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Established guidelines for causal inference in epidemiological studies may be

inappropriate for genetic associations. A consensus process was used to develop

guidance criteria for assessing cumulative epidemiologic evidence in genetic

associations. A proposed semi-quantitative index assigns three levels for the

amount of evidence, extent of replication, and protection from bias, and also

generates a composite assessment of ‘strong’, ‘moderate’ or ‘weak’ epidemiolog-

ical credibility. In addition, we discuss how additional input and guidance can

be derived from biological data. Future empirical research and consensus

development are needed to develop an integrated model for combining

epidemiological and biological evidence in the rapidly evolving field of

investigation of genetic factors.
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Assessing the credibility of the proposed relationships between

human genetic variation and various diseases and traits is a

rapidly growing challenge. Here, we use the term ‘credibility’ to

refer to the likelihood that an association exists after some

evidence has been accumulated. However, evidence is con-

tinuously evolving. Currently over 6000 original articles report-

ing genetic epidemiology results are published annually.1 This

field started with assessments of small numbers of ‘candidate’

genetic variants, but there are now increasing numbers of

genome wide association studies (GWAs) that seek to discover

novel genetic risk factors by testing several hundred thousand

single nucleotide polymorphisms (SNPs) per participant. In the

near future, whole genome sequencing data will provide

information on millions of variants per individual. With the

application of such massive genomic testing platforms to large

case-control and cohort studies2, the amount of information per

study and overall is increasing very rapidly. Reflecting this

increase, approximately 500 Human Genome Epidemiology
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(HuGE) reviews and meta-analyses have been published to date

(www.cdc.gov/genomics). These reviews typically integrate

information on one or a few specific gene–disease associations

at a time. The unknown extent of unpublished data and the

potential biases that may influence the results of single studies

threaten the credibility of the literature.3,4 While some reported

genetic associations have been confirmed to be credible,

most have been refuted or remain ambiguous.5 Many fear

that the scientific literature has already become flooded with

false or misleading information. It is important to develop

mechanisms that can summarize and evaluate the current

status of evidence of whole fields in genetic epidemiology. This

undertaking requires regularly updated synopses of all adequate

association studies on a particular disease or phenotype6 based

on widely accepted criteria for assessment of the cumulative

evidence. Synopses would also be useful for planning future

studies and eventually understanding the translational potential

of genetic information for clinical and public health purposes.

There is special enthusiasm about the potential power of

genomics to define the etiology of disease and phenotypes,

because associations that arise from genetic epidemiology

studies may be less likely to be confounded or biased than

other types of epidemiologic studies. Guidelines for inferring

causation from observational studies of associations between

exposures and disease were proposed7,8 in the 1960s and

subsequently modified for various fields of epidemiology,9–11

but these guidelines are not appropriate for the scale or specific

challenges now being encountered in genetic epidemiology.

Bradford Hill himself did not wish his nine items to be

interpreted as strict criteria and for genetic epidemiology, many

of these items are either irrelevant or problematic. Temporality is

irrelevant for genetic factors fixed at birth and experimental

support through randomization is impossible. Analogy and

coherence ‘with generally known facts of the natural history

and biology of the disease’ are impossible to use meaningfully

yet, as we are still scratching the surface of complex trait

biology. Genetic variants may exhibit specificity for highly

circumscribed phenotypes but may also have pluripotent effects

on multiple phenotypes. Biological plausibility carries consider-

able uncertainty, as we discuss subsequently. An association

that fits to an additive dose–response model (biological gradient)

is not clearly more reliable than one that follows a recessive

model. Strength may still be relevant, but effects observed for

most emerging associations are small. Finally, consistency needs

to be redefined in the context of the genomic era.

In all, as the vast majority of associations currently have

small effect sizes their credibility may largely depend on the

success of control for errors and biases. Several journals have

policies or instructions regarding how they wish genetic

associations to be supported for publication, but these refer to

single studies and largely aim at screening the mass of data for

publication in these specific journals.12–18 The complete cred-

ibility picture should include evidence on data regardless of

their priority for publication. Moreover, some generic themes on

credibility in molecular epidemiology have been discussed,19 but

specifically operationalized criteria for genetic associations

require further consensus across methodologists.19

Following the initial meeting of the Network of Networks,20 a

Human Genome Epidemiology Network (HuGENet) Working

Group on the Assessment of Cumulative Evidence was

established. This group and a panel of experts in various

relevant disciplines met in Venice, Italy, on November 9–10,

2006 to discuss these issues and draft guidelines. The panel

discussed and assessed existing assessment schemes from other

fields, experiences of developing synopses of cumulative

evidence on diverse diseases, experiences of linking genetic

epidemiology with biological plausibility in acute, infectious

and chronic diseases, the new framework for causal inference

in the genome era, and methods for the efficient assessment of

quantity and quality of evidence.

