Implementing PAT – Industry Example

David Radspinner, Ph.D.

Drug Product PAT Leader

Industrial Affairs

Aventis (a member of the sanofi aventis group)

RPS/FDA Meeting, London – 14 December, 2004

Summary

- Why did Aventis pursue PAT?
 - How does Aventis see PAT?
- What is our PAT Pilot?

- What are the opportunities in PAT?
 - Personal Learnings

Background – The PAT Journey at Aventis

- **2000 Integration of HMR and RPR.**
- **2001 Fixing broken processes.**
 - Trying to fix manufacturing processes without knowing the science behind it.

2001 – Industrial Operations strategy identified and agreed

- Need an opportunity to improve manufacturing processes.
- Industrial Excellence roadmap identified.
- Process robustness and statistical evaluation of finished product quality attributes.

2002 – PAT not well defined.

- October 2002: decision to proceed as Strategic Initiative and to engage with FDA.
- Create environment conducive to mentality change.

Strategic Initiatives Create Winning Performances

PAT Environment

Strategic motivation – achieve measurable business results

- Integral to Manufacturing Excellence
- Priority supported by top Industrial Operations Management
- Six Sigma mentality Process Robustness
- History of new product transfers through multifunctional Tech Transfer Teams
 - **External partnerships CAMP**

Pilot Objectives

Demonstrate ability and establish capabilities - industrial scale

- **Understand what it takes**
 - competencies needed
 - connect multiple functions
 - Iearning what needs to be addressed

Pilot regulatory strategies

What is PAT? – Aventis View

Pilot Approach

Go for high impact and high probability of success

- Select a 'safe and robust pilot process'
- High volume, large number of batches

Focus on whole process

Integration of API and DP as a seamless process

Allow time

Options for Introducing PAT

A. Currently marketed "robust" products. PAT to improve efficiency (minimal improvement in quality assurance)* IO Pilot

B. Currently marketed products that need improvement. Step-wise PAT approach -First improve quality and then improve efficiency

C. New products. PAT utilized throughout development and scale-up. Lab based tests to ensure shelf-life and/or for establishing "public standards".

* Note that a step-by-step approach, one unit operation at a time similar to option B, is also an option.

Organization and Structure

Driven by top-management

- Head of Quality is the sponsor
- Industrial Operations in leading role
- R&D involvement with longer time window
- Dedicated PAT Strategic Initiative leader
 - "Make it happen" multifunctional approach, focus existing approaches, work with site organization, etc.

Work with the Manufacturing Sites

Team building

Key expertises – chemometry, computer systems, control systems, process etc.

Establish infrastructure

- Scale-down lab (API) ~ transfer scenario
- Lab /DP (scale-down possibilities) ~ work directly integrated in manufacturing

Global co-ordination – consistent approaches, define rules

Site functions support

An Example of Tablet Manufacturing – Current State

Fixed process conditions

Limited confirmation of quality during processing

Limited sample sizes

An Example of Tablet Manufacturing – Through PAT

With real-time analysis

- Rapid information
- Useful for process control
- Potential to adjust the process to achieve target quality and reduce variation
- Replace costly, time consuming off-line, laboratory based testing

Links between API and DP

Focus on physical properties is a core element of PAT

Look on API physical quality attributes

What was the reason to set specs as they are ?

Look on drug product performance specifications

- Processability
- Operator's observations

Design measurements capable of taking up relevant parameters

Learn from data \rightarrow correlation & evaluation

Built understanding how parameters are interrelated

At-line Raw Materials Evaluation at Dispensing

On-line Moisture Monitoring – Drying

Example Drying Curves via NIR

On-line Blending and Lubrication Monitoring and Control

Wireless NIR Blend Monitor

AOTF NIR Battery Operated Wireless **Real-time transfer** of spectra to host PC **Mounted off-axis** in conservative location

> NIR beam focused through sapphire viewport

Blend Monitoring – Full Scale Batch Example

At-Line Tablet Analysis - Compression

Position in Batch atline

Working with FDA

Shared vision - 'partnership' for common good

Building trust and mutual understanding

Communication non-inspectional but science and technology based

Communication to assure consistent views

- relentlessly open
- had to be learned regulatory, science
- Concerns ... legal ...

