased Technical Flexibility

Streamlined Management Structure

Faster Implementation

Better Product/Lower Overall Cost

Commercialization
Phase

Choice of
Configuration

Scientific
Feasibility

Fusion Science and Technolgy
Feasibility

Electric Power
Feasibility

Economic 
Feasibility

Spherical Torus, RFP

Spheromak, FRC, MTF

JT-60 U

JET

TFTR

Several Large Facilities

Burning D-T 

Adv. Long Pulse D-D

Materials Develop

Technology Demonstration

Scientific Foundation

(the overall portfolio approach  includes IFE)



Comparison of EU One Step to DEMO Power Plant(s) with ARIES 

A B C D ARIES-AT
1,000MWe

R(m) 9.8 8.6 7.5 6.1 5.2

I(MA) 33.5 27.5 20.1 14.1 12.8

βN 3.4 3.3 4 4.5 5.4

fB(%) 36 36 69 76 92

HH 1.2 1.2 1.3 1.2 1.4

q95 3 3 4.5 4.5 3.5

ηth(%) 31 42 44 59 59

Blanket
energy gain

1.18 1.39 1.17 1.17

DMeade
EU DEMO Blanket  tested on ITEROne Step to DEMO

DMeade
~ARIES-ST   Blanket

DMeade
~ARIES-AT   Blanket

DMeade
Ref: Ian Cook at Power Plant Workshop and Marbach at ISFNT Feb, 2002
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Central Ion Temperature (keV)

Tokamaks 1993-99

Laser  1986
Direct Drive

Q ~ 0.001

Q ~ 0.0001

Laser  1986
Indirect Drive

Q  = WFusion/WInput

Deuterium - Tritium Plasmas

The Tokamak is Technically Ready for a High Gain Burning Exp't

Ignition

Q ~ 10

Tokamaks 1990-1999

Tokamaks  1980
Stellarator  1998

Stellarator  1996

Tokamak  1969 (T-3)

Reversed Field Pinch(Te)   1998

Field Reversed Configuration 1983-91

Spheromak 1989

Tandem Mirror 1989
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Conditions”

ST  1998

Performance Extension

Proof of Principle

Concept Exploration

Deuterium Plasmas

Reactor Plasma  Conditions
(Alpha Dominated)

Q ~ 1

Q ~ 0.01

Q ~ 0.00001

Q ~ 0.001

Q ~ 0.01
NIF

LMJ
NIF

LMJ

T-3
1965

T-3
1968

Laser  1996
Direct Drive

W = energy

DMM DS9

ST 2001

Stellarator  1999

ST  1999

DMeade
The tokamak is sufficiently advanced to permit the design, construction and initiation of a next step burning plasma experiment within the next decade that could address the fusion plasma and self-heating issues for magnetic fusion.
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Attractive MFE 
Reactor

(e.g. ARIES Vision)

Existing 
Data Base

Emerging Advanced
Toroidal Data Base

Alpha Dominated

fα = Pα /(Pα + Pext) > 0.5,  
τBurn > 15  τE,  2 - 3  τHe 

Burning Plasma Physics 
and

 Advanced Toroidal Physics

Burning 
Plasma 
Physics

Advanced Toroidal Physics (e.g., boostrap fraction)

FIRE's Goal is to Address the Critical Burning
Plasma Science Issues for an Attractive MFE Reactor

Burning  Plasma 
Physics

High beta (power density)
ρ*  ~  ρ*(ARIES-RS), 

 τpulse > 2 - 3  τskin

Advanced Toroidal 
Physics

Advanced Burning 
Plasma Physics

Large Bootstrap Fraction,

Pα
PHeat

1.0

0.6

0.4

0.2

0.0

0.8

Existing Devices

DMeade
Attain a burning plasma with confidence using “todays” physics, but allow the flexibility to explore tomorrow’s advanced physics.
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Fusion Science Objectives for a
Major Next Step Burning Plasma Experiment

Explore and understand the strong non-linear coupling that is
fundamental to fusion-dominated plasma behavior (self-organization)

•  Energy and particle transport (extend confinement predictability)

•  Macroscopic stability (β-limit, wall stabilization, NTMs)

•  Wave-particle interactions (fast alpha particle driven effects)

•  Plasma boundary (density limit, power and particle flow)

•  Test/Develop techniques to control and optimize fusion-dominated plasmas.

