
SAND92-2291
Unlimited Release

Printed December 1992
Updated March 17, 1997

APREPRO:
An Algebraic Preprocessor
for Parameterizing Finite

Element Analyses

Gregory D. Sjaardema
Solid and Structural Mechanics Department

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

Aprepro is an algebraic preprocessor that reads a file containing both general
text and algebraic, string, or conditional expressions. It interprets the expres-
sions and outputs them to the output file along with the general text. The syntax
used inAprepro is such that all expressions between the delimiters{ and} are
evaluated and all other text is simply echoed to the output file.Aprepro con-
tains several mathematical functions, string functions, and flow control con-
structs. In addition, functions are included that, with some additional files,
implement a units conversion system and a material database lookup system.
Aprepro was written primarily to simplify the preparation of parameterized in-
put files for finite element analyses at Sandia National Laboratories; however,
it can process any text file that does not use the characters{ } .

Distribution
Category UC-705

Intentionally Left Blank
4

9
3
3
14
14
14
15
7
9
9

21
2
5
5
6
28
0
3
3
5

35
7
8

43
3

44
4

45
45
49
1

Contents

1 Introduction .. 7
2 Syntax ..
3 Operators .. 1

3.1 Arithmetic Operators .. 1
3.2 Assignment Operators ...
3.3 Relational Operators ...
3.4 Boolean Operators ..
3.5 String Operators ..

4 Predefined Variables .. 1
5 Functions ... 1

5.1 Mathematical Functions .. 1
5.2 String Functions ..
5.3 Additional Functions ... 2

6 Units Conversion System ... 2
6.1 Introduction ... 2
6.2 Units Conversion Implementation .. 2
6.3 Usage ...
6.4 Additional Comments ... 3

7 Material Database Access System .. 3
7.1 Overview of the MATS System .. 3
7.2 Implementation of the Material Database Access Routines 3
7.3 Code Template Files: ..
7.4 Material Files: ... 3
7.5 Additional Comments ... 3

8 Error, Warning, and Informational Messages .. 41
9 Examples ...

9.1 Mesh Generation Input File .. 4
9.2 Macro Examples ...
9.3 Command Line Variable Assignment ... 4
9.4 Loop Example ...
9.5 Units and Material Database Access Example ...

10 References ...
A Execution ... 5
B Unit System Defined Variables ... 53
5

 Tables

Table 1. Arithmetic Operators ...13
Table 2. Assignment Operators..14
Table 3. Relational Operators ..14
Table 4. Logical Operators...15
Table 5. Predefined Variables..17
Table 6. Effect of various output format specifications.....................................17
Table 7. Mathematical Functions...19
Table 8: Units Systems and Corresponding Output Format--Metric25
Table 9: Units Systems and Corresponding Output Format--English26
Table 10: Defined Units Variables...53

Figures

Figure 1. Schematic of Proposed MATS Database System34
6

d alge-
 of the
he
. For

 in

iles for

outines

ny file

te
on of
d
Sun

,

1 Introduction

Aprepro is an algebraic preprocessor that reads a file containing both general text an
braic expressions. It echoes the general text to the output file, along with the results
algebraic expressions. The syntax used inAprepro is such that all expressions between t
delimiters{ and} are evaluated and all other text is simply echoed to the output file
example, if the following lines are input toAprepro

 $ Rad = {Rad = 12.0}
 Point 1 {x1 = Rad * sind(30.)} {y1 = Rad * cosd(30.)}
 Point 2 {x1 + 10.0} {y1}

The output would look like:
 $ Rad = 12
 Point 1 6 10.39230485
 Point 2 16 10.39230485

In this example, the algebraic expressions are specified by surrounding them with{ and} ,
and the functionssind() andcosd() calculate the sine and cosine of an angle given
degrees.

Aprepro has been used extensively in the past two years to prepare parameterized f
finite element analyses using the Sandia National Laboratories SEACAS system1. The
recent addition of the units conversion capability and the material database access r
have greatly increased the usability ofAprepro. Aprepro can also be used for non-finite
element applications such as a powerful calculator and a general text processor for a
that does not use the delimiters{ and} .

Aprepro is written in the C language. TheBISON2 andFLEX3 programs are used to genera
the parsing and lexical analysis subroutines, respectively. The initial implementati
Aprepro was based on themfcalc example in theBISON manual. Aprepro has been porte
to severalUNIX systems including Hewlett Packard HP-UX, Cray Research Unicos,
Microsystems SunOS, Tenon MachTen, Digital Equipment Ultrix; and to non-UNIX
systems including VAX VMS, Macintosh, and Amiga.

The remainder of this document is organized as follows:

• Section 2 documents the syntax recognized byAprepro,

• Sections 3, 4, and 5 describe the operators, predefined variables, and functions

• Section 6 describes the units conversion system,

• Section 7 describes the material database support routines,

• Section 8 describes the error messages output fromAprepro, and

• Section 9 presents some examples ofAprepro usage.

• Appendix A documents the command line options forAprepro, and

• Appendix B lists the defined units abbreviations.
7

Intentionally Left Blank
8

pars-
 If it

 suc-
prints

ors,

s
s.

s

-

er
d

.

e

e-
2 Syntax

Aprepro is in one of two states while it is processing an input file, either echoing or
ing. In theechoing state,Aprepro echoes every character that it reads to the output file.
reads the character{ , it enters theparsing state. In the parsing state,Aprepro reads charac-
ters from the input file and identifies the characters as tokens which can befunction names,
variables, numbers, operators, or delimiters. WhenAprepro encounters the character} , it
tries to interpret the tokens as an algebraic, string, or conditional expression; if it is
cessful, it prints the value to the output file; if it cannot evaluate the expression, it
the message:

Aprepro: ERR: parse error (filename , line line#)

to the terminal* and prints the value 0 to the output file.

The rules thatAprepro uses when identifying functions, variables, numbers, operat
delimiters, and expressions are described below:

• Functions: Function names are sequences of letters and digits and underscore
(_) that begin with a letter. The function’s arguments are enclosed in parenthese
For example, in the lineatan2(a,1.0) , atan2 is the function name, anda and
1.0 are the arguments. See section 5 on page 19 for a list of the available function
and their arguments.

• Variables: A variable is a name that references a numeric or string value. A vari-
able is defined by giving it a name and assigning it a value. For example, the ex
pressiona = 1.0 defines the variablea with the numeric value1.0 ; the expres-
sion b= "A string" defines the variableb with the value"A string" . Variable
names are sequences of letters, digits, and underscores (_) that begin with eith
a letter or an underscore. Variable names cannot match any function name an
they are case-sensitive, that is,abc_de and AbC_dE are two distinct variable
names. A few variables are predefined, these are listed in section 4 on page 17

Any variable that is not defined is equal to 0. A warning message is output to th
terminal if an undefined variable is used, or if a previously defined variable is
redefined†.

• Numbers : Numbers can be integers like1234 , decimal numbers like1.234 , or in
scientific notation like1.234E-26 . All numbers are stored internally as floating
point numbers.

• Strings: Strings are sequences of numbers, characters, and symbols that are d
limited by either single quotes (’this is a string’) or double quotes ("this

is another string"). Strings that are delimited by one type of quote can include

* Error messages are printed to standard error. OnUNIX systems they can be redirected to a file
using your shells redirection syntax. See the man page for your shell for more information.

† If the variable name begins with an underscore, no warning is output when the variable is
redefined. Warnings can be turned off with the-W or +warning option.
9

.

-

c-

t

g

.
x-
d

the other type of quote. For example,{’This is a valid "string"’} . Strings
delimited by single quotes can span multiple lines; strings delimited by double
quotes must terminate on a single line or a parsing error message will be issued

• Operators: Operators are any of the symbols defined in section 3 on page 13. Ex
amples are + (addition), - (subtraction), * (multiplication), / (division), = (assign-
ment), and ^ (exponentiation)

• Delimiters: The delimiters recognized byAprepro are: the comma (,) which sep-
arates arguments in function lists, the left curly brace ({) which begins an expres-
sion, the right curly brace (}) which ends an expression, the left parenthesis(
which begins a function argument list, the right parenthesis) which ends a func-
tion argument list, the single quote (’) which delimits a multi-line string, and the
double quote (") which delimits a single-line string.

• Expressions: An expression consists of any combination of numeric and string
constants, variables, operators, and functions. Four types of expressions are re
ognized inAprepro: algebraic, string, relational, and conditional.

• Algebraic Expressions: Almost any validFORTRAN or C algebraic expression
can be recognized and evaluated byAprepro. An expression of the forma=b+10/

37.5 will evaluate the expression on the right-hand-side of the equals sign, prin
the value to the output file, and assign the value to the variablea. An expression
of the formb+10/37.5 will evaluate the expression and print the value to the out-
put file. If you want to assign a value to a variable without printing the result, the
expression must be inside anECHO(ON|OFF) block (see page 23). Variables can
also be set on the command line prior to reading any input files using the
’var=val’ syntax. An example of this usage is given in section 9.2 on page 44.
Only a single expression is allowed within the{ } delimiters. For example,{x =

sqrt(y^2 + sin(z))} , {x=y=z} , and{x=y} {a=z} are valid expressions, but
{x=y a=z} is invalid because it contains two expressions within a single set of
delimiters.

• String Expressions : Aprepro has very limited string support. The only supported
operations are assigning a variable equal to a string (a = "This is a string")
or a function that returns a string, and concatenating two strings into another strin
(a = "Hello" // " " // "World").

• Relational Expressions: Relational expressions are expressions that return the re-
sult of comparing two expressions. A relational expression is either true or false
Relational expressions can only be used on the left-hand side of a conditional e
pression. A relational expression is simply two expressions of any kind separate
by a relational operator (See “Relational Operators” on page 14.)

