MERIS US Workshop Instrument Characterization Overview

Steven Delwart

On-Ground Characterisation

- 1. Diffuser characterisation
- 2. Polarization sensitivity
- 3. Optical Transmission
- 4. Optical Distortion & Dispersion
- 5. Straylight
- 6. CCD Responsivity
- 7. MTF
- 8. Spectral Smile & Frown
- 9. Pointing

On-Orbit Characterisation

- 1. Offset stability
- 2. CCD Sensitivity to SAA
- 3. NEDL

Agence spatiale européenne

Diffuser Geometry

European Space Agency Agence spatiale européenne

esa

Characterisation Bench esa

Agence spatiale européenne

Diffuser Characterisation

Method

Livina Plane

 Monochmator overfills the detector's pupil - irradiance measurement

esa

 Monochmator overfills measured area on the diffuser - radiance measurement.

• Reference detector monitors monochomator output during measurements

Error budget

Error sources	Error Type	BRDF	Inter-Pixel	Inter-Band
Field of View	Bias	<0.2 %		•
Angular precision	Random	0.10%	0.10%	-
Detector lineariy	Random	0.30%	-	0.30%
Beam Uniformity	Signed Bias Bias	-0.15% 0.35%	0.20%	- 0.20%
Noise	Random	0.20%	0.20%	0.20%
Polarisation	Bias	<0.05%	<0.01%	<0.01%
Straylight	Signed bias Bias	0.10%	0.10%	0.10%
Total	-	0.49%	0.26%	0.38%
Total error $(1-) = 155h + cor[50]^{2/3} + 5-^{2}1$				

European Space Agency Agence spatiale européenne

and long term monitoring

Inter-comparison with NASA (2000), agreement within measurement accuracy (1%) MERIS diffuser characterisation data = TPD 1996 Monochromator and Detector head upgraded in 2000 at TPD.

European Space Agency Agence spatiale européenne

Comparison Diffuser 1&2

BRDF of Diffusers-1&2 at 410 nm

Ratio Diffusers-1&2 BRDF on-orbit

Ratio Diffusers-1&2 BRDF on-ground

MERIS US Workshop, Silver Springs, 14th July 2008

nd Living Planet

European Space Agency Agence spatiale européenne

European Space Agency Agence spatiale européenne MERIS US Workshop, Silver Springs, 14th July 2008

COMPOSA Polarisation sensitivity

Living Planet

OSA POLARIZATION PERFORMANCE

The Scrambing Window Element (SWE) depolarization effect measurement done by CERCO is fully in accordance with the Phase A SIRA theoretical model.

 SWSA ALIGNMENT AND VERIFICATION BENCH (SWAV)
 110%

 Field of view center pointing alignment wrt AER optical bench I/F. Inter-modules alignment wrt Field of view center.
 100%

Scrambling Window Sub-Assembly (SWSA) (In front: UV-filter & Scrambler assembly) Bandangh Ital Bandangh Ital

Global OSA polarization sensitivity specification has been verified by AER at Camera level.

Quartz / Silica Scrambling Windows have been manufactured by FICHOU company (F).

Scrambler residual monochromatic polarisation sensitivity [s/p]

European Space Agency Agence spatiale européenne

OSA RADIOMETRIC CHARACTERISTICS

The strong attenuation in the region 480nm to 620nm is due to the "inverse filter" whose purpose is to "flattens" spectrally the MERIS system response

The -2nd order suppression is performed both with the ISA /JOBIN-YVON (F) pseudo laminar grating and the RG610 wedge blocking filter.

OSA Modulation Transfer Function is fully compliant with the required 20 microns focus depth.

esa

Optics transmission

Orders +1, +2 and 0 are caught by light traps in the corrector block

Order-2 grating efficiency MERIS US Workshop, Silver Springs, 14th July 2008

•

European Space Agency Agence spatiale européenne

Living Planet

OSA GEOMETRICAL AND SPECTROMETRIC PERFORMANCE On ground slit distortion OSA focal plane mapping Focal plane lines distortion -------they had and an analyzed at the set of Field of Siles, 8 last GI spectral registration Spectral distribution Columns distortion 14.1 44 44 --44 12 19 1 -10 X axis = field of view $\{-8, 8\}$ mm Y-axis = range $\{-8, 8\}\mu$ m

(pixel=22 µm / 1.25nm, FoV = 740 pix)

European Space Agency Agence spatiale européenne

CSA Straylight Characterisation

Living Plane

ASAP model result on axis for 585nm

Total Integrated Scatter (TIS) measurements performed on all optical surfaces (and coatings) using "as built" witnesses.