•  Sustain fusion-dominated plasmas - high-power-density exhaust of plasma
particles and energy, alpha ash exhaust, study effects of profile evolution due to
alpha heating on macro stability, transport barriers and energetic particle modes.

•  Explore and understand various advanced operating modes and configurations in
fusion-dominated plasmas to provide generic knowledge for fusion and non-fusion
plasma science, and to provide a foundation for attractive fusion applications.



Advanced Burning Plasma Exp't Requirements

Burning Plasma Physics

Q ≥ 5 ,     ~ 10 as target,    ignition not precluded

fα = Pα/Pheat ≥ 50% , ~ 66% as target, up to 83% at Q = 25

TAE/EPM                  stable at nominal point, able to access unstable

Advanced Toroidal Physics

fbs = Ibs/Ip ≥ 50% up to 75%

βN ~ 2.5, no wall ~ 3.6, n  = 1 wall stabilized

Pressure profile evolution and burn control > 10 τE

Alpha ash accumulation/pumping > several τHe

Plasma current profile evolution 1 to 3 τskin

Divertor pumping and heat removal several τdivertor 

DMeade
Quasi-stationary Burn Duration
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FIRE has Adopted the Advanced Tokamak
Features Identified by ARIES Studies

• High toroidal field

• Double null

• Strong shaping
– κ = 2.0, δ = 0.7

• Internal vertical position
control coils

• Cu wall stabilizers for vertical
and kink instabilities

• Very low ripple (0.3%)

•  ICRF/FW on-axis CD

• LH off-axis CD

• LHCD stabilization of NTMs

• Tungsten divertor targets

• Feedback coil stabilization for
Resistive Wall Modes (RWM)

• Burn times exceeding current
diffusion times

• Pumped divertor/pellet
fueling/impurity control to
optimize plasma edge
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Optimization of a Burning Plasma Experiment (H-Mode)
• Consider an inductively driven tokamak with copper alloy TF and PF coils 
precooled to LN temperature that warm up adiabatically during the pulse.

•  Seek minimum R while varying A and space allocation for TF/PF coils for a 
specified plasma performance - Q and pulse length with physics and eng. limits. 

J. Schultz , S. Jardin
C. Kessel

2.2 ττττJ

1.5 ττττJ

 0.93 ττττJ

0.45 ττττJ

ττττJ =  flat top time/ current redistribution time

What is the optimum for advanced steady-state modes?

ITER - FEAT FIRE

ARIES-RS (8T),ASSTR (11T)

6 T

8 T 2.8 ττττJ

ITER98(y,2)
scaling

DMeade
n(0)/<n> = 1.2



Fusion Ignition Research Experiment
(FIRE)

Design Features
• R =   2.14 m,   a = 0.595 m
• B =     10 T
• Wmag= 5.2 GJ
• Ip =     7.7 MA
• Paux ≤ 20 MW
• Q ≈ 10,  Pfusion  ~ 150 MW
• Burn Time ≈ 20 s
• Tokamak Cost ≈ $375M (FY99)
• Total Project Cost ≈ $1.2B

at Green Field site.

http://fire.pppl.gov
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magnetically-confined fusion-dominated plasmas.
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Mission: Attain, explore, understand and optimize
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High-Field Copper-Alloy Coils have Advantages for BP Expt's

FIRE Cross/Persp- 5/25//DOE

Compression Ring

Wedged TF Coils (16), 15 plates/coil*

Double Wall Vacuum
 Vessel   (316 S/S)

All PF and CS Coils*
OFHC C10200

Inner Leg BeCu C17510, 
 remainder OFHC C10200

Internal Shielding
( 60% steel & 40%water)

Vertical Feedback and Error

W-pin Outer Divertor Plate
Cu backing plate, actively cooled

*Coil systems cooled to 77 °K prior to pulse, rising to 373 °K by end of pulse.