• Conditional Expressions : Aprepro recognizes a conditional expression of the
form:

relational_expression ? true_exp : false_exp

whererelational_expression can be any valid relational expression, andtrue_exp
10

andfalse_exp are two algebraic expressions. If the relational expression is true,
then the result oftrue_exp is returned, otherwise the result offalse_exp is
returned. For example, if the following command were entered:

a = (sind(20.0) > cosd(20.0) ? 1 : -1)

then,a would be assigned the value -1 since the relational expression to the left
of the question mark is false. Bothtrue_exp andfalse_exp are always evaluated
prior to evaluating the relational expression. Therefore, you should not write an
equation such as

sind(20.0*a)>cosd(20.0*a) ? a=sind(20.0) : a=cosd(20.0)

since the value ofa can change during the evaluation of the expression. Instead,
this equation should be written as:

a = (sind(20.0*a)>cosd(20.0*a) ? sind(20.0) : cosd(20.0))
11

12

 below
order in

ause
 listed

mple

braic
nt and

ent or

tors
e. For

r value
e

3 Operators

The operators recognized byAprepro are listed below. The lettersa andb can represent
variables, numbers, functions, or expressions unless otherwise noted. The tables
also list the precedence and associativity of the operators. Precedence defines the
which operations should be performed. For example, in the expression:

3 * 4 + 6 / 2

the multiplications and divisions are performed first, followed by the addition bec
multiplication and division have higher precedence than addition. The precedence is
from 1 to 14 with 1 being the lowest precedence and 14 being the highest.

Associativity defines which side of the expressions should be simplified first. For exa
the expression:3 + 4 + 5 would be evaluated as(3 + 4) + 5 for left associativity, the
expressiona = b / c would be evaluated asa = (b / c) for right associativity.

3.1 Arithmetic Operators

Arithmetic operators combine two or more algebraic expressions into a single alge
expression. These have obvious meanings except for the pre- and post- increme

decrement operators. The pre-increment and pre-decrement operators first increm
decrement the value of the variable and then return the value. For example, ifa = 1 , then
b=++a will set bothb anda equal to2. The post-increment and post-decrement opera
first return the value of the variable and then increment or decrement the variabl
example, ifa = 1 , thenb=a++ will setb equal to1 anda equal to2. The modulus operator
% calculates the integer remainder. That is both expressions are truncated an intege
and then the remainder calculated. See thefmod function in section 5.1 on page 19 for th

Table 1. Arithmetic Operators

 Syntax Description Precedence Associativity

a+b Addition 9 left

a-b Subtraction 9 left

a*b, a~b Multiplication 10 left

a/b Division 10 left

a^b, a**b Exponentiation. 12 right

a%b Modulus, (remainder) 10 left

++a, a++ Pre- and Post-increment a 13 left

--a, a-- Pre- and Post-decrement a. 13 left
13

r
 6 on

e alge-
riables

xpres-
ark (

tional
calculation of the floating point remainder. The tilde character~ is used as a synonym fo
multiplication to improve the aesthetics of the unit conversion system (see section
page 25). It is more natural for some users to type12~metre than12*metre .

3.2 Assignment Operators

Assignment operators combine a variable and an algebraic expression into a singl
braic expression, and also set the variable equal to the algebraic expression. Only va
can be specified on the left-hand-side of the equal sign.

3.3 Relational Operators

Relational operators combine two algebraic expressions into a single relational e
sion. Relational expressions and operators can only be used before the question m?)
in a conditional expression.

3.4 Boolean Operators

Boolean operators combine one or more relational expressions into a single rela
expression. Ifla andlb are two relational expressions, then:

Table 2. Assignment Operators

Syntax Description Precedence Associativity

a=b The value of ’a’ is set equal to ’b’ 1 right

a+=b The value of ‘a‘ is set equal to a + b 2 right

a-=b The value of ‘a‘ is set equal to a - b 2 right

a*=b The value of ‘a‘ is set equal to a * b 3 right

a/=b The value of ‘a‘ is set equal to a / b 3 right

a^=b The value of ‘a‘ is set equal to 4 right

a**=b The value of ‘a‘ is set equal to 4 right

Table 3. Relational Operators

Syntax Description Precedence Associativity

a < b true if ‘a‘ is less than ‘b‘ 8 left

a > b true if ‘a‘ is greater than ‘b‘ 8 left

a <= b true if ‘a‘ is less than or equal to ‘b‘ 8 left

a >= b true if ‘a‘ is greater than or equal to ‘b‘ 8 left

a == b true if ‘a‘ is equal to ‘b‘ 8 left

a != b true if ‘a‘ is not equal to ‘b‘ 8 left

a
b

ab
14

noted

ity.
3.5 String Operators

The only supported string operator at this time is string concatenation which is de
by // . If a = "Hello" andb = "World" , then:

c = a // " " // b

setsc equal to"Hello World". Concatenation has precedence 14 and left associativ

Table 4. Logical Operators

Syntax Description Precedence Associativity

la || lb true if either ‘la‘ or ‘lb‘ are true. 6 left

la && lb true if both ‘la‘ and ‘lb‘ are true. 7 left

!la true if ‘la‘ is false. 11 left
15

16

e

fined
ing an

bers.
(%d),
ros
n the
4 Predefined Variables

A few commonly used variables are predefined inAprepro. These are listed below. Th
default output format is specified as aC language format string, see yourC language docu-
mentation for more information. The default format and comment variables are de
with a leading underscore in their name so they can be redefined without generat
error message.

Note that the output format is used to output both integers and floating point num
Therefore, it should use the %g format descriptor which will use either the decimal
exponential (%e), or float (%f) format, whichever is shorter, with insignificant ze
suppressed. The table below illustrates the effect of different format specifications o
output of the variablePI and the value 1.0 . See the documentation of yourC compiler for
more information. For most cases, the default value is sufficient.

1The euler-mascheroni constant is defined as the limit of as s
approaches infinity.

Table 5. Predefined Variables

Name Value Description

PI 3.14159265358979323846

PI_2 1.57079632679489661923

SQRT2 1.41421356237309504880

DEG 57.2957795130823208768 degrees per radian

RAD 0.01745329251994329576 radians per degree

E 2.71828182845904523536 base of natural logarithm

GAMMA 0.57721566490153286060 euler-mascheroni constant1

PHI 1.61803398874989484820 golden ratio

VERSION Varies, string value current version of Aprepro

_FORMAT "%.10g" default output format

C "$" default comment character

Table 6. Effect of various output format specifications

Format PI Output 1.0 Output

%.10g 3.141592654 1

%.10e 3.1415926536e+00 1.0000000000e+00

%.10f 3.1415926536 1.0000000000

π

π 2⁄

2

180 π⁄

π 180⁄

1 1
2
--- … 1

s
--- slog–+ + +

5 1+() 2⁄
17

ad the
mment

 the
The comment character should be set to the character that the program which will re
processed file uses as a comment character. The default value of "$" is the co
character used by the SEACAS codes at Sandia National Laboratories. The-c command
line option* automatically changes the value of the comment variable to match
character specified on the command line.

* See appendix A on page 51.

%.10d 1413754136 0000000000

Table 6. Effect of various output format specifications

Format PI Output 1.0 Output
18

 argu-
5 Functions

Several mathematical and string functions are implemented inAprepro. To cause a func-
tion to be used, you enter the name of the function followed by a list of zero or more
ments in parentheses. For example

sqrt(min(a,b*3))

uses the two functionssqrt() andmin() . The argumentsa andb*3 are passed tomin() .
The result is then passed as an argument tosqrt() . The functions inAprepro are listed
below along with the number of arguments and a short description of their effect.

5.1 Mathematical Functions

The following mathematical functions are available inAprepro.

Table 7. Mathematical Functions

Syntax Description

 abs(x) Calculates the absolute value of x.

 acos(x) Calculates the inverse cosine of x, returns radians

 acosd(x) Calculates the inverse cosine of x, returns degrees

 acosh(x) Calculates the inverse hyperbolic cosine of x

 asin(x) Calculates the inverse sine of x, returns radians

 asind(x) Calculates the inverse sine of x, returns degrees

 asinh(x) Calculates the inverse hyperbolic sine of x

 atan(x) Calculates the inverse tangent of x, returns radians

 atan2(y,x) Calculates the inverse tangent of y/x, returns radians

 atan2d(x) Calculates the inverse tangent of x, returns degrees

 atand(y,x) Calculates the inverse tangent of y/x, returns degrees

 atanh(x) Calculates the inverse hyperbolic tangent of x

 ceil(x) Calculates the smallest integer not less than x

 cos(x) Calculate the cosine of x, with x in radians

 cosd(x) Calculate the cosine of x, with x in degrees

 cosh(x) Calculates the hyperbolic cosine of x

 d2r(x) Converts degrees to radians.

 dim(x,y) Calculates x - min(x,y).

 dist(x1,y1, x2,y2) Calculates

x

x1 x2–()2
y1 y2–()2

+()
19

 exp(x) Calculates (Exponential)

 floor(x) Calculates the largest integer not greater than x.

 fmod(x,y) Calculates the floating-point remainder of x/y.

 hypot(x,y) Calculates

 int(x), [x] Calculates the integer part of x truncated toward 0.

 lgamma(x) Calculates

 ln(x), log(x) Calculates the natural (base e) logarithm of x.

 logp1(x) Calculates log(1+x)

 log10(x) Calculates the base 10 logarithm of x.

 max(x,y) Calculates the maximum of x and y.

 min(x,y) Calculates the minimum of x and y.

 polarX(r,a) Calculates , a is in degrees

 polarY(r,a) Calculates , a is in degrees

 r2d(x) Converts radians to degrees.

 rand(xl,xh) Calculates a random number between xl and xh.

 sign(x,y) Calculates

 sin(x) Calculates the sine of x, with x in radians.

 sind(x) Calculates the sine of x, with x in degrees.

 sinh(x) Calculates the hyperbolic sine of x

 sqrt(x) Calculates the square root of x.

 tan(x) Calculates the tangent of x, with x in radians.

 tand(x) Calculates the tangent of x, with x in radians.

 tanh(x) Calculates the hyperbolic tangent of x.

 julday(mm, dd, yy) Calculates the julian day corresponding to mm/dd/yy.

 juldayhms(mm, dd, yy,
hh, mm, ss)

Calculates the julian day corresponding to mm/dd/yy at
hh:mm:ss

 Vangle(x1,y1, x2,y2) Calculates the angle between the vector and
. returns radians.