In this report, we summarize the issues concerning the

epidemiological assessment of cumulative evidence in genetic

epidemiology for which consensus was attained as well as

others for which substantial lack of agreement still remains. We

propose interim guidelines for assessing the credibility of

genetic epidemiological evidence; and additional points to

consider on biological plausibility and the clinical (and public

health) importance and relevance. We view this as a pre-

liminary proposal that is likely to benefit from empirical

research and scrutiny from other scientists.

Epidemiological credibility
We consider the assessment of reported associations between

a specific phenotype and a specific genetic variant. The variant

could be a SNP, so that the data for each individual corres-

ponds to which of three genotypes they carry, or it could be a

haplotype or another type of polymorphism, such as a copy-

number polymorphism. A more complex evidence assessment

task arises when different studies use different data, for

example distinct but tightly-linked SNPs, or (subtly) different

phenotype definitions (Table 1).

The proposed assessment may be performed by any interested

researcher, as well as networks or consortia, and we encourage

its incorporation in systematic reviews and meta-analyses

(including synthesized replication data from genome-wide

association studies), where there is an opportunity for a

systematic view of the available evidence. Such a systematic

view may be a prerequisite for informed appraisal of the

amount, replication and protection from bias. It is also possible

that for a specific association, there may exist scattered studies,

meta-analyses of published data and prospective standardized

analyses by a consortium. In each case, one has to focus on the

highest level of available evidence.

Amount of evidence

Credibility is enhanced by a large amount of consistent

evidence; cumulatively, evidence may be large by virtue of

many studies, or by a more modest number of large studies.

A large amount of evidence is required to ensure adequate

power for detecting an association (if one is present) and

reaching more stringent levels of statistical significance, or

lower false-discovery rate.21 Large sample sizes tend to also

decrease the uncertainty in the magnitude of the observed

genetic effect.22 Larger studies may sometimes be performed by

more experienced groups and may also be less likely to be

affected by selective reporting biases than smaller studies, but

this is not guaranteed.23
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The effective amount of evidence depends on factors that

influence the power of the study to detect a true association,

namely the total sample size, the underlying genetic model of

the association, the frequency of the genetic variant of interest

and the magnitude of the association. Even though magnitudes

are likely to differ for different associations, most effect sizes

identified to- date cluster in a narrow range of odds ratios

(ORs) and are not reliably distinguishable from each other.

Therefore, considerations of the amount of evidence that take

also into account the exact magnitude of the effect are not very

reliable (although the observed effect may be important in

relationship to protection from bias, as discussed subsequently).

The power of a study is driven largely by the sample size of the

smallest genetic group of those contrasted. Thus, the size of the

smallest genetic group of those contrasted (nminor) is a simple,

but convenient, approach for assessing the amount of evidence

(irrespective of whether it shows an association).

With large effect sizes, smaller sample sizes may theoretically

suffice to reach extreme levels of statistical significance or

Bayes factors, but some of these large effects may be over-

estimates. Also, statistical significance may vary several

log depending on the genetic contrast, set of data analysed

(all, subgroups, different phenotypes), statistical model used,

assumptions of the model (e.g. incorporating or not modest

deviations in Hardy–Weinberg equilibrium), and—for

meta-analyses—the broader assumptions about the synthesis

of the evidence (fixed effects, random effects, fully Bayesian

models). The threshold of statistical significance or Bayes factor

required to claim replication for an association is discussed in

the Replication section subsequently.

The choice of an nminor threshold is unavoidably arbitrary. For

purely operational purposes, we propose a threshold of

nminor¼ 1000 to separate large-scale from moderate evidence

and 10-times less (nminor¼ 100) to separate moderate from little

evidence. Table 2 shows what nminor¼ 1000 means in diverse

circumstances of different effects (ORs) and frequencies of the

minor genetic group fminor. For !¼ 0.05, as might be required

in the independent replication of a proposed association

(excluding the discovery data that may be based on massive

testing of thousands of polymorphisms), the power remains

high for a wide range of effect sizes (OR 1.2–5) and frequencies

fminor (0.01–0.50). For an OR as low as 1.10 (probably close to

the limit of discriminating ability for observational epidemiol-

ogy), power is about 18–32%. Conversely, with nminor¼ 500,

there is major loss of power for odds ratios of 1.1–1.3, while

with nminor¼ 1500, the gain in power for odds ratios in the

whole range of 1.1–5.0 is relatively negligible compared with

nminor¼ 1000 (data not shown). We should note however that

for nminor¼ 1000, for !¼ 10�7 (the genome-wide significance

level for many current study designs,) power is steeply eroded

Table 1 Considerations for epidemiologic credibility in the assessment of cumulative evidence on genetic associations