Passive Stabilizer Plates
space for wall mode stabilizers

Direct and Guided Inside Pellet Injection

AT Features

• DN divertor

• strong shaping

• very low ripple

• internal coils

• space for wall
   stabilizers

• inside pellet
  injection

• large access ports

DMeade
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< 0.3%
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Field Correction Coils

DMeade
2.14m

DMeade
pumping



Basic Parameters and Features of FIRE
R, major radius 2.14 m
a, minor radius 0.595 m
κx, κ95                                                    2.0, 1.77
δx, δ95                                                    0.7, 0.55(AT) - 0.4(OH)
q95, safety factor at 95% flux surface >3
Bt, toroidal magnetic field 10 T with 16 coils,  0.3% ripple @ Outer MP
Toroidal magnet energy 5.8 GJ
Ip, plasma current 7.7 MA
Magnetic field flat top, burn time  28 s at 10 T in dd, 20s @ Pdt ~ 150 MW)
Pulse repetition time  ~3hr @ full field and full pulse length
ICRF heating power, maximum 20 MW, 100MHz for 2ΩT, 4 mid-plane ports
Neutral beam heating Upgrade for edge rotation, CD - 120 keV PNBI?
Lower Hybrid Current Drive                   Upgrade for AT-CD phase, ~20 MW, 5.6 GHz 
Plasma fueling Pellet injection (≥2.5km/s vertical launch inside

mag axis,  guided slower speed pellets)
First wall materials Be tiles, no carbon
First wall cooling Conduction cooled to water cooled Cu plates
Divertor configuration Double null, fixed X point, detached mode
Divertor plate W rods on Cu backing plate (ITER R&D)
Divertor plate cooling Inner plate-conduction, outer plate/baffle- water
Fusion Power/ Fusion Power Density 150 - 200 MW, ~6 -8 MW m-3 in plasma
Neutron wall loading ~ 2.3 MW m-2
Lifetime Fusion Production 5 TJ (BPX had 6.5 TJ)
Total pulses at full field/power 3,000 (same as BPX), 30,000 at 2/3 Bt and Ip
Tritium site inventory Goal < 30 g, Category 3, Low Hazard Nuclear Facility

DMeade
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Guidelines for Estimating Plasma Performance

Confinement (Elmy H-mode) - ITER98(y,2) based on today's data base

τE = 0.144 I0.93 R1.39a0.58 n20
 0.41 B0.15Ai

0.19  κ0.78 Pheat
-0.69

Density Limit -  Based on today's tokamak data base

n20 ≤ 0.8 nGW  =  0.8 Ip/πa2,  

Beta Limit - theory and tokamak data base

β ≤ βN(Ip/aB),     βN < 2.5 conventional, βN ~ 4 advanced

H-Mode Power Threshold - Based on today's tokamak data base

Pth  ≥  (2.84/Ai) n0.58 B      Ra        ,  same as ITER-FEAT   

Helium Ash Confinement τHe = 5 τE,       impurities = 3% Be, 0% W

DMeade
Understanding is mainly empirical.  Better understanding is needed from existing experiments with improved simulations, and a benchmark in alpha-dominated  fusion plasmas is needed to confirm and extend the science basis.
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FIRE is a Modest Extrapolation in Plasma Confinement

ωcτ = B τ
ρ* = ρ/a
ν* = νc/νb
β

Dimensionless
 Parameters ITER-EDA,  Q ~ 50

ITER-FEAT, Q = 10X X

BτE

BτE ~ ρ*–2.88 β –0.69 ν* –0.08

Similarity 
Parameter

B R 5/4

Kadomtsev, 1975

DMeade
X
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FIRE,  Q = 10
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FIRE would Extend the Transport Understanding Toward ARIES
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FIRE and ITER-FEAT calculated for Q =10,       
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r

DMeade
a/     evaluated at plasma  ~ 0.5a
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i
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R = 5.2 m, Ip = 11 MA

DMeade
EU Power Plant

DMeade
R = 8.6m, Ip = 27 MA



FIRE’s Operating Density and Triangularity are 
Near the Optimum for the Elmy H-Mode 

Ongena et al, JET Results EPS 2001

•  The optimum density for the
    H-Mode is  n/nGW ≈≈≈≈ 0.6 - 0.7 

•  H-mode confinement
   increases with δδδδ

 •  δδδδ ≈≈≈≈ 0.7 FIRE

 •  δδδδ ≈≈≈≈ 0.5 ITER-FEAT

•  Elm size is reduced for 
   δδδδ > 0.5

•  Zeff decreases with density
   (Mathews/ITER scaling)