 Vangled(x1,y1, x2,y2) Calculates the angle between the vector and
. returns degrees.

Table 7. Mathematical Functions

Syntax Description

e
x

x
2

y
2

+

Γ x()()log

r a()cos×

r a()sin×

x y()sgn×

x1î y1 ĵ+
x2î y2 ĵ+

x1î y1 ĵ+
x2î y2 ĵ+
20

nning

s

le. For

r an

ters

-
n,

e

ted

ore of

repre-

 error
5.2 String Functions

A few useful string functions are available:

The following example shows the use of some of the string functions. The lines begi
with the string "Output>" show the output fromAprepro resulting from entering the
previous line.

{t1 = "ATAN2"} {t2 = "(0, -1)"}
Output> ATAN2 (0, -1)
{t3 = tolower(t1//t2)}
Output> atan2(0, -1)

…The variable t3 is equal to the string atan2(0, -1)
{execute(t3)}
Output> 3.141592654

…The result is the same as executing {atan2(0, -1)}

tolower(svar) Translates all uppercase characters insvar to lowercase. It modifiessvar
and returns the resulting string.

toupper(svar) Translates all lowercase character insvar to uppercase. It modifiessvar
and returns the resulting string.

tostring(x) Returns a string representation of the numerical varaiblex . The variablex i
unchanged.

execute(svar) svar is parsed and executed as if it were a line read from the input fi
example, if svar = "b=sqrt(25.0)" , then{execute(svar)}
returns the value 5 and setsb = 5 . The expressionsvar is enclosed in
delimiters prior to being executed and it must be a valid expression o
error message will be printed.

rescan(svar) Similar toexecute(svar) , except thatsvar is not enclosed in delimi
prior to being executed. For example, ifsvar = "Point {1+5}
{sqrt(5)} {sqrt(6)}" , then{rescan(svar)} would print:
Point 6 2.236067977 2.449489743 . The difference betweenexe
cute(sv1) andrescan(sv2) is thatsv1 must be a valid expressio
butsv2 can contain zero or more expressions.

getenv(svar) Returns a string containing the value of the environment variablesvar . If th
environment variable is not defined, an empty string is returned.

get_word(n,svar,del) Returns a string containing thenth word ofsvar . The words are separa
by one or more of the characters in the string variabledel

word_count(svar,del) Returns the number of words insvar . Words are separated by one or m
the characters in the string variabledel

strtod(svar) Returns a double-precision floating-point number equal to the value
sented by the character string pointed to bysvar .

error(svar) Outputs the stringsvar to stderr and then terminates the code with an
exit status.
21

s of
d by
. This

lity in
nt11)

n

 of the
 a
 first

 than

nd
This is admittedly a very contrived example; however, it does illustrate the working
several of the functions. In the first example, an expression is constructe
concatenating two strings together and converting the resulting string to lowercase
string is then executed and simply prints the result of evaluating the expression.

The following example uses the rescan function to illustrate a basic macro capabi
Aprepro. The example calculates the coordinates of eleven points (Point1 … Poi
equally spaced about the circumference of a 180 degree arc of radius 10.

{ECHO(OFF)}{num = 0} {rad = 10} {nintv = 10} {nloop = nintv + 1}
{line = ’Define {"Point"//tostring(++num)}, {polarX(rad, (num-
1) * 180/nintv)} {polarY(rad, (num-1)*180/nintv)}’} {ECHO(ON)}
{loop(nloop)}
{rescan(line)}
{endloop}

Output:

Define Point1, 10 0
Define Point2, 9.510565163 3.090169944
Define Point3, 8.090169944 5.877852523
Define Point4, 5.877852523 8.090169944
Define Point5, 3.090169944 9.510565163
Define Point6, 6.123233765e-16 10
Define Point7, -3.090169944 9.510565163
Define Point8, -5.877852523 8.090169944
Define Point9, -8.090169944 5.877852523
Define Point10, -9.510565163 3.090169944
Define Point11, -10 1.224646753e-15

Note the use of theECHO(OFF|ON) block* to suppress output during the initializatio
phase, and the loop construct† to automatically repeat the rescan line. The variablenum is
converted to a string after it is incremented and then concatenated to build the name
point. In the definition of the variableline , single quotes are first used since this is
multi-line string; double quotes are then used to embed another string within the
string. To modify this example to calculate the coordinates of 101 points rather
eleven, the only change necessary would be to set{nintv=100} .

5.3 Additional Functions

• File Inclusion: Aprepro can read input from multiple files using theinclude()

andcinclude() functions. If a line of the form:

{include(" filename ")}
{include(string_variable)}

is read,Aprepro will open and begin reading from the filefilename . A string
variable can be used as the argument instead of a literal string value. When the e

* Described in section 5.3 on page 22
† Described in section 5.3 on page 22
22

f

e
s

of the file is reached, it will be closed andAprepro will continue reading from the
previous file. The difference betweeninclude andcinclude is that iffilename

does not exist,include will terminateAprepro with a fatal error, butcinclude

will just write a warning message and continue with the current file. The
cinclude function can be thought of as aconditional include, that is, include the
file if it exists. Multiple include files are allowed and an included file can also
include additional files. Approximately 16 levels of file inclusion can be used.
This option can be used to set variables globally in several files. For example, i
two or moreinput files share common points or dimensions, those dimensions can
be set in one file that is included in the other files.

If ECHO(OFF) is in effect during in an included file, ECHO(ON) will automatically
be executed at the end of the file.

• Conditionals: Portions of an input file can be conditionally processed through
the use of the{Ifdef(variable)} or {Ifndef(variable)} constructs. The syn-
tax is:

{Ifdef(variable)}
…Lines processed if’variable’ is not equal to 0

{Else}
…Lines processed if’variable’ is equal to 0 or undefined

{Endif}
{Ifndef(variable)}

…Lines processed if’variable’ is equal to 0 or undefined
{Else}

…Lines processed if’variable’ is not equal to 0
{Endif}

The {Else} is optional. Note that ifvariable is undefined, its value is equal to
zero.Ifdef constructs can be nested up to approximately 16 levels. A warning
message will be printed if improper nesting is detected.{Ifdef(variable)} ,
{Ifndef(variable)} , {Else} , and{Endif} are the only text parsed on a line.
Text following these on the same line is ignored.

• Loops: Repeated processing of a group of lines can be controlled with the
{loop(control)} , {endloop} commands. The syntax is:

{loop(variable)}
…Process these lines’variable’ times

{endloop}

Loops can be nested. A numerical variable or constant must be specified as th
loop control specifier. You cannot use an algebraic expression such a
{loop(3+5)} .

• ECHO: The printing of lines to the output file can be controlled through the use
of the{ECHO(OFF)} and{ECHO(ON)} commands. The syntax is:

{ECHO(OFF)}
23

s-
…These lines will be processed, but not printed to output
{ECHO(ON)}

…These lines will be both processed and printed to output.

ECHO will automatically be turned on at the end of an included file. The commands
ECHOand NOECHOare synonyms for ECHO(ON) andECHO(OFF).

• VERBATIM: The printing of all lines to the output file without processing can
be controlled through the use of the{VERBATIM(ON)} {VERBATIM(OFF)} com-
mand. The syntax is:

{VERBATIM(ON)}
…These lines will be printed to output, but not processed

{VERBATIM(OFF)}
…These lines will be printed to output and processed

NOTE: there is a major difference between theECHO/NOECHOcommands, the
Ifdef/Endif commands, and theVERBATIM(ON|OFF) commands:

• Output File Specification: Theoutput function can be used to change the file to
which Aprepro is outputting the processed data. The syntax is:output(" file-

name") , wherefilename is the name of the new output file. A string variable can
be used as the function argument.The previous output file is closed. An error me
sage is written and the code terminates if the file cannot be opened.

ECHO(ON|OFF) Lines processed, but not printed ifECHO(OFF)

Ifdef/Endif Lines not processed or printed if inIfndef block

VERBATIM(ON|OFF) Lines not processed, but are printed
24

n
y

.

ral
or the
n
t

based

ble 9

 also
e, the

m.
6 Units Conversion System

Although great effort has been expended to ensure that the units conversio
system is accurate and consistent, the author does not make any warrant
expressed or implied, or assume any liability or responsibility for the use of this
software. If any errors are discovered in this software, please contact the author

6.1 Introduction

The units conversion system inAprepro is implemented as a set of files that define seve
variables that are abbreviations for unit quantities. For example, if the output format f
current unit system was inches, the variablefoot would have the value 12. Therefore, a
expression such as8*foot would be equal to 96 which is the number of inches in 8 fee*.

 Files have been defined for seven consistent units systems including four metric
systems:si, cgs, cgs-ev, andshock; and three english-based systems:in-lbf-s, ft-lbf-s, and
ft-lbm-s. The output units for these unit systems are shown in Table 8 (metric) and Ta
(english). A list of the defined units abbreviations is given in Table 10.

In addition to the definition of the conversion factors, several string variables are
defined which describe the output format of the current units system. For exampl
string variabledout defines the output format for density units. For thein-lbf-secunits
system,dout = "lbf-sec^2/in^4 " which is the output format for densities in this syste
The string variables can be used to document theAprepro output. The string variable
names are listed in the last column of Table 8 and Table 9.