Criteria Categories Proposed operationalization

Amount of evidence A: Large-scale evidence Thresholds may be defined based on sample size, power or false-
discovery rate considerations. The frequency of the genetic variant of
interest should be accounted for. As a simple rule, we suggest that
category A requires a sample size over 1000 (total number in cases
and controls assuming 1:1 ratio) evaluated in the least common
genetic group of interest; B corresponds to a sample size of 100–1000
evaluated in this group, and C corresponds to a sample size <100
evaluated in this group (see ‘Discussion’ section in the text and
Table 2 for further elaboration).a

B: Moderate amount of evidence

C: Little evidence

Replication A: Extensive replication including at least
one well-conducted meta-analysis with
little between-study inconsistency

Between-study inconsistency entails statistical considerations (e.g.
defined by metrics such as I2, where values of 50% and above are
considered large and values of 25–50% are considered moderate
inconsistency) and also epidemiological considerations for the
similarity/standardization or at least harmonization of phenotyping,
genotyping and analytical models across studies.
See ‘Discussion’ section in the text for the threshold (statistical or
others) required for claiming replication under different circum-
stances (e.g. with or without including the discovery data in
situations with massive testing of polymorphisms).

B: Well-conducted meta-analysis with
some methodological limitations or
moderate between-study inconsistency

C: No association; no independent replica-
tion; failed replication; scattered studies;
flawed meta-analysis or large
inconsistency

Protection from bias A: Bias, if at all present, could affect the
magnitude but probably not the
presence of the association

A prerequisite for A is that the bias due to phenotype measurement,
genotype measurement, confounding (population stratification) and
selective reporting (for meta-analyses) can be appraised as not being
high (as shown in detail in Table 3) plus there is no other
demonstrable bias in any other aspect of the design, analysis or
accumulation of the evidence that could invalidate the presence of
the proposed association. In category B, although no strong biases are
visible, there is no such assurance that major sources of bias have
been minimized or accounted for because information is missing on
how phenotyping, genotyping and confounding have been handled.
Given that occult bias can never be ruled out completely, note that
even in category A, we use the qualifier ‘probably’.

B: No obvious bias that may affect the
presence of the association but there is
considerable missing information on the
generation of evidence

C: Considerable potential for or demon-
strable bias that can affect even the
presence or absence of the association

aFor example, if the association pertains to the presence of homozygosity for a common variant and if the frequency of homozygosity is 3%, then category A

amount of evidence requires over 30 000 subjects and category B between 3000 and 30 000. The sample size refers to subjects when genotype contrasts are

used, and to alleles when alleles are contrasted.
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for ORs below 1.5 (Table 2). Thus, if the discovery data (testing

many thousands of polymorphisms) are included in the amount

of evidence, much higher sample sizes should be required to

claim large-scale evidence.

Replication

Credibility is enhanced when an association is found in different

studies (replication) and when the magnitude is consistent

across different study populations (homogeneity). Consistency

can be assessed with statistical tests or measures of hetero-

geneity,24 but qualitative aspects should also be considered.

The threshold of ‘replication’ is a matter of considerable

debate.4,25,26 The reader is referred to a recent excellent

workshop for more detailed coverage.25 In brief, with

genome-wide testing of hundreds of thousands of polymor-

phisms, many would argue that P-values at least<10�7 are

needed for main effects to be considered to even set strong

candidacy for further replication (provided biases can be

excluded, as discussed subsequently). Nevertheless, more

conventional thresholds of statistical significance (e.g.

P<0.05) may still be used appropriately for the replication

phase of a proposed association, if the discovery data are

excluded, the replication is limited to a specific polymorphism

and a specific model of association is analysed. However,

massive genome-wide testing may be performed increasingly by

several teams on the same phenotype and the combination of

these data may require again very stringent levels of statistical

significance for associations to be considered credible in joint

analyses. A Bayesian approach may be also used, with similar

considerations and specification of prior probabilities (in the

most simple approach Bayes factor¼ alpha/power4)

Lack of replication or between-study heterogeneity may signal

underlying errors and biases, including genotyping error,

phenotype misclassification, population stratification and selec-

tive reporting biases.22,27–29 Lack of replication in a different

study population does not necessarily refute the original reported

association. It may reflect different linkage disequilibrium

patterns across different populations, when the studied genetic

variant is not causal, or it may be due to population-specific

gene–gene epistasis, or gene–environment interactions.30,31 Lack

of precise comparability of the phenotype of interest may also

lead to inconsistent results across studies. Thus, heterogeneity

may point to genuine diversity in the genetic effect. Conversely,

lack of heterogeneity does not exclude bias and may even reflect

lack of independence in the replication process.32

Independence among studies in the replication process can

occur to different degrees. Independence is enhanced when

different teams of investigators test a proposed association

separately using different samples drawn from distinct popula-

tions. In this respect, simply splitting a single population

sample or the investigation of samples from different studies by

one team of investigators increases the risk that the same latent

biases (including, but not limited to population stratification

and systematic genotyping errors) may operate across see-

mingly replicate assessments.33 A split sample approach also

reduces power, unless the two parts are then reassembled in a

joint analysis.34 Extensive replication by totally independent,

even competing, teams of investigators may provide optimal

evidence of the credibility of a putative genetic association.