FDA Dialogue Chronology

Q3/Q4 2002 - PAT laboratories organization defined and pilot projects selected

January 2003 – Project kick-off meeting

May 2003

- Full project presentation to FDA (Rockville, MD)
- PATRIOT member visits API PAT laboratory

July 2003

- PAT team staffing completed
- Investment capital approved

August 2003 – Follow-up with PATRIOT

FDA Dialogue Chronology (cont')

September 2003 – FDA PAT Guidance draft

- Q4 2003 to Q1 2004 Ongoing review and adjustment of project detail plans based on early learnings and shifts in FDA guidance
- November 2003 to July 2004 Aventis shares several draft CP versions with PATRIOT
- August 2004 FDA pre-operational site visits
- October PAT CP submission

FDA Pre-Operational Visit (POV)

Tablet manufacturing and API production

FDA visit team

- Rebecca Rodriguez, Office of Regulatory Affairs/SJN-DO (Inspector)
- Albinus D'Sa, CDER (Compliance Officer)
- Vibhakar Shah, CDER (Reviewer)
- **KC District Representative (DP Only)**

FDA POV - Aventis Objectives

Building confidence on PAT implementation approach.

- Confirm a consistent understanding (science, technology, regulatory).
- Understand submission and approval process.
- Discuss future quality system adaptations.
 - **Establish communication mechanism.**

FDA POV - Scope

Science and technology.

- Measurement systems, models for data assessment, etc.
- Implementation / industrialization aspects.
 - Data architecture and software, vendor issues, etc.
- Thought processes, rationales.
 - Process Understanding, risk evaluation, etc.

Approaches.

Measurement system performance verification, etc.

FDA POV - Approach

Approach, focus, and style \rightarrow 'new way'

- Process Understanding → learnings, rationales, approaches, and processes.
- Not inspectional science & technology , and rationales that support quality decisions
- Comparability Protocol details, filing mechanism

Building trust / reciprocal - mutual understanding of needs

Comparability Protocol

How to convey Process Understanding ?

When to submit ?

- Draft documents during all project stages
- Final CP reflects deployment stage (systems operable on industrial scale)
- Content
 - Project status and rationales
 - Plan for remaining steps up to complete implementation
 - A scientific document not a 'normal CP'

'Comparability' – Scope and Focus

Measurement and sampling systems,

Models and data systems to evaluate, store, and retrieve data,

Enhanced understanding of processes

- variabilities and their impact on processability and critical quality attributes,
- correlation and causation with processability and critical quality attributes between drug product and API quality parameters

Process monitoring and control strategies.

Conclusion

Positive work with FDA

- Dialogue focussed on science and technology not inspectional.
- **Need to rethink approaches**
 - **Quality systems, e.g. validation**
 - QA/QC tasks and deployment

Learnings

Things I would do the same again...

- Think outside the box
- Drive from factory floor
- Don't go in with any assumptions
- Be relentless
- Things I would do differently...
 - Deploy more rapidly
 - Evaluate historical data in greater depth prior to initiating project
 - Push more activities to vendors (custom code)

Acknowledgements

- Gerd Fischer Global PAT Leader
- Gerhard Korb PAT API Leader

Ferdinando Aspesi Senior Vice President, Global Quality Operations & EHS

The PAT Groups Kansas City Frankfurt

"The reasonable man adapts himself to the world; the unreasonable one persists in trying to adapt the world to himself. Therefore, all progress depends on the unreasonable man."

George Bernard Shaw

Irish dramatist & socialist (1856 - 1950)