* This can also be written as 8~foot since the symbol~ has been defined to be the
multiplication operator.

Table 8: Units Systems and Corresponding Output Format--Metric

Quantity si cgs cgs-ev shock string

Length metre centimetre centimetre centimetre lout

Mass kilogram gram gram gram mout

Time second second second micro-sec tout

Temp. kelvin kelvin eV kelvin Tout

Velocity metre/sec cm/sec cm/sec cm/usec vout

Accel. metre/sec^2 cm/sec^2 cm/sec^2 cm/usec^2 aout

Force newton dyne dyne g-cm/usec^2 fout

Volume metre^3 cm^3 cm^3 cm^3 Vout

Density kg/m^3 g/cc g/cc g/cc dout
25

les.
.

re
e
n, and
(lout,
The units definitions are accessed through theUnits function inAprepro:
{Units(" unit_system ")}

whereunit_system is one of the strings listed in the first row of the previous two tab
This will search the standard locations on your system for the correct files to include

6.2 Units Conversion Implementation

The units conversion system inAprepro is implemented simply as a set of files that a
selectively included by a function call inAprepro. There are two types of files used. Th
first file type is a header file which defines the base units (metre, second, kg, radia
kelvin) in terms of the desired output formats, and the output format string variables
mout, ...). There is a different header file for each unit system. Thein-lbf-s header file
is shown below as an example:

{_C_} This is the in-lbf-s units file: inch, sec, lbf

Energy joule erg erg g-cm^2/usec^3 eout

Power watt erg/sec erg/sec g-cm^2/usec^4Pout

Pressure pascal dyne/cm^2 dyne/cm^2 Mbar pout

Table 9: Units Systems and Corresponding Output Format--English

Quantity in-lbf-s ft-lbf-s ft-lbm-s string

Length inch foot foot lout

Mass lbf-sec^2/in slug pound-mass mout

Time second second second tout

Temp. rankine rankine rankine Tout

Velocity inch/sec foot/sec foot/sec vout

Accel. inch/sec^2 foot/sec^2 foot/sec^2 aout

Force pound-force pound-force poundal fout

Volume inch^3 foot^3 foot^3 Vout

Density lbf-sec^2/in^4 slug/ft^3 lbm/ft^3 dout

Energy inch-lbf foot-lbf ft-poundal eout

Power inch-lbf/sec foot-lbf/sec ft-poundal/secPout

Pressure lbf/in^2 lbf/ft^2 poundal/ft^2 pout

Table 8: Units Systems and Corresponding Output Format--Metric

Quantity si cgs cgs-ev shock string
26

 then
e only
er file

e
 add a
e all of

s. The
tring
s can
ression
ple,

ions
se of
{_C_} Outputs:
{_C_} Time: {tout = “second”}
{_C_} Length: {lout = “inch”}
{_C_} Accel: {aout = “in/sec^2”}
{_C_} Mass: {mout = “lbf-sec^2/in”}
{_C_} Force: {fout = “lbf”}
{_C_} Velocity: {vout = “in/sec”}
{_C_} Volume: {Vout = “in^3”}
{_C_} Density: {dout = “lbf-sec^2/in^4”}
{_C_} Energy: {eout = “inch-lbf”}
{_C_} Power: {Pout = “inch-lbf / sec”}
{_C_} Pressure: {pout = “psi”}
{_C_} Temp: {Tout = “degR”}
{_C_} Angular: {Aout = “radian”}
{_C_}
{_C_} 1 meter = {m = 1 / 2.54e-2} {lout}
{_C_} 1 second = {sec = 1} {tout}
{_C_} 1 kg = {kg = 1/4.5359237e-1/(9.806650*m/sec^2)} {mout}
{_C_} 1 kelvin = {degK = 1.8} {Tout}
{_C_} 1 radian = {rad = 1} {Aout}

Note that this file defines the output units string variables at the top of the file and
defines the base units in terms of the output units at the bottom of the file. This is th
file that must be created to implement a new units system. The name of the head
matches the name of the units system and it must be all lowercase.

The second file is called theconversion file. This file contains the equations defining th
different units in terms of the base units. This is the only file that must be changed to
new unit abbreviation to the system unless a new base unit is added, in which cas
the files must be modified. A short excerpt of this file is shown below:

{_C_}{_C_}{_C_} Length (L)
{_C_} 1 Meter= {meter = metre = m} {lout}
{_C_} 1 cm = {cm = centimeter = centimetre = m / 100} {lout}
{_C_} 1 mm = {mm = millimeter = millimetre = m / 1000} {lout}
{_C_} 1 um = {um = micrometer = micrometre = m / 1e6} {lout}
{_C_} 1 km = {km = kilometer = kilometre = 1000 * m} {lout}
{_C_} 1 foot = {ft = foot = .3048 * m} {lout}
{_C_} 1 mile = {mi = mile = ft * 5280} {lout}
{_C_} 1 yard = {yd = yard = ft * 3} {lout}
{_C_} 1 inch = {in = inch = ft / 12} {lout}
{_C_} 1 mil = {mil = inch / 1000} {lout}

This segment is the portion of the conversion file which defines the length conversion
expression{_C_} at the beginning of each line of the header and conversion files is a s
variable that is given the current value of the comment character. In this way, the file
be written in a generic format that can be used as input for several codes. Each exp
in the file defines a unit abbreviation in terms of a previously defined unit. For exam
the third line of the file defines the abbreviationscm, centimeter , andcentimetre in
terms of themetre which is a base unit. The eighth line of the file defines the abbreviat
mile andmi in terms of the foot which is earlier defined in terms of the meter. For ea
27

what
 result

ersion

ectories

 same
g the

se
y the

e
f a

is
ious

c-
verification of the units files, they are written in such a way that the output is some
self-explanatory, for example, if the SI system is being used, the above lines would
in the following output:

$$$ Length (L)
$ 1 Meter = 1 meter
$ 1 cm = 0.01 meter
$ 1 mm = 0.001 meter
$ 1 um = 1e-06 meter
$ 1 km = 1000 meter
$ 1 foot = 0.3048 meter
$ 1 mile = 1609.344 meter
$ 1 yard = 0.9144 meter
$ 1 inch = 0.0254 meter
$ 1 mil = 2.54e-05 meter

which is more understandable than if a bunch of numbers were output. The conv
expressions in this file were obtained from References 6, 7, 8, and 9.

WhenAprepro processes the function call{Units("unit_system")} , it first searches for
the requested header file (which has the same name as the unit system) in the dir
defined by the environment variableMATSPATH or the default location ifMATSPATH is not
defined. The first matching file is used. It then searches for the conversion file in the
directories. Units files other than those currently supported can be used by modifyin
environment variableMATSPATH. For example the following C-shell command will cau
Aprepro to first search the current directory, then your mats subdirectory, and finall
default units directory for the specified units system files:

 setenv MATSPATH ".:~/:/usr/local/eng_sci/mats"

The units files must be in a directory calledunits under the directories specified in th
MATSPATH environment variable*. Therefore, it is possible to have a personal copy o
header file to define a new unit system and still use the global conversion file.

The units conversion files are in the SEACAS1 code management system which
maintained by CVS10. CVS maintains a complete change log and the history of prev
changes so that traceability is maintained.

6.3 Usage

The following example illustrates the basic usage of the units conversion utility inAprepro.
$ Aprepro Units Utility Example
$ {ECHO(OFF)}

…Turn off echoing of the conversion factors
$ {Units(“shock”)}

…Select the shock units system
$ NOTE: Dimensions - {lout}, {mout}, {dout}, {pout}

*This is done so that the entire system (units conversion and material database a
cess routines) can use a single environment variable.
28

mand
…This will document what quantities are used in the file after it is run through Aprepro
$ {len1 = 10.0 * inch}

…Define a length in an english unit (inches)
$ {len2 = 12.0~inch}

… ~ is synonym for * (multiplication)

Material 1, Elastic Plastic, {1890~kgpm3} $ {dout}
 Youngs Modulus = {28.3e6~psi}
 Yield Stress = {30~ksi}

…Define the density and material parameters in whatever units they are available
End
Point 100 {0.0} {0.0}
Point 110 {len1} {0.0}
Point 120 {len1} {len2}
Point 130 {0.0} {len1}

The output from this example input file is:
$ Aprepro ($Revision: 1.36 $) Fri Oct 23 13:32:42 1992

…QA header written by Aprepro
$ Aprepro Units Utility Example
$ NOTE: Dimensions - cm, gram, g/cc, Mbar

…The documentation of what quantities this file uses
$ 25.4
$ 30.48

Material 1, Elastic Plastic, 1.89 $ g/cc
 Youngs Modulus = 1.951216314
 Yield Stress = 0.002068427188

…All material parameters are now in consistent units
End
Point 100 0 0
Point 110 25.4 0
Point 120 25.4 30.48
Point 130 0 25.4

…Lengths have all been converted to centimetres

The same input file can be used to output in SI units simply by changing Units com
from shock to si . The output in SI units is:

$ Aprepro ($Revision: 1.36 $) Fri Oct 23 13:33:22 1992
$ Aprepro Units Utility Example
$ NOTE: Dimensions - meter, kilogram, kg/m^3, Pa

…Quantities are now output in standard SI units
$
$ 0.254
$ 0.3048

Material 1, Elastic Plastic, 1890 $ kg/m^3
 Youngs Modulus = 1.951216314e+11
 Yield Stress = 206842718.8
End
Point 100 0 0
Point 110 0.254 0
29

elow.