Protection from bias

Bias may be caused by factors that lead to systematic deviations

from the true effect of a genetic association. Biases may operate

at the level of a single study, a collection of studies (e.g. meta-

analysis), or a research field at large. They may arise in the

study design (including participant recruitment, retrospective or

prospective collection of DNA samples, and method of gather-

ing information on phenotypes, exposures and covariates),

DNA extraction method, production of genotype data, raw data

management, data processing, data analysis, reporting of

analyses, integration of studies through meta-analyses or

integration of meta-analyses into field synopses.28,29,35–39

Two potential sources of bias are particularly widely

recognized in genetic association analyses: population stratifi-

cation and genotyping error. The magnitude of population

Table 2 Power calculations for associations with nminor¼ 1000 for
various ORs and various frequencies of the minor genetic group (fminor)

a

OR fminor Power for a¼ 0.05 Power for a¼ 10�7

1.10 0.01 0.32 <0.001

1.20 0.01 0.82 0.007

1.30 0.01 0.98 0.12

1.50 0.01 1.00 0.83

2.00 0.01 1.00 1.00

5.00 0.01 1.00 1.00

1.10 0.05 0.31 <0.001

1.20 0.05 0.80 0.006

1.30 0.05 0.98 0.09

1.50 0.05 1.00 0.78

2.00 0.05 1.00 1.00

5.00 0.05 1.00 1.00

1.10 0.10 0.30 <0.001

1.20 0.10 0.78 0.005

1.30 0.10 0.97 0.74

1.50 0.10 1.00 1.00

2.00 0.10 1.00 1.00

5.00 0.10 1.00 1.00

1.10 0.25 0.25 <0.001

1.20 0.25 0.69 0.002

1.30 0.25 0.94 0.04

1.50 0.25 1.00 0.52

2.00 0.25 1.00 1.00

5.00 0.25 1.00 1.00

1.10 0.50 0.18 <0.001

1.20 0.50 0.51 <0.001

1.30 0.50 0.81 0.006

1.50 0.50 0.99 0.15

2.00 0.50 1.00 0.96

5.00 0.50 1.00 1.00

aAll calculations assume the same number of cases and controls; results are

relatively robust to modest deviations in the allocation ratio. The minor

genetic group is the smallest of the two groups contrasted and may have

been selected based on genotype or allele considerations.
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stratification effects remains a debated concern: they are

expected to be small in well-designed studies, but subtle effects

are always possible and can become relatively important when

large sample sizes permit the investigation of small true effect

sizes. Several statistical procedures are available to adjust for

population structure effects, such as genomic control40 and

methods based on principal components analysis.41

Because cases and controls are typically ascertained sepa-

rately, systematic genotyping error can have differential impact

on cases and controls even when genotyping is performed blind

to case–control status.28 Methods to assess genotyping quality

include blind replicate genotyping of some individuals, replicate

studies using different genotyping platforms and testing for

Hardy–Weinberg equilibrium, although this last method is not

specific. A high rate of missing genotypes is suggestive of poor

data quality, but a very low rate of missing genotypes can

reflect overly-permissive genotype calling and is not a guarantee

of high-quality genotype calls. Genotyping quality control

methods may include analysis of missing data, e.g. tests of

association between missing status and case–control phenotype

or excess homozygosity.

Different biases may sometimes mitigate or magnify each

other, according to whether or not they act in opposing

directions. Adequate protection from bias can be evaluated

when each level of evidence contributing to the putative

association can be scrutinized, and the likelihood, direction and

magnitude of bias that may affect the major conclusions about

the proposed genetic association can be assessed. A prerequisite

for this kind of assessment is the availability of information

concerning what was done at each step in the generation and

accumulation of the evidence. Increased transparency can be

achieved if detailed databases and protocols are publicly

available.42,43 and guidance on the reporting of genetic associa-

tion studies in the literature is established and adopted in the

field.44,45 However, even if single studies are conducted and

reported without bias and with full transparency, the cumulative

evidence may still be biased if availability of information is

driven by selective reporting or other publication biases.46,47

Such selection biases can be reduced by the establishment of

consortia of multiple teams that have explicit policies of

analysing all eligible data from all participating teams.48

Another approach is to encourage journals and investigators to

publish high-quality null results.49

For practical purposes, a major decision in the proposed

categorization is to distinguish biases that can affect only the

magnitude of an association, from those that can invalidate the

association. Table 3 lists some common biases (affecting single

studies or meta-analyses of many studies) and whether they

are likely to have such a major impact under different

circumstances, where efforts are made or not to control for

them. Whether bias can invalidate an association depends

implicitly also on the magnitude of the association, e.g. the OR.

Bias is more likely to create spurious small effects, although

totally uncontrolled, major bias can also generate large effects.