•  DN versus SN ?  C- Mod Exp'ts

Cordey et al,  H = function ( δδδδ, n/nGW, n(0)/<n>) EPS 2001

FIRE H-Mode 4



H (y,2)

n/n GW

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.4 0.5 0.6 0.7 0.8 0.9

 JET H-Mode Data  Selected for FIRE-like Parameters

JET Data(DB4)

κ > 1.7, 
2.7 < q95 < 3.5,

β
N > 1.7,

Zeff < 2.0

〈 H(y,2) 〉 = 1.1

〈 n(0)/ 〈n〉 〉 = 1.2

Cordey, EPS 2001, P3.11

Eqn. 4

Best fit to full JET 
H-Mode data base.

δ = 0.7, n/nped = 1.3



Increasing Triangularity Enhances H-Mode Confinement 

Extracted from the ITER-FEAT Physics Basis 2001, page 11

Note:  triangularity is determined at the separatrix



Projections to FIRE Compared to Envisioned Reactors

ARIES-AT, Najmabadi,
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Q

JET H-Mode** Data Base

Q = 50

FIRST “ITER” Reactor
Toschi et al

FIRE
10T, 7.7MA, R = 2.14m, A = 3.6

1.7 τskin

n/nGW = 0.7

Pfusion = 150 MW

n(0)/<n>V = 1.2

n(0)/<n>V = 1.5
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Simulation of Burning Plasma in FIRE

• ITER98(y, 2) with H(y, 2) = 1.1, n(0)/〈n〉 = 1.2, and n/ nGW = 0.67
• Burn Time ≈ 20 s ≈ 21τE ≈ 4τHe ≈ 2τCR

Q = Pfusion/( Paux + Poh)

B = 10 T

Ip = 7.7 MA

R = 2.14 m

A = 3.6



εβP
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,
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10T, 20 s
150 MW

FIRE-AT1
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 8.5T, 35s
 150 MW

FIRE

q* = 3

n>1 RWM

q* = 4
βN = 5

q* = 2
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ARIES-I
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Advanced Burning Plasma Physics 
could be Explored in FIRE

Cyclotron

0        10       20       30       40 
Time (s)

ICRF + LHCD
LHCD

0        10       20       30       40 
Time (s)

bremsstrahlung

50
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0

5
4
3
2
1
0

Total noninductive current
Ip

(MA)

Ip bootstrap

LH

FW

   fBS = 65%

Q = 7.8, fαααα = 61%
Alpha

Power
(MW)

Self-Heating Dominant Self-Current Drive  Dominant

Fully Non-Inductive for > 1 ττττCR 

Tokamak simulation code results for H(y, 2) = 1.6, βN = 3.5 , would require RW
mode stabilization. q(0) = 2.9, qmin = 2.2 @ r/a = 0.8, 8.5 T, 5.5 MA



ARIES-RS
4.1 MW/m2



Edge Physics and PFC Technology: Critical Issue for Fusion

Plasma Power and particle Handling under relevant conditions
Normal Operation / Off Normal events

Tritium Inventory Control
must maintain low T inventory in the vessel ⇒ all metal PFCs

Efficient particle Fueling
pellet injection needed for deep and tritium efficient fueling

Helium Ash Removal
need close coupled He pumping

Non-linear Coupling with Core plasma Performance
nearly every advancement in confinement can be traced to the edge
Edge Pedestal models first introduced in ~ 1992 first step in understanding
Core plasma (low nedge) and divertor (high nedge) requirements conflict

Solutions to these issues would be a major output from a next step experiment.



Helium Ash Removal Techniques Required 
for a Reactor can be Studied on FIRE

TSC/Kessel/21-q.ps

Power, MW

τp* = 1000τE

0 12 20
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16 244 8
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Radiated Power

τp* = 10 τE

τp* = 5 τE

26

Fusion power can not be sustained without helium ash punping.