-

Point 120 0.254 0.3048
Point 130 0 0.254

…Lengths have all been converted to metres

6.4 Additional Comments

A few additional comments and warnings on the use of the units system are detailed b

• Omitting the{ECHO(OFF)} line prior to the{Units(“unit_system”)} function
will print out the contents of the units header and conversion files. Each line in the
output will be preceded by the current comment character which is$ by default.
A few lines from thein-lbf-s units file are shown below:

$ Aprepro ($Revision: 1.36 $) Fri Oct 23 13:35:02 1992
$ This is the in-lbf-s units file: inch, sec, lbf
$ Outputs:
$ Time: second
$ Length: inch
$ Accel: in/sec^2
$ Mass: lbf-sec^2/in
$ Force: lbf
$ Velocity: in/sec
$ Volume: in^3
$ Density: lbf-sec^2/in^4
$ Energy: inch-lbf
$ Power: inch-lbf / sec
$ Pressure: psi
$ Temp: degR
$ Angular: radian
$
$ 1 meter = 39.37007874 inch
$ 1 second = 1 second
$ 1 kg = 0.005710147155 lbf-sec^2/in
$ 1 kelvin = 1.8 degR
$ 1 radian = 1 radian
.....
$$$ Acceleration (L/T^2)
$ Grav. Accel. = 386.0885827 in/sec^2
$
$$$ Force (ML/T^2)
$ 1 Newton = 0.2248089431 lbf
$ 1 dyne = 2.248089431e-06 lbf
$ 1 lbf = 1 lbf
$ 1 kip = 1000 lbf
......

• The comment character can be changed by invokingAprepro with the-c option.
For exampleaprepro -c# input_file output_file will change the comment
character at the beginning of the lines to#. (See Appendix A on page 51 for a de-
scription of the command options.)

• The temperature conversions are only valid for relative temperatures, for exam
ple, 100~degC is equal to 180~degF, not 212~degF.
30

e
• Since several variables are defined in the units system, it is possible to redefin
one of the variable names in your input file. If theAprepro warning messages are
turned off, you will not be notified of the variable redefinition and erroneous re-
sults may occur. Therefore, you should not turn offAprepro warning messages
while using the units system, and you should investigate all redefined variable
messages to ensure that you are getting the results you expect.
31

32

 few
rial
del in
s into

 called

ethod
lysis.

tabase

es, and
of the
le that

r-
e

-

ty,

ec-
-

7 Material Database Access System

The material database access system has been implemented inAprepro to facilitate the
inclusion of material property data in finite element input data files. It consists of a
functions inAprepro and a specified directory structure of files that contain mate
property data for each material in the system and template files for each material mo
each analysis code. The template files format the data from the material property file
the correct format for the analysis codes.

The material database access system is part of a larger material database system
MATS which is being developed at Sandia National Laboratories, New Mexico.

7.1 Overview of the MATS System

MATS is a series of programs and datafiles which provides the analyst with a simple m
for retrieving material data from a database and inserting it into an input file for an ana
The basicMATS system consists of the algebraic preprocessing codeAprepro, a set of
template files for each material model in each analysis code, and a set of material da
files for each material of interest. The full-featuredMATS system would also include a
database processor which would take raw test data and/or data from other sourc
provide the user with tools to process the data. After the user is satisfied with the fit
data to the constitutive model that will be used, the data would be written to a datafi
could be used by the basicMATS system.

Figure 1. shows a schematic representation of the proposedMATS system. It consists of
three major sections:

• Database Preprocessor:The database processor would be a tool which would
take the raw test data and convert it into the correct format for theMATS database.
Note that for nonlinear materials, this is not a simple conversion that can be pe
formed automatically. The database processor should provide a highly interactiv
environment including tools such as multiple curve fitting options, filtering capa-
bilities, options to work with portions of curves, curve editing capabilities, etc.

• Material: The material datafiles would be stored in this section. Each major ma-
terial group (for example, steel, aluminum, foam) would be a separate subdirecto
ry under this section. These subdirectories would contain material files for each
supported material of this type. For example, the aluminum subdirectory would
have a material file for 6061-T6 aluminum which would contain the material data
used in structural and thermal analysis codes. For example, yield stress, densi
thermal conductivity, and specific heat.

• Code:Code template files (which will be described later) would be stored in this
section. Each supported code would have a separate subdirectory under this s
tion. These subdirectories would contain a template file for each constitutive mod
el supported by the analysis code. For example, thePRONTO2D subdirectory
33

ple text

 user-
velops
in

l of the
would have templates for the Elastic, Elastic/Plastic, Johnson-Cook, Low Density
Foam, and other constitutive models.

Material data would be written into the database using the database processor, a sim
editor, or a stand-alone program written specifically for that function.

Although the schematic only shows a single database structure,MATS will be written to
search in several user-defined locations for the database information. This will allow
specific, group-specific, and global databases to be developed. If an analyst de
personal datafiles for certain materials,MATS can be instructed to first look for the data
the personal datafiles. If it is found, that data will be used, if it is not found,MATS will
continue to search all databases specified by the user until the data is found, or al
specified databases have been searched.

The remainder of this section will concentrate on theAprepro interface routines to the
material database system. Documentation of the overallMATS system will be published as
soon as the system is developed and implemented.

Figure 1. Schematic of Proposed MATS Database System

MATS

Material

Code

PRONTO

COYOTE

CTH

Steel

Aluminum

Foam

3044340

Generic6061 T6

40-50 lb1-5 lb

Elas/PlasElastic

Material 2Material 1

EOSEPDATA

 DataBase

Raw Test Data

Commercial Data
Processor
34

del

orrect

base
ch has

ase.
 order
default

ecified
licitly
aintain

ve the
 any
 file for

at the
totype
7.2 Implementation of the Material Database Access Routines

The material database routines are accessed from withinAprepro using a command of the
form:

{ Material(mat_id, “Mat_Type”, “Mat_Name”, “Model_Type”, “Code”)}

This accesses the material database for the specific materialMat_Name which is aMat_Type

material and formats it in a form suitable for theModel_Type constitutive model in the
codeCode. For example, to use OFHC Copper with the Johnson-Cook constitutive mo11

in thePRONTO2D Code, the command would be:
{Material(10,“Copper”,“OFHC Copper”,“Johnson-Cook”,“Pronto2d”)}

All strings are converted to lowercase so that the user only has to worry about the c
spelling.

Aprepro manipulates this line into four commands which load the correct material data
file and the correct template file. The example command produces a command whi
the effect of:

{_material_model = “johnson_cook”}
{include($MATS/material/copper/ofhc_copper)}
{include($MATS/code/pronto2d/johnson-cook)}
{material_model = “ “}

where$MATS is a symbolic variable that points to the location of the material datab
The symbolic variable can specify multiple locations are searched in a user-specified
to permit private databases to be searched prior to or instead of searching the
database. The mechanism for doing this is to define theMATS environment variable as a
list of colon separated directories. For example,

setenv MATS ~/mats:/department/mats:/global/mats

In many analyses, the analyst may want to modify some of the material properties sp
in the material database file. For example, only a portion of a material may be exp
modeled and therefore, the density of the modeled portion must be increased to m
the correct mass of the body. In this case, the following commands would be used:

{Material(mat_id, “Mat_Type”, “Mat_Name”, “Model_Type“, “DEFER“)}
{Density = 20000 * kg/m^3} $ User-specified density
{Material(mat_id, “DEFER”, “Mat_Name”, “Model_Type“, “Code“)}

This sequence of commands is manipulated into a series of commands which ha
effect of first processing the material definition file, then allowing the user to modify
of the material parameters, and then formatting the data as specified in the template
the specified code.

7.3 Code Template Files:

Each code, or “code family”, has its own set of template files which extract and form
information in the material database into a code-readable format. For example, pro
35

ce the
terial

entire
ed and,
n-Cook

ts at the
ed to the
template files for use inPRONTO andSANTOS are shown below for theElastic andJohnson
Cook material models.

Material {_matid}, Elastic, {_Density} {_C_} {dout}
 Youngs Modulus = {_Youngs_Modulus} {_C_} {pout}
 Poissons Ratio = {_Poissons_Ratio} {_C_} (no-dimen)
End

Material {_matid}, Johnson Cook, {_Density} {_C_} {dout}
 Youngs Modulus = {_Youngs_Modulus} {_C_} {pout}
 Poissons Ratio = {_Poissons_Ratio} {_C_} (no-dimen)
 Yield Stress = {_Yield_Stress} {_C_} {pout}
 Hardening Constant = {_Hardening_Constant} {_C_} {pout}
 Hardening Exponent = {_Hardening_Exponent} {_C_} (no-dimen)
 RhoCv = {_RhoCv} {_C_} {pout}/{Tout}
 Rate Constant = {_Rate_Constant} {_C_} (no-dimen)
 Thermal Exponent = {_Thermal_Exponent} {_C_} (no-dimen)
 Ref Temperature = {_Reference_Temperature}{_C_} {Tout}
 Melt Temperature = {_Melt_Temperature} {_C_} {Tout}
End

The variable names (enclosed in {}) are defined with leading underscores to redu
redefined variable warning messages which would occur for multiple uses of the ma
command in a singleAprepro execution.

If a new, or modified, constitutive model is developed, we do not have to develop an
new branch of the material database tree. Instead, only a new template file is creat
possibly, a few constants added to the material database. For example, if the Johnso
damagemodel is implemented, the template file could look like:

Material {matid}, JC Damage, {Density}
 Youngs Modulus = {Youngs_Modulus}
 Poissons Ratio = {Poissons_Ratio}
 Yield Stress = {Yield_Stress}
 Hardening Constant = {Hardening_Constant}
 Hardening Exponent = {Hardening_Exponent}
 RhoCV = {RhoCv} $ OR: {Density * Cv} ?
 Rate Constant = {Rate_Constant}
 Thermal Exponent = {Thermal_Exponent}
 Ref Temperature = {Reference_Temperature}
 Melt Temperature = {Melt_Temperature}
 D1 = {D1}, D2 = {D2}, D3 = {D3}, D4 = {D4}, D5 = {D5}
End

where the name in the first line of the template has been changed and the 5 constan
end of the template have been added. These constants would then need to be add
material files.
36

 into
s, for

t

or the
set to
for the

 vary
can be
tes
7.4 Material Files:

A prototype material database file is shown below. Note that the file can be divided
several sections delineating the Physical, Mechanical, and Thermal propertie
example.