We, thus, also categorize the protection from bias for associa-

tions based on the observed effects. We consider that

Table 3 Typical biases and their typical impact on associations depending on the status of the evidence

Likelihood of bias to invalidate an observed association

Biases Status of the evidence Small OR <1.15 Typical OR 1.15–1.8 Large OR >1.8

Bias in phenotype definition Not reported what was done Unknown Unknown Unknown

Unclear phenotype definitions Possible/High Possible/High Possible/High

Clear widely agreed definitions of phenotypes Low/None Low/None Low/None

Efforts for retrospective harmonization Possible/High Low Low/None

Prospective standardization of phenotypes Low/None Low/None Low/None

Bias in genotyping Not reported what was done Unknown Unknown Unknown

No quality control checks Possible/High Low Low

Appropriate quality control checks Low Low Low/None

Population stratification Not reported what was done Unknown Unknown Unknown

Nothing donea Possible/High Possible/High Possible/High

Same descent groupb Possible/High Low Low/None

Adjustment for reported descent Possible/High Low Low/None

Family-based design Low/None Low/None Low/None

Genomic control, PCA or similar method Low/None Low/None Low/None

Selective reporting biases Meta-analysis of published data Possible/High Possible Possible

Retrospective efforts to include unpublished data Possible/High Possible Possible

Meta-analysis within consortium Low/None Low/None Low/None

Category decreases from A to B, if the ‘Unknown’ are considered to be a major issue for the appraisal of the evidence. Any ‘Possible/high’ item confers category

C status. ‘Possible’ (selective reporting biases for non-consortium/prospective meta-analysis) does not necessarily decrease the category grade (from A to C);

this may need to be appraised separately in each field and may be facilitated by using tests for selective reporting biases (tests for small-study effects and

excess of significant studies), although probably no test has high sensitivity and specificity for such biases. Clear demonstrable biases in other aspects of the

design, conduct and analysis of the evidence (besides the four aspects considered in this table) also result in shift to category C for protection from bias.
aIncluding groups of clearly different descent without consideration to this diversity.
bThe ethnic population structure may need to be considered also on a case-by-case basis.

OR, odds ratio; PCA, principal component analysis.
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investigators should assess biases in the four major aspects of a

genetic association: phenotype, genotype, population stratifica-

tion and (for meta-analyses) selective reporting. These cover the

two variables involved in the association, study-specific

confounding and field-wide bias. However, as we discussed

earlier, bias can lurk at any other step in the process, but we

suggest that unless bias in these steps is demonstrable, the

uncertainty about our ability to probe in detail all other biases

should not affect the practical categorization. Given that

unknown bias can never be ruled out completely, note that

even in category A we use the qualifier ‘probably’.

Combination of criteria—suggested guidance
and examples

Merging all considerations into a common credibility

grading scheme is not straightforward. Figure 1 is a preliminary

proposal for such a scheme for epidemiological credibility using

three categories: weak, moderate and strong cumulative

evidence for an association. However, it should be recognized

that overall grading of epidemiological evidence has been

difficult even in relatively straightforward questions, such as

the literature on the effectiveness of medical interventions.50,51

For example, there may not be consensus on whether there

could be some further sub-categorization of evidence, e.g.,

splitting the ‘strong’ category into ‘very strong’ (e.g. HLA in

type 1 diabetes) and merely ‘strong’; or splitting the ‘moderate’

category into two sub-categories.

Examples of application of the
epidemiological credibility criteria
to specific genetic associations
We show examples of the application of this scheme to recently

proposed associations in age-related macular degeneration and

obesity. The examples also show how credibility can change

over time for the same association and how credibility may

vary, as different phenotypes and study populations are studied

for the same genetic variant.

Example 1A

The association between the CFH Y420H variant and age-related

macular degeneration in populations of European descent was

identified by a genome-wide association study.52 A well-

conducted meta-analysis53 of 11 studies (n¼ 8991) shows a

summary OR of 2.49 and 6.15 for heterozygotes, and homo-

zygotes, respectively, without any clear between-study incon-

sistency in effect sizes or other heterogeneity among

populations of European descent. The association was also

replicated in a subsequent publication from the large Rotterdam

cohort (n¼ 5681).54 The H allele is very common in Caucasians

(e.g. 36.2%; i.e. n¼ 4116 in the Rotterdam cohort alone) and

therefore, the evidence easily passes the n¼ 1000 threshold for

category A of amount of evidence. There is no demonstrable

inconsistency across studies, therefore the replication category

is also A. Finally, the accumulated large-scale evidence is

transparent enough and meticulous to give reasonable assur-

ance that there is adequate protection from bias (category A).

The overall scheme is thus AAA, which results in a character-

ization as ‘strong’ evidence.

Example 1B

On the same Y420H variant, several studies on Asian popula-

tions find no significant association with age-related macular

degeneration.55,56 Asian populations have a different predomi-

nant form for age-related macular degeneration compared with

European populations (wet vs dry phenotype). The Y420H

variant is uncommon (�3%) in Asians, and all studies are

underpowered to find the OR seen in European populations. In

all six studies combined, the total frequency of the minor allele

is less than 1000, thus amount of evidence category is B.