Energetic Particle Drive can be Varied  in FIRE
Using  Divertor Pumping and Pellet Injection

 FIRE:  H(y,2) = 1.1, αααα_n = 0.2, αααα_T = 1.75, 
            Q = 10 , Pfusion = 150 MW except where noted

n / nGW

R∇β α

TAE Driving Term
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0.02

0.04

0.06
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0.14

0.12

0.4

Q = 7.5

Q = 5, Pfusion = 100 MW

Nominal Operating Point

Pumping Divertor

Pumping 
Divertor

Pellet Injection



FIRE would Test the High Power Density 
 In-Vessel Technologies Needed  for ARIES-RS

  JET FIRE ARIES-RS 
Fusion Power Density (MW/m3)  0.2  5.5 6 

Neutron Wall Loading (MW/m2)  0.2 2.3 4 

Divertor Challenge (Pheat/NR)  ~5 ~10  ~35  
  
 Power Density on Div Plate (MW/m2) 3 ~15-19 → 6 ~5

Burn Duration (s)  4 20 steady 

~ 3X

ARIES-RS The “Goal”

B = 8 T
R = 5.5 m

Pfusion 
= 2170 MW

Volume
 = 350 m3

FIRE

R = 2.14 m
B = 10 T

Pfusion 
= ~ 150 MW

Volume 
= 27 m3



Divertor Module Components for FIRE

Two W Brush Armor Configurations
Tested at 25 MW/m2

Finger Plate for
Outer Divertor Module

DMeade
Sandia

DMeade
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Carbon targets  used in most experiments today are not compatible with tritiun inventory requirements of fusion reactors.  
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FIRE In-Vessel Remote Handling System
Mi

Transfer Cask

Articulated Boom

Boom End-Effector Midplane Port Assembly

In-vessel transporter

• High capacity (module wt. ~ 800 kg)

• Four positioning degrees of freedom

• Positioning accuracy of millimeters
required

Divertor end-effector
• Articulated boom deployed from sealed cask

• Complete in-vessel coverage from 4 midplane ports

• Fitted with different end-effector depending on
component to be handled

• First wall module end-effector shown



Cost Background for FIRE

• Three tokamaks physically larger but with lower field energy than FIRE have
been built.

Water Cooled Coils B(T) R(m) Coil Energy (GJ) Const. Cost
TFTR (1983), US 5.2 2.5 1.5 $498M
JET (1984), Europe 3.4 2.96 1.4 ~$600M
JT-60 (1984), Japan 4.4 3.2 2.9 ~$1000M
FIRE*, US 10 2.0 3.8 (~ $1000M)
* FIRE would have liquid nitrogen cooled coils.

Cost estimates from previous design studies with similar technology.

Liquid N, Cu coils B(T) R(m) Coil Energy (GJ) Const. Cost
CIT (1989), 11 2.14 5 $680M (FY-89)
BPX (1991) 9.1 2.59 8.4 $1,500M (FY-92)
BPX-AT(1992) 10 2.0 4.2 $642M (FY-92)
FIRE 10 2.0 3.8 (~$1,000M FY-99 )

Meade, June-2001
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Preliminary FIRE Cost Estimate (FY99 US$M)
Estimated Contingency Total with

Cost Contingency
1.0 Tokamak Core 266.3 78.5 343.8

1.1 Plasma Facing Components 71.9 19.2
1.2 Vacuum  Vessel/In-Vessel Structures 35.4 11.6
1.3 TF Magnets /Structure 117.9 38.0
1.4 PF Magnets/Structure 29.2 7.2
1.5 Cryostat 1.9 0.6
1.6 Support Structure   9.0          1.8

2.0 Auxiliary Systems 135.6 42.5 178.1
2.1 Gas and Pellet Injection 7.1 1.4
2.2 Vacuum Pumping System   9.6 3.4
2.3 Fuel Recovery/Processing                               7.0   1.0
2.4 ICRF Heating 111.9 36.6

3.0 Diagnostics (Startup) 22.0   4.9 26.9
4.0 Power Systems 177.3 42.0 219.3
5.0 Instrumentation and Controls 18.9 2.5 21.4
6.0 Site and Facilities 151.4 33.8 185.2
7.0 Machine Assembly and Remote Maintenance  77.0                18.0   95.0
8.0 Project Support and Oversight   88.8 13.3 102.2
9.0 Preparation for Operations/Spares 16.2 2.4 18.6