$ {ECHO(OFF)}
Material Data File for Material -- {Material = “OFHC Copper”}

…NOTE: These data are for example only, DO NOT USE
------ Physical Properties
{_Density = 8960 *kg / m^3}
------ Mechanical Properties
{_Youngs_Modulus = E = 124 * GPa}
{_Poissons_Ratio = nu = 0.34}
{_Shear_Modulus = E/2/(1+nu)}
{_Bulk_Modulus = E/3/(1-2*nu)}
{_Yield_Stress = 450000 * psi}
------ Thermal Properties
{_Conductivity = k = 386 * W / m / degK}
{_Specific_Heat = Cp = 383 * J / kg / degK}
{_Diffusivity = k / Density / Cp}
{_Volume_Expansion = 5.0e-5 / degK}
{_Melt_Temperature = 1356 * degK}
------- Johnson Cook Specific Properties
{_t = (_material_model=="johnson_cook" ||
 _material_model=="jc_damage")?1:0}
{ifdef(_t)}
{_Yield_Stress = 90 * MPa}
{_Hardening_Constant = 292 * MPa}
{_Hardening_Exponent = 0.31}

…Several other constants
{endif}
-------- Temperature_Dependent_Material Model Specific Properties
(_t = (_material_model == "ep_temperature_dependent")?1:0}
{ifdef(_t)}
{C1 = “<<<Constant Not in Material Database>>>”
{C2 = “<<<Constant Not in Material Database>>>”

…The above two lines will output the message <<<Constant...Database>> to the outpu
file if they are referenced

{endif}
…Other Models and Information

The material template files can have place holders for all of the information needed f
currently existing material models; if the information does not exist, the constant is
output a warning message to the user of the information. See for example the entry
constantsC1 andC2 in theep_temperature_dependent material block.

Many of the materials that are typically used in analyses have properties that
depending on the temperature and/or strain rates expected in the analysis. This
handled in a way similar to that shown in the following example which illustra
temperature-dependent material properties:

{NOECHO}
37

ng to

ey have

in this
rises.
base

e
l

be
e

to

ial
 da-
nits
red

s

{range1 = (temp > 0 && temp <= 100) ? 1 : 0}
{range2 = (temp > 100 && temp <= 200) ? 1 : 0}
{range3 = (temp > 200 && temp <= 300) ? 1 : 0}
{range4 = (temp > 300 && temp <= 400) ? 1 : 0}
{ECHO}
{ifdef(range1)}
{_Linear_Expansion = 1.0e-9 / degK}
{endif}
{ifdef(range2)}
{_Linear_Expansion = 2.0e-9 / degK}
{endif}
{ifdef(range3)}
{_Linear_Expansion = 3.0e-9 / degK}
{endif}
{ifdef(range4)}
{_Linear_Expansion = 4.0e-9 / degK}
{endif}

In this example, the Linear Expansion Coefficient is set to a different value accordi
the expected temperature in the analysis*.

7.5 Additional Comments

The material database access routines are somewhat experimental at this time. Th
primarily been implemented to provide an experimental testbed for implementing theMATS
material database system. It is expected that the basic functionality documented
report will remain stable; however, additional functions may be added if the need a
The following list provides some additional information relating to the material data
access routines specifically, and to theMATS system in general.

• Material property data is not and will not be distributed withAprepro. It is the end
users responsibility to provide this data in the form required byAprepro if the da-
tabase access functionality is desired. The primary reason for doing this is that th
analyst should not treat this function as a black box in which appropriate materia
data automagically appear as the result of a simple command. Rather, it should
treated as a means of efficiently accessing (and converting to the correct units) th
data that the analyst has previously collected and verified.

• A units conversion system (see section 6 on page 25) must be specified prior
accessing any data in the material database.

• The material database access routines do not verify the consistency of the mater
database. Procedures are needed to determine whether the data in the material
tabases are consistent. For example, is Poissons Ratio less than 0.5? Are the u
set correctly?, etc.? This should be a separate program so that data can be ente
using different programs and then checked for consistency.

*The mechanism for doing this is not very clean and will probably be changed in the future. Thi
example is used just to show the concept.
38

f-
at
• Since several references may be used within a single material file and similar re
erences will be used in several material files, there should be a reference list th
will cross reference an abbreviation in the material file to the full bibliographical
citation for the reference. A typical reference in a material file could look like:

$ {Yield_Stress = 145e3*psi} $ Ref: GRJ:9

which would signify that the data were found on page 9 in the documentGRJ
which is an abbreviation for some report reference list.
39

40

 of the

t
nd can
es

s

-

g

-

8 Error, Warning, and Informational Messages

Several error, warning, and informational messages will be printed byAprepro if certain
conditions are encountered during the parsing of an input file. The messages are
form:

Aprepro: Type : Message (file , line line#)

WhereType is ERR for an error message,WARN for a warning message, orINFO for an
informational message;Message is an explanation of the problem,file is the filename
being processed at the time of the message, andline# is the number of the line within tha
file. Error messages are always output, Warning messages are output by default a
be turned off by using the-W or +warning command option, and Informational messag
are turned off by default and can be turned on by using the-M or +message command
option. (See section A on page 51.)

Error Messages
• Aprepro: ERR: parse error (file , line line#) An unrecognized or ill-

formed expression has been entered. Parsing of the file continues following thi
expression.

•Aprepro: ERR: Can’t open ’ file ’: No such file or directory The
file specified in the include command cannot be found or does not exist.Aprepro
will terminate processing following this error message.

•Aprepro: ERR: Can’t open ’ file ’: Permission denied The file specified
in the include or output command could not be opened due to insufficient permis
sion.Aprepro will terminate processing following this error message.

•Aprepro: ERR: Improperly Nested ifdef/ifndef statements (file ,

line line#) An invalid ifdef/ifndef block has been detected. Typically this is
caused by an extraendif or else statement.

•Aprepro: ERR: Zero divisor (file , line line#) An expression tried
to divide by zero. The expression is given the value of the dividend and parsin
continues.

•Aprepro: ERR: Units File not found The units system specified in the Units
command could not be found. This could be due to a misspelling of the units sys
tem name, or an incorrectly installed units system.

•Aprepro: ERR: unit file found, no conversion file The units system
has been incorrectly installed or is not available.

•Aprepro: ERR: Error locating material model The specified material
model datafile could not be found.

•Aprepro: ERR: function (file , line line#) DOMAIN error: Argument

out of domain The arithmetic functionfunction has been passed an invalid
41

s-

et

o

argument. For example, the above error would be printed for each of the expre
sions:

{sqrt(-1.0)} {log(0.0)} {asin(1.1)}

since the arguments are out of the valid domain for the function. The value
returned by the function following an error is system-dependent. See the
function’s man page on your system for more information.

Warning Messages
• Aprepro: WARN: Undefined variable ’ variable ’ (file , line line#)

A variable is used in an expression before it has been defined. The variable is s
equal to zero or the null string ("") and parsing continues.

• Aprepro: WARN: Variable ’ variable ’ redefined (file , line line#)

A previously defined variable is being set equal to a new value.

Informational Messages
• Aprepro: INFO: Included File: ’ filename ’ (file , line line#) The

file filename is being included at lineline# of file file . This message will also
be printed during the execution of a loop block since temporary files are used t
implement the looping function, and during the execution of the units conversion
and material database access routines.
42

for a
ecified.

 code.
braic
hick-
9 Examples

9.1 Mesh Generation Input File

The first example shown in this section is the point definition portion of an input file
mesh generation code. First, the locations of the arc center points 1, 2, and 5 are sp
Then, the radius of each arc is defined ({Rad1} , {Rad2} , and{Rad5}). Note that the lines
are started with a dollar sign, which is a comment character to the mesh generation
Following this, the locations of points 10, 20, 30, 40, and 50 are defined in alge
terms. Then, the points for the inner wall are defined simply by subtracting the wall t
ness from the radius values.

Title
Example for Aprepro
$ Center Points
Point 1 {x1 = 6.31952E+01} {y1 = 7.57774E+01}
Point 2 {x2 = 0.00000E+00} {y2 = -3.55000E+01}
Point 5 {x5 = 0.00000E+00} {y5 = 3.62966E+01}
$ Wth = {Wth = 3.0}

…Wall thickness
$ Rad5 = {Rad5 = 207.00}
$ Rad2 = {Rad2 = 203.2236}
$ Rad1 = {Rad1 = Rad2 - dist(x1,y1; x2,y2)}
$ Angle between Points 2 and 1: {Th12 = atan2d((y1-y2),(x1-x2))}
Point 10 0.00 {y5 - Rad5}
Point 20 {x20 = x1+Rad1} {y5-sqrt(Rad5^2-x20^2)}
Point 30 {x20} {y1}
Point 40 {x1+Rad1*cosd(Th12)} {y1+Rad1*sind(Th12)}
Point 50 0.00 {y2 + Rad2}
$ Inner Wall (3 mm thick)
$ {Rad5 -= Wth}
$ {Rad2 -= Wth}
$ {Rad1 -= Wth}

…Rad1, Rad2, and Rad5 are reduced by the wall thickness
Point 110 0.00 {y5 - Rad5}
Point 120 {x20 = x1+Rad1} {y5-sqrt(Rad5^2-x20^2)}
Point 130 {x20} {y1}
Point 140 {x1+Rad1*cosd(Th12)} {y1+Rad1*sind(Th12)}
Point 150 0.00 {y2 + Rad2}

The output obtained from processing the above input file byAprepro is shown below.