Replication category is C (scattered studies without meta-

analysis). Protection from bias is B, since several aspects in the

reporting of these scattered studies are not fully transparent

and thus considerable bias cannot be excluded. The overall

schema is thus BCB, which results in a characterization as

‘weak’ evidence.

Example 2A

The association between rs7566605 (10 kb upstream of the

transcription start site of INSIG2) and obesity was found in a

genome-wide association study and it was replicated in a

recessive genetic model in another three of four populations in

the same publication in Science.57 Excluding the discovery

(genome-wide association screen) data, at the time of the

Science publication, the evidence from case–control designs

pertained to 9881 genotyped people, and the frequency of CC

homozyogote (the smallest genetic group) was n¼ 1040, with

some additional consistent evidence from a family-based study

(n¼ 368, of which n¼ 52 had the CC genotype). Therefore, the

amount of evidence category is A (more than 1000 subjects

genotyped in the smallest genetic group of those compared).

The replication category is B, because one of the populations

ACCABCAAC

ACBABBAAB

ACAABAAAA

CCCCBCCAC

CCBCBBCAB

CCACBACAA

BCCBBCBAC

BCBBBBBAB

BCABBABAA

First letter = amount
Second letter = replication
Third letter = protection from bias

Strong evidence

Moderate evidence

Weak evidence

Figure 1 Categories for the credibility of cumulative epidemiological
evidence. The three letters correspond (in order) to amount of evidence,
replication and protection from bias. Evidence is categorized as strong,
when there is A for all three items, and is categorized as weak when
there is a C for any of the three items. All other combinations are
categorized as moderate
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found no evidence of association, actually with a trend in

the opposite direction, and thus there is moderate between-

study inconsistency. The protection from bias category is A: this

was a well-conducted investigation with transparent reporting

of the designs of the constituent studies and prospective

meta-analysis (apparently no selective reporting). The overall

schema is thus ABA, which results in characterization as

‘moderate evidence’.

Example 2B

Several months later, a series of Technical Reports in Science58–60

presented evidence from three different teams of investigators

(total of seven study populations) that found absolutely no

association between the rs7566605 variant and obesity. The new

evidence pertained to over 21 000 genotyped individuals. Based

on the newer update, the amount of evidence is A (more than

1000), replication is C (failed replication), and protection from

bias is still A. The overall schema is thus ACA, which results in

characterization as ‘weak evidence’.

These examples also illustrate that the bar that we set for

‘strong’ evidence is quite high, and some further calibration

work would be useful. Moreover, even for an association that is

set at ‘strong evidence’, further work may lead to a change in

grading. Illustratively, for example 1A above, it is increasingly

recognized that there is extensive disequilibrium in the

implicated CFH region and it is not clear that Y420H is truly

causative or the only causative allele in the region. Conversely,

pursuing further associations that are likely to be false (‘weak’

credibility) may be a low priority when there are many

associations with higher credibility to pursue. However, we

acknowledge that the threshold of interest may vary between

researchers who try to find associations and explain what they

mean and those who try to make use of this knowledge for

practical purposes.

Stages of accumulation of evidence
across diverse fields
Different disease content areas of genetic epidemiology may

have attained different stages in the accumulation of evidence.

For most diseases, the currently available published evidence

consists of fewer than 100 studies of mostly single-gene, single-

disease assessments, one or a few meta-analyses, if any, and no

strong established consortia of investigators. Other fields may

already have many thousands of published (and unpublished)

studies, many meta-analyses of group-level data and even

several comprehensive rigorous consortia of investigators

utilizing the latest genome-wide technologies and combining

data (see selected examples in Table 4).

A detailed synopsis of the cumulative evidence can readily be

performed at the level of each single study in ‘early evidence’

fields such as pre-term birth and childhood leukaemia

(Table 4). For such fields, however, the cumulative evidence

is likely to be rated as insufficient until substantially more data

become available. Such a synopsis is mostly helpful not so

much to tell us exactly how insufficient the evidence is, but to

create a comprehensive basis upon which the field may expand

towards more credible evidence. This work can facilitate the

conduct of meta-analyses and HuGE reviews, the creation of

consortia, and improved organization of research in the field.48

Conversely, for fields where more evidence already exists (e.g.

type 2 diabetes, osteoporosis and cancer; Table 5), it may be

appropriate to ignore scattered studies of small sample size and

doubtful quality. Focusing on the stronger parts of the evidence

may suffice, e.g. data for associations where several studies

exist,61 or even better evidence exists from large-scale studies,

well-conducted meta-analyses and consortia with documented

adequate protection from bias.62–64 Synopses of the literature

may thus be a way to continuously raise the standards of

research in specific fields of human genome epidemiology.