European Space Agency Agence spatiale européenne

Livina

Non-linearity measured performed at: •CCD level by varying integration time •Analogue Imaging Chain level (above) by varying distance to the light source

- Rms non-linearity < 0.1% of full range, increases to > 1% at low signal levels.
- Non-linearity primarily due to CCD output trans-impedance amplifier.
- Very low integral and differential non-linearity of the ADC
- Plot represents NL at CCD output (4096 counts = 1.5V full range.)

European Space Agency Agence spatiale européenne

CONTRACTOR CONTRACTOR

Overview

CAMERA OPTICS ALIGNMENT AND VERIFICATION BENCH (COAV)

Registrations and MTF measurements Spectrometer slit alignment CCD interface adjustment

Camera integration bench

Camera Level Characterisation

- (Thermal Vacuum)
- MTF
- Spectral Smile
- Spectral Frown

Camera performance test bench

European Space Agency Agence spatiale européenne

CONTRACTION CONTRACTION CONTRACTION CONTRACT

MTF (22lp/mm) as a function of wavelength for: Full resolution (FR=300m) Along track (AL) FoV [deg] [Fnyquist=1.542] Full resolution (FR) Across track (AC) FoV [deg] [Fnyquist=1.496] Reduced resolution (RR=1200m) Across track (AC) FoV [deg] [Fnyquist=0.374]

European Space Agency Agence spatiale européenne

European Space Agency Agence spatiale européenne MERIS US Workshop, Silver Springs, 14th July 2008

CONTRACTOR OF SPECTRAL Characteristics

Deviation from linear dispersion

Modelled Band 13 Line shape (16 spectral pixels)

Figure 1a : Comparison between raw data and fit of instrument spectral response : An example of measurements without significant noise (camera 5, line 409, column 1).

Spectral pixel Line shape example and associated Gaussian model

Modelled Band 11 Line shape (2 spectral pixels)

European Space Agency Agence spatiale européenne MERIS US Workshop, Silver Springs, 14th July 2008

European Space Agency Agence spatiale européenne MERIS US Workshop, Silver Springs, 14th July 2008

Precision Manipulator

Solar Simulator

European Space Agency Agence spatiale européenne

COMPONENTING Characterisation

Living P

European Space Agency Agence spatiale européenne

Casa On-Orbit Characterisation

Living Planet

- CCD Temperature very stable
 VEU temperature drift 6 degrees
- Offset Control Loop converges well
- 0.6mV / 1.5 V Dynamic range

Dark Current characterisation, complete orbits with the shutter closed in Observation mode.

Orbit 292 Dark Current OCL ON

Orbit 293 Dark Current OCL OFF

European Space Agency Agence spatiale européenne

COMPANIENT CONTRACT A CONTRACT CONTRACT CONTRACT A CONTRACT CONTRACT CONTR

European Space Agency Agence spatiale européenne

MERIS US Workshop, Silver Springs, 14th July 2008

Living Planet

FNV

European Space Agency Agence spatiale européenne MERIS US Workshop, Silver Springs, 14th July 2008

SNR Computation

Methodology using diffuser observation :

- 1. Difference from linear fit of Raw counts
- 2. Difference from cubic fit of selected region from 1.
- 3. Compute the standard deviation (1σ) of noise
- 4. Adjust the noise (2σ) to the specified signal level (Assuming shot noise limited)
- 5. Compute SNR

Assumptions:

The large modulations are "speckle" based only !

European Space Agency Agence spatiale européenne

Signal to Noise Ratio

SNR Specifications (Goal, Spec), Estimated SNR at three signal levels (Cal, Ocean, Meas) [W/m2/sr/nm]. Note that the specifications include two "Land" bands and one "cloud" bands

European Space Agency Agence spatiale européenne

esa