Title
Example for Aprepro
$ Center Points
Point 1 63.1952 75.7774
Point 2 0 -35.5
Point 5 0 36.2966
$ Rad5 = 207
$ Rad2 = 203.2236
$ Rad1 = 75.2537088
$ Angle between Points 2 and 1: 60.40745947
43

h input
fined

ange

gener-
 using
Point 10 0.00 -170.7034
Point 20 138.4489088 -117.5893956
Point 30 138.4489088 75.7774
Point 40 100.3576382 141.214957
Point 50 0.00 167.7236
$ Inner Wall (3 mm thick)
$ 204
$ 200.2236
$ 72.2537088
Point 110 0.00 -167.7034
Point 120 135.4489088 -116.2471416
Point 130 135.4489088 75.7774
Point 140 98.87615226 138.6062794
Point 150 0.00 164.7236

9.2 Macro Examples

Aprepro can also be used as a simple macro definition program. For example, a mes
file may have many lines with the same number of intervals. If those lines are de
using a variable name for the number of intervals, then preprocessing the file withAprepro
will set all of the intervals to the same value, and simply changing one value will ch
them all. The following input file fragment illustrates this

$ {intA = 11} {intB = int(intA / 2)}
line 10 str 10 20 0 {intA}
line 20 str 20 30 0 {intB}
line 30 str 30 40 0 {intA}
line 40 str 40 10 0 {intB}

Which when processed looks like:
$ 11 5
line 10 str 10 20 0 11
line 20 str 20 30 0 5
line 30 str 30 40 0 11
line 40 str 40 10 0 5

9.3 Command Line Variable Assignment

This example illustrates the use of assigning variables on the command line. While
ating a complicated 2D or 3D mesh, it is often necessary to reposition the mesh
GREPOS. If the following file called shift.grp is created:

Offset X {xshift} Y {yshift}
Exit

then, the mesh can be repositioned simply by typing:
Aprepro xshift=100.0 yshift=-200.0 shift.grp temp.grp
Grepos input.mesh output.mesh temp.grp
44

osines

access
d may
blocks
alyses
and 16
ndition
 of the
e unit
nits()
9.4 Loop Example

This example illustrates the use of the loop construct to print a table of sines and c
from 0 to 90 degrees in 5 degree increments.

Input:

$ Test looping - print sin, cos from 0 to 90 by 5
{angle = -5}
{Loop(19)}
{angle += 5} {sind(angle)} {cosd(angle)}
{EndLoop}

Output:

$ Test looping - print sin, cos from 0 to 90 by 5
-5
0 0 1
5 0.08715574275 0.9961946981
10 0.1736481777 0.984807753
15 0.2588190451 0.9659258263
20 0.3420201433 0.9396926208
25 0.4226182617 0.906307787
30 0.5 0.8660254038
35 0.5735764364 0.8191520443
40 0.6427876097 0.7660444431
45 0.7071067812 0.7071067812
50 0.7660444431 0.6427876097
55 0.8191520443 0.5735764364
60 0.8660254038 0.5
65 0.906307787 0.4226182617
70 0.9396926208 0.3420201433
75 0.9659258263 0.2588190451
80 0.984807753 0.1736481777
85 0.9961946981 0.08715574275
90 1 6.123233765e-17

9.5 Units and Material Database Access Example

This example illustrates the use of the units system and the material database
routines. The material data shown in this example are for illustrative purposes only an
not represent actual material data. This example also illustrates the use of the ifdef
to control processing of selected lines. This file was used as an input file for two an
in which the mesh for one analysis was a subset of the other analysis. Materials 15
only appeared in the larger analysis and there were a few changes in boundary co
numbering between the two analyses. The example is annotated to explain some
constructs used. Note that all of the dimensions in the file have unit identifiers so th
system of the analysis can be changed simply by picking a new unit system in the U
command.

{ECHO(OFF)}{Units("si")}
…Specify the Units system

Title
Units and Material Database Access Example
$ {InitVel = -sqrt(2.0 * ga * 500~foot)}
45

el
…Velocity is for a 500 foot drop$
$ {Code = "Pronto3D"}
$ {ConstitModel = "JC Damage"}

…The constitutive model used for all of the materials can now be changed simply by
changing this line.

$
$ NOTE: dimensions - {lout}, {mout}, {dout}, {pout}

…Echo the output units types to document processed file
$
$ {den_17 = (3.125~lbm) / (2.758e-4~metre^3)}
$ {den_18 = (1.000~lbm) / (8.747e-5~metre^3)}

…The densities of materials 17 and 18 are modified to get the correct mass for the mod
$ Control Information:

Termination Time {ttime = 1.0~millisecond}
Plot Time {ttime / 20}
Output Time {ttime / 200}
Write Restart {ttime / 10}
…Want 20 plot steps, 200 output steps, and 10 restart steps written during the analysis

$ Boundary Conditions:
No Displacement Y 10
{ifdef(LARGE_MODEL)}
Rigid Surface 1600 {-1.85206e-1~meter} 0.0 0.0,1.0 0.0 0.0
Rigid Surface 1601 {-1.85206e-1~meter} 0.0 0.0,1.0 0.0 0.0
Rigid Surface 1602 {-1.85206e-1~meter} 0.0 0.0,1.0 0.0 0.0
{else}
Rigid Surface 400 {-1.56e-1~meter} 0.0 0.0,1.0 0.0 0.0
Rigid Surface 410 {-1.56e-1~meter} 0.0 0.0,1.0 0.0 0.0
Rigid Surface 602 {-1.56e-1~meter} 0.0 0.0,1.0 0.0 0.0
{endif}

…Numbering of boundary conditions changes depending on which mesh is used in the
analysis. LARGE_MODEL is defined when full analysis is run.

Initial Velocity Material 5 {InitVel}
Initial Velocity Material 6 {InitVel}
Initial Velocity Material 8 {InitVel}
Initial Velocity Material 9 {InitVel}
Initial Velocity Material 10 {InitVel}

{ifdef(LARGE_MODEL)}
Initial Velocity Material 15 {InitVel}
Initial Velocity Material 16 {InitVel}

{endif}
…Materials 15 and 16 only appear in the large model
Initial Velocity Material 17 {InitVel}
Initial Velocity Material 18 {InitVel}

…All of the material parameters are defined below.
{Material(5, "Aluminum", "6061-T6", ConstitModel, Code)}
{Material(6, "HE", "PBX-9502",ConstitModel, Code)}
{Material(8, "Aluminum", "6061-T6", ConstitModel, Code)}
{Material(9, "Plastic", "Lexan", ConstitModel, Code)}
{Material(10, "Aluminum", "6061-T6", ConstitModel, Code)}
{ifdef(NOT_DEFINED)}
{Material(15, "Steel", "13-8 H1100", ConstitModel, Code)}
{Material(16, "Aluminum", "6061-T6", ConstitModel, Code)}
46

{endif}
{Material(17, "Aluminum", "6061-T6", ConstitModel, "DEFER")}
{_Density = den_17}
{Material(17, "DEFER", "6061-T6", ConstitModel, Code)}
{Material(18, "Aluminum", "6061-T6", ConstitModel, "DEFER")}
{_Density = den_18}
{Material(18, "DEFER", "6061-T6", ConstitModel, Code)}

…Use all of the database properties for materials 17 and 18, execpt we need to use the
calculated densities to get the correct mass in the model

Portions of the output of this example are shown below:
$ Aprepro ($Revision: 1.36 $) Mon Oct 26 14:15:15 1992

Title
Units and Material Database Access Example
$ -54.67235974
$ Pronto3D
$ JC Damage
$
$ NOTE: dimensions - meter, kilogram, kg/m^3, Pa
$
$ 5139.507456
$ 5185.690751
$ Control Information:

Termination Time 0.001
Plot Time 5e-05
Output Time 5e-06
Write Restart 0.0001

$ Boundary Conditions:
No Displacement Y 10
Rigid Surface 400 -0.156 0.0 0.0,1.0 0.0 0.0
Rigid Surface 410 -0.156 0.0 0.0,1.0 0.0 0.0
Rigid Surface 602 -0.156 0.0 0.0,1.0 0.0 0.0

Initial Velocity Material 5 -54.67235974
Initial Velocity Material 6 -54.67235974
Initial Velocity Material 8 -54.67235974
Initial Velocity Material 9 -54.67235974
Initial Velocity Material 10 -54.67235974
Initial Velocity Material 17 -54.67235974
Initial Velocity Material 18 -54.67235974

$ 6061-T6 Aluminum
Material 5, JC Damage, 2703.78448$ kg/m^3

Youngs Modulus= 6.894792943e+10$ Pa
Poissons Ratio= 0.3157962771$ dimensionless
Yield Stress= 324053592.8$ Pa
Hardening Constant= 113763495.3$ Pa
Hardening Exponent= 0.42$ dimensionless
RhoCv= 2423039.586$ Pa/degK
Rate Constant= 0.002$ dimensionless
Thermal Exponent= 1.34$ dimensionless
Ref Temperature= 38.88888889$ degK
Melt Temperature= 670$ degK
47

D1 = -0.77, D2 = 1.45, D3 = -0.47, D4 = 0, D5 = 1.6
$ all dimensionless
End

$ PBX 9502 (95% TATB, 5% Kel-F 800), Dobratz
Material 6, JC Damage, 1895$ kg/m^3

Youngs Modulus= 6894757.293$ Pa
Poissons Ratio= 0$ dimensionless
Yield Stress= 6894757.293$ Pa
Hardening Constant= 113763495.3$ Pa
Hardening Exponent= 0.42$ dimensionless
RhoCv= 2423039.586$ Pa/degK
Rate Constant= 0.002$ dimensionless
Thermal Exponent= 1.34$ dimensionless
Ref Temperature= 38.88888889$ degK
Melt Temperature= 670$ degK
D1 = -0.77, D2 = 1.45, D3 = -0.47, D4 = 0, D5 = 1.6

$ all dimensionless
End

…Rest of lines not shown
48

10 References

1G. D. Sjaardema, “Overview of the Sandia National Laboratories
Engineering Analysis Code Access System,” SAND92-2292, Sandia
National Laboratories, Albuquerque, NM, January 1993.