An additional important issue is to quantify how credible

associations are likely to be. Even when there is strong

supporting evidence, it may still be difficult to assess whether

these associations are 60%, 80% or >99% likely to be true. One

empirical possibility is to continue testing in ever larger and

less-biased studies. Stopping rules in this field are an intriguing

consideration and need more discussion. In theory, replication

can be continued even for associations that have reached the

level of being assigned to strong evidence. Such open-ended

replication65 is not ethically prohibited, and it is unlikely to be

very expensive from the perspective of laboratory analysis, even

if very large sample sizes are contemplated, since relatively few

variants will likely reach the point of such testing. An

additional reason for continuing replication is the expected

heterogeneity of phenotype for most complex diseases and the

need to consider gene–gene and gene–environment interactions.

The main obstacle to this approach is the availability of

samples. By the time an association has reached the category

of strong evidence, then most if not all well-conducted studies

and consortia may have tested it already. One option is to

anticipate that such associations may be prospectively tested in

the very large biobanks66 and are expected to accumulate large

enough sample sizes for common disease events in the next few

decades.

Evolution of evidence
Any assessment of cumulative evidence is only temporary and

needs to be continuously refined, as new data are gathered.67

The evolution of the evidence over time may be of particular

interest. Genuine associations tested under protection from bias

are expected to fluctuate over time due to random error, and

may show some early diminution.68 However, the association

effects should eventually stabilize and remain virtually unal-

tered with further replication efforts. Associations due to bias

are expected to be discredited, sooner or later, with further

replication efforts. Finally, for some associations, genuine

variability in the existence and magnitude of associations

across populations may exist. Of particular note, in this respect,

are the well-known changes over time of exposure patterns,

such as diet and physical activity. These can influence gene–

environment interactions and thereby, hide and/or enhance

certain genetic associations. Thus, even with adequate protec-

tion from bias the strength of these associations may vary

across successive replications. In this case, the population

characteristics of each study sample and the biological support
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for these associations should be scrutinized again and redefined

in an effort to understand the sources of heterogeneity.

Given that the evolution of observed effects is likely to happen

in a narrow range of effect sizes, it may sometimes be difficult to

appreciate which of the three patterns is operating. Learning to

live with some uncertainty is thus unavoidable, but at a

minimum, we should be able to decipher the more reliable and

consistent associations from the less believable ones.

Biological evidence
By ‘biological’ evidence, we mean evidence as to the specific

function of a variant or associated gene, which may make it a

plausible candidate for association with the phenotype under

study. It includes whether a variant generates a synonymous,

non-synonymous, or nonsense amino acid change, or is located

in an exon, intron, splice site or regulatory region, as well as

information about conservation across species. Biological

evidence may also be gained from gene knock-out experiments

in model species, or gene expression microarray experiments.

Such experiments may be conducted specifically to examine a

postulated association, but substantial information about

known gene function is also recorded routinely in genome

annotation databases. The assessment of biological plausibility

of genetic associations is complex and a variety of sources of

relevant evidence is available. Some are limited to the study of

specific genes or diseases, while others may be more broadly

applicable.

In appraising evidence for biological plausibility, the strength

and consistency of biological effects, the amount of data, the

number of different lines of corroborating biological evidence,

and the relevance of the biological system to the phenotype

may be considered. For experimental data, additional points to

consider are the extent of replication (i.e. using the same type

of experiments vs. approximate corroboration with different

experimental methods), and whether there was protection from

bias.69 Given the diversity of potential biological evidence, it is

difficult to generalize on the relative importance of each piece

of experimental data in each disease and situation. Empirical

data on the concordance of biological and epidemiological

evidence may be useful,70–72 although it may be difficult to

construct a consistent algorithm that applies across different

complex diseases.

Unfortunately, given an imperfect knowledge base, the use of

this experimental and non-experimental evidence to support or

refute an association has been often misleading. For example,

associations have been proposed with considerable support for

synonymous SNPs, for SNPs in introns and for SNPs with no

clear functional role despite many attempts to elicit some

functional data. While part of this puzzle may be explained by

linkage disequilibrium of the identified SNPs with the culprit

ones, the biological relevance may be more difficult to ascertain

than has been supposed. The panel members do not advocate

that these lines of evidence be ignored. However, most

members felt that for common variants, non-epidemiological

evidence alone is unlikely to be sufficient to make an

association highly credible, if it is not already highly credible

on epidemiological grounds.

Clinical and public health importance
In addition to epidemiological credibility and biological plausi-

bility, it is important to assess the potential public health

impact and clinical relevance of genetic associations, but only

after the credibility of an association reaches a high level

(practical importance is unrelated to causality). The group did

not formulate a specific assessment scheme but proposed items

to consider in assessing clinical (and wider public health)

relevance and importance (as shown in Table 5). No categories

are provided for each item, because the empirical evidence-base

for the assessment of clinical relevance and importance of

specific associations is limited.