Preconceptual Cost Estimate (FY99 US$M) 953.6 237.8 1190.4

Assumes a Green Field Site with No site credits or significant equipment reuse.
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ITER-FEAT

R = 6.2 m
B = 5.5 T

Cost Drivers  IGNITOR FIRE JET U PCAST ARIES-RS ITER-FEAT

Plasma Volume (m3)   11 27 108 390 350 828
Plasma Surface (m2)  36 67 160 420 420 610

Plasma Current (MA)  12 7.7 6 15 11.3 15
Magnet Energy (GJ)  5 5 1.6 40 85 50
 
Fusion Power (MW)  100 150 30 400 2170 400

Burn Duration (s), inductive  ~1 20 10 120 steady 400
                                    ττττ    Burn/ ττττ    CR   ~2 0.6 1 steady 2

Cost Estimate ($B-2000$)   1.2 ~0.6 6.7 10.6* 4.6?

Comparison of Burning Plasma Device Parameters

FIRE

R = 2.14 m
B = 10 T

JET U

R = 2.9 m
B = 3.8 T

PCAST 5

R = 5 m
B = 7 T

ARIES-RS (1 GWe)

B = 8 T

R = 5.5 m

AR RS/ITERs/PCAST/FIRE/IGN

IGNITOR

R = 1.3 m
B = 13 T

* first , $5.3 B for 10th of a kind



FIRE Issues and Needs

•  Most are the same as for ITER-FEAT!

•  Differences arise due to:
•  Double null divertor - higher δ, shorter path to divertor, neutral stability point

no asymmetric alpha ripple loss region, (δB/B = 0.3%)
•  Lower density relative to nGW, higher density relative to NBI, RF, neutrals
•  All metal PFCs, esp. W divertor targets,  •  No neutral beam heating

•  Specific Interests (requests)
•  Core Confinement (H-Mode and close relatives)

•  Understand requirements for enhanced H-modes at n/nGW ≈ 0.6 - 0.7
•  Compare SN ⇒ DN or nearly DN ; maybe more than triangularity
•  Extend global studies/analysis H = H(δ, n/nGW, n(0)/<n>)
•  H-mode power threshold for DN, hysteresis, H = f(P -Pth)
•  Pedestal height/width as SN ⇒ DN;  elms as SN ⇒ DN
•  Rotation as SN ⇒ DN
•  Expand H-Mode data base for ICRF only plasmas
•  Demonstration discharges and similarity studies
•  Density Profile Peaking - expectations/requirements?



FIRE Issues and Needs (p.2)

•  Internal Transport Barriers (AT Modes)
•  Access to ATs with: RF heated, q95 ~ 3.5 - 4, Ti/Te ≈ 1,
•  density peaking needed for efficient LHCD
•  n = 1stabilization by feedback

•  SOL and Divertor - Impurities
•  Justification for using nz ⇓ as ne ⇑?
•  ASDEX Upgrade and C-Mod Hi Z impurity in core and “tritium” retention
•  Consistency of partially detached divertor with good τE and He removal
•  Models and improved designs for extending lifetime (Elms/disruptions)

•  Plasma Termination and Halo Currents
•  Does DN neutral zone reduce force or frequency of disruptions?
•  Develop early warning, mitigation and recovery techniques

•  Finite-β effects
•  stabilization of NTMs using LHCD (∆' modification)
•  elms for enhanced confinement modes
•  TAE, EPM studies in DD with beams and RF

•  Diagnostic development - high priority needs to added in a future meeting



More Work Needed to Define Plasma Control Possibilities

• Density (core, edge)
pellet fueling/divertor pumping

density relative to nGW, fast alpha

•  ITBs
ICRH ala C-Mod

control timing and strength of ITBs

•  Current Profile Control
ramping, Lower Hybrid Current Drive

•  Rotation Control
edge NBI injection being looked at

What are the rotation requirements?