2C. Donnelly and R. Stallman, “BISON--The YACC-compatible Parser
Generator,” Free Software Foundation, Inc., 675 Mass Ave., Cambridge,
MA, 02139, June 1992. Bison Version 1.19.

3V. Paxson, J. Poskanzer, and K. Gong, “FLEX--Fast Lexical Analyzer
Generator,”, Free Software Foundation, Inc., 675 Mass Ave., Cambridge,
MA 02139, June 1989. Flex Version 2.3.6.

4G. D. Sjaardema, “GREPOS: A GENESIS Database Repositioning
Program,” SAND90-0566, Sandia National Laboratories, Albuquerque, NM,
April 1990.

5G. D. Sjaardema and S. W. Attaway, “Proposed Specification for MATS,”
memo to Distribution, dated January 6, 1992, Sandia National Laboratories,
Albuquerque, NM.

6F. W. Walker, J. R. Parrington, and F. Feiner, “Nuclides and Isotopes, 14th
Edition,” General Electric Corporation, San Jose, California, 1989.

7J. C. Jaeger and N. G. W. Cook,Fundamentals of Rock Mechanics, Third
Edition, Chapman and Hall Publishers, London, 1979.

8T. W. Lambe and R. V. Whitman,Soil Mechanics, John Wiley & Sons, New
York, New York, 1969.

9G. R. Simpson, “Units Computer Program”, copyright 1987.

10B. Berliner, “CVS II: Parallelizing Software Development,” USENIX
article, Winter, 1990, Washington, D.C.

11G. R. Johnson and W. H. Cook, “A Constitutive Model and Data for Metals
Subjected to Large Strains, High Strain Rates, and High Temperatures,”
Proceedings of Seventh International Symposium on Ballistics, The Hague,
The Netherlands, pp. 541-548, April 1983.
49

50

t can
 are
A Execution

Aprepro is executed with the command:

 aprepro [-dsvieWM] [-c’ char’] [var=val] [input_file] [output_file]

The effect of the parameters are:

-v prints the code name and version to the terminal. (+version)

-d prints the name and value of each variable defined in the input
file to the terminal at the end of the run. See SYNTAX for a
description of defining and using variables. (+debug)

-s prints statistics on hash table granularity at end of run. Primarily
used for aprepro development. (+statistics)

-c ’ char’ sets the comment character thatAprepro writes in front of the version string
and other specific output lines to the first character of ’char’
(+comment ’char’)

-i putsaprepro into interactive mode in which there is no buffering of output.
This is useful whenaprepro is used as a pipe for another code.
(+interactive)

-e if this is enabled,aprepro will exit when any of the strings EXIT, Exit, exit,
QUIT, Quit, or quit are entered. Otherwise,aprepro will exit at end of file.
(+exit_on)

-h print a summary of theapreprocommand line and the valid options. (+help)

-W do not print warning messages such as redefined variables and undefined
variables. (+nowarning)

-M do print informational messages such as notification of included files.
(+message)

var=val sets the variable‘var‘ equal to the value‘val‘ : This lets you dynamically set
the value of a variable and change it between runs without editing the input
file. Multiple ‘var=val‘ pairs can be specified on the command line. The
command line definition of a variable does not override the definition of the
same variable in the input file.

input_file specifies the file that contains the input toAprepro. If this parameter is
omitted,Aprepro will run interactively.

output_file specifies the file thatAprepro will write the processed data to. If this
parameter is omitted,Aprepro will write the data to the terminal. (stdout)

The+options at the end of the parameter descriptions are optional long-options tha
be specified instead of the short options. For example, the following two lines
equivalent:

aprepro +debug +nowarning +statistics +comment #
aprepro -dWsc#

Note that the short options can be concatenated.
51

52

 the
s are
ass),

nit
mass,
ass/

se
ut
B Unit System Defined Variables

In the following list, the first column defines the unit variables that are defined in
Aprepro unit system and the second column is a short description of the unit. All unit
defined in terms of the five SI Base Units metre (length), second (time), kilogram (m
temperature (kelvin), and radian (angle)*. The lightly shaded rows delineate the type of u
variable and the base quantities used to define it where L is length, T is time, M is
and t is temperature. For example density is defined in terms of M/L^3 which is m
length^3.

* The radian is actually a SI Supplementary Unit since it has not been decided whether it is a Ba
Unit or a Derived Unit. There are three other SI Base Units, the candela, ampere, and mole, b
they are not yet used in the Aprepro units system.

Table 10: Defined Units Variables

Abbreviation Description

Length [L]

m, meter, metre Metre (base unit)

cm, centimeter, centimetre Metre / 100

mm, millimeter, millimetre Metre / 1,000

um, micrometer, micrometre Metre / 1,000,000

km, kilometer, kilometre Metre * 1,000

in, inch Inch

ft, foot Foot

yd, yard Yard

mi, mile Mile

mil Mil (inch/1000)

Time [T]

second, sec Second (base unit)

usec, microsecond Second / 1,000,000

msec, millisecond Second / 1,000

minute Minute

hr, hour Hour

day Day
53

yr, year Year = 365.25 days

decade 10 Years

century 100 Years

Velocity [L/T]

mph Miles per hour

kph Kilometres per hour

mps Metre per second

kps Kilometre per second

fps Foot per second

ips Inch per second

Acceleration [L/T^2]

ga Gravitational acceleration

Mass [M]

kg Kilogram (base unit)

g, gram Gram

lbm Pound (mass)

slug Slug

lbfs2pin Lbf-sec^2/in

Density [M/L^3]

gpcc Gram / cm^3

kgpm3 Kilogram / m^3

lbfs2pin4 Lbf-sec^2 / in^4

lbmpin3 Lbm / in^3

lbmpft3 Lbm / ft^3

slugpft3 Slug / ft^3

Force [ML/T^2]

N, newton Newton = 1 kg-m/sec^2

Table 10: Defined Units Variables

Abbreviation Description
54

dyne Dyne = newton/10,000

gf Gram (force)

kgf Kilogram (force)

lbf Pound (force)

kip Kilopound (force)

pdl, poundal Poundal

ounce Ounce = lbf / 16

Energy [ML^2/T^2]

J, joule Joule = 1 newton-metre

ftlbf Foot-lbf

erg Erg = 1e-7 joule

calorie International Table Calorie

Btu International Table Btu

therm EEC therm

tonTNT Energy in 1 ton TNT

kwh Kilowatt hour

Power [ML^2/T^3]

W, watt Watt = 1 joule / second

Hp Elec. Horsepower (746 W)

Temperature [t]

degK, kelvin Kelvin (Base Unit)

degC Degree Celsius

degF Degree Fahrenheit

degR, rankine Degree Rankine

eV Electron Volt

Pressure [M/L/T^2]

Pa, pascal Pascal = 1 newton / metre^2

Table 10: Defined Units Variables

Abbreviation Description
55

MPa Megapascal

GPa Gigapascal

bar Bar

kbar Kilobar

Mbar Megabar

atm Standard atmosphere

torr Torr = 1 mmHg

mHg Metre of mercury

mmHg Millimetre of mercury

inHg Inch of mercury

inH2O Inch of water

ftH2O Foot of water

psi Pound per square inch

ksi Kilo-pound per square inch

psf Pound per square foot

Volume [L^3]

liter Metre^3 / 1000

gal, gallon Gallon (U.S.)

Angular

rad Radian (base unit)

rev Full circle = 360 degree

deg, degree Degree

arcmin Arc minute = 1/60 degree

arcsec Arc second = 1/360 degree

grade Grade = 0.9 degree

Table 10: Defined Units Variables

Abbreviation Description
56

57

Distribution

1 1400 E. J. Barsis
1 1401 J. R. Asay
1 1402 S. S. Dosanjh
1 1403 G. S. Davidson
1 1404 J. A. Ang

13 1425 J. H. Biffle & staff
50 1425 M. K. Smith
1 1431 J. M. McGlaun
1 1431 K. G. Budge
1 1431 J. S. Peery
1 1432 W. T. Brown
1 1433 J. W. Swegle

15 1434 D. R. Martinez & staff
1 1500 D. J. McCloskey
1 1501 C. W. Peterson
1 1502 P. J. Hommert
1 1503 L. W. Davison
1 1504 D. J. McCloskey, actg
1 1511 J. S. Rottler
1 1511 D. K. Gartling
1 1511 M. W. Glass
1 1511 P. L. Hopkins
1 1511 M. J. Martinez
1 1511 P. A. Sackinger
1 1511 P. R. Schunk
1 1511 J. D. Zepper
1 1512 A. C. Ratzel
1 1513 R. D. Skocypec
1 1513 R. G. Baca
1 1513 B. L. Bainbridge
1 1513 R. E. Hogan, Jr.
1 1513 J. L. Moya
1 1551 W. P. Wolfe
1 1552 C. E. Hailey
1 1553 W. L. Hermina
1 1554 W. H. Rutledge

15 1561 H. S. Morgan & staff
13 1562 R. K. Thomas & staff

10 1562 G. D. Sjaardema
1 1832 J. M. Ramage
1 2565 S. T. Montgomery
1 6313 J. Jung
1 6411 A. S. Benjamin
1 6423 J. F. Dempsey
1 6513 D. S. Oscar
1 6522 J. D. Miller
5 7141 Technical Library
1 7151 Technical Publications

10 7613-2 Document Processing
for DOE/OSTI

1 8523-2 Central Technical Files
6 8741 G. A. Benedetti & staff
1 8742 M. R. Birnbaum
1 8742 J. J. Dike
1 8742 L. I. Weingarten