The attributable fraction due to a specific variant(s) depends

on the effect size and the frequency of the variant(s) of

interest; and is a direct measure of the population impact. For

quantitative traits, the proportion of variance explained may be

Table 4 Variation in the volume of human genome epidemiology evidence for selected diseases, 2001–6a

Disease Papers
Genes
studied

Meta-analyses
(HuGE reviews) Investigators Consortia

Type 2 diabetes 2246 555 56 (7) 9320 Established

Breast cancer 1020 275 24 (3) 4499 Established

Osteoporosisb 503 128 11 (2) 2041 Established

Pre-term birthc 176 112 1 (1) 855 Emerging

Childhood leukaemia 102 76 1 (1) 668 Emerging

aData from the HuGE published literature database run November 27, 2006; does not include data on genome-wide associations that started appearing for

some of these phenotypes (e.g. type 2 diabetes or breast cancer) in early 2007.
bIncludes studies on bone mineral density.
cIncludes studies on gestational age.

Table 5 Considerations for assessment of clinical and public health
relevance and importance of genetic associations

Magnitude of effect
Effect size
Frequency of genetic variant in population

Clinical and public health importance
Type of phenotype: biological, endophenoype and hard clinical
outcome
Disease burden: incidence, severity and mortality
Interaction with identified modifiable environmental exposures
Potential to prevent disease through intervention (e.g. through
Mendelian randomization insights)
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considered. However, the cumulative impact of many variants

on the same phenotype needs further empirical study with

large-scale data.73

For many common genetic variants that are involved in

regulation of transcription and protein levels,74 the end-effects

on clinically meaningful outcomes may be minimal or absent.

Even for clinical phenotypes, the severity of disease may vary

substantially.75 The importance of an association may also be

related to whether there are identified interactions with

modifiable strong environmental risk factors or whether it

can point to modifiable acquired exposures, e.g. through

Mendelian randomization.76 Deciphering and quantifying inter-

action effects may be difficult, however, given that misclassi-

fication error tends to be larger for environmental exposures

than for genotypes.

Effect size requires a special note about whether it also

influences the credibility of an association. As discussed earlier,

biases more easily generate spurious small effects rather than

large effects. From the perspective of gaining insights

into disease pathogenesis, any effect, regardless how small,

may provide useful information. Moreover, current evidence

suggests that, with few notable exceptions, most genetic

associations of common genetic variants with common complex

diseases have small effect sizes, typically less than 1.3 in the

OR scale.77–83

Small main effects may be associated with considerably

larger effects when considered in gene–gene and gene–

environment interactions. Moreover, traditional epidemiology

has struggled with the discriminating ability of its analytical

tools. Different views have been expressed, ranging from the

claim that epidemiology should abandon all efforts to dissect

OR below 2,84 to claims that even ORs below 1.1 are

measurable and potentially credible, if the evidence has been

otherwise strong.85 The debate becomes very pertinent for

genetic associations, where ORs of 1.1 or smaller may be

common for main effects. There is no consensus on whether

there is a cap of maximal credibility that cannot be exceeded

for small effects, even under the best circumstances. Credibility

is important to assess even for small effects that have no

clinical importance, since they may still be useful for under-

standing biology and etiology.

Combining epidemiologic credibility,
biological plausibility and clinical
importance
While the panel managed to reach consensus on the

grading scheme for epidemiologic evidence (Tables 1 and 3),

the panel did not agree on similarly detailed guidance for rating

biological plausibility and clinical relevance. More work is

clearly needed to examine if this is feasible.

Weakly credible epidemiological evidence does not merit an

in-depth evaluation of biological plausibility or clinical rele-

vance, although it is arguable that if very strong biological

plausibility exists, the question would merit more study.

Associations with moderate epidemiological credibility deserve

more study and additional biological and clinical assessment.

Those with strong epidemiological credibility may also require

active pursuit of understanding the details of biological

pathways and also whether this information can usefully be

applied for clinical and public health benefits.

The HuGENet network of investigator networks is conduct-

ing pilot studies on a few selected diseases to assess and

calibrate the proposed preliminary guidelines. These efforts will

also be useful in developing a template for online field

synopses on genetic associations that could become part of an

updatable encyclopedia on genetic variation and human

diseases and to refine the criteria outlined here and their

combination in an overall assessment of the evidence. Given

that human genome epidemiology is a rapidly moving

field, we encourage investigators in different fields to use,

experiment and adapt these guidelines for specific diseases.

Such an endeavour is essential in making sense of the

anticipated explosion of genetic information in the coming

years.
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KEY MESSAGES

� We used a consensus process to develop guidance criteria for assessing cumulative epidemiological evidence in genetic

associations.

� The criteria assign three levels for the amount of evidence, extent of replication and protection from bias.

� A composite assessment results in categories of ‘strong’, ‘moderate’ or ‘weak’ epidemiological credibility.
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