•  RWM Stabilization
feedback coils in port plugs near plasma

•  Disruption
pellets, jets, neural net control systems



USFY 2002

Timetable for a Major Next Step in Magnetic Fusion

ITER-EDA  Complete

USFY 2003

FESAC BP Recommendations

Preferred ITER
Site Chosen

US Activities and Decisions

Snowmass Assessment

ITER - Final Agreement Signed

Conceptual DesignPlan Prelim. Design

Burning_Plasa_sched

DOE Response to
 Congress per HR-4/S-1766

ITER Legal Entity

FESAC BP Strategy  Panel

National Academy Review 

USFY 2004 USFY 2005

ITER Construction 
Authorization 

Jan 1
 2007 Sixth European Framework Programme 

Japan Site offer

EU Site 
offer

Response to Snowmass Conceptual DesignPlan Prelim. Design

New Initiative in FY 2003?

USFY 2001

Preconceptual Design

U.S. Burning Plasma Design Activity - FIRE

ITER Activities and Decisions

DOE Decison CD-0 



Summary

•  A Window of Opportunity may be opening for U.S. Energy R&D.  We should 
be ready.  The Diversified International Portfolio has advantages for 
addressing the science and technolgy issues of fusion. 

•  FIRE is being designed to :

•  address the important burning plasma issues,
•  investigate the strong non-linear coupling between BP and AT,
•  stimulate the development of reactor relevant PFC technology, and

•  Some areas that need additional work to realize this potential include:

•  Apply recent enhanced confinement and advanced modes to FIRE 
•  Understand conditions for enhanced confinement regimes-triangularity
•  Compare DN relative to SN - confinement, stability, divertor, etc
•  Complete disruption analysis, develop better disruption control/mitigation.

DMeade
http://fire.pppl.gov

DMeade
•  provide generic BP science and possibly BP infrastructure for   non-tokamak BP experiments in the U. S.

DMeade
performance ~ ITER

DMeade
•  If a postive decision is made in this year, FIRE is ready to begin Conceptual   Design in FY2003 with target of first plasmas ~ 2010.



European Fusion Program Status

• Final Negotiations for 6th Framework Program.  Program composition with
reduced budget is under intense debate.  JET’s future is threatened.

• Response to Airaghi Report Recommendations due May 2002

3. To proceed with the ‘Next Step’ in the international collaboration perspective of the
New-ITER, the European Union should within the next 2 years:
· Conclude negotiations on the legal and organisational structure of the future venture
· Actively seek a European site for the New-ITER, since this is the best option from a

European viewpoint.
· Conduct a thorough review of the financial issues, including the different financial

costs and benefits of siting it in Europe, Canada or Japan, and establish the extent to
which Japan would support the construction of New-ITER outside Japan.

· Examine in detail the recent interesting expression of interest received from the
Canadian Consortium.

4. In the same 2-year period, due to the uncertainty over the outcome of the
international negotiations, Europe should study an alternative to New-ITER, which
would be suitable to be pursued by Europe alone. For example, a copper magnet
machine which would still achieve the required objective of demonstrating a burning
plasma under reactor conditions even if this would delay the integration of the
superconducting technologies.



Japan Fusion Program Status

•  JAFY 02 underway with significantly reduced fusion budgets (- 50%) for JAERI
Fusion and LHD (-30%). ITER activities funded at ≈ $3.5M.

•  ITER Decision still on hold, site offer > 6 months behind schedule.

•  Significant amount of work has been done on JT-60 SC.
 – ISFNT paper by Matsukawa
 – SOFE paper by Ishida

   Decision on hold pending ITER decision.

•  Next stage of Large Helical Device being planned.

•  Reactor Studies have goals similar to US ARIES Goals
cost competitiveness of fusion important – advanced physics and technology

DMeade


DMeade


DMeade
Portfolio Elements



A Strategy for the US

• Given:
• the growing support for fusion and burning plasmas within the US

FESAC recommendations on BP
HR4 recommendations on fusion and BP
Positive statements from the Administration

 • uncertainty of ITER
Reduced fusion budgets in EU and JA
Lack of site proposals by either EU or JA

• The US needs a Technically Based Roadmap for Magnetic Fusion
• Snowmass, FESAC, and NRC reviews will provide a basis
• must address the fundamental issue of:

One Large Integrated Project versus Diversified International Portfolio

•  Near Term Actions
• develop a Roadmap for the US Magnetic Fusion Program

• do our homework on possible ITER roles prior to joining ITER
negotiations

• continue to develop a design for a US based burning plasma
experiment as per HR4 as viable option until the parties commit to
ITER construction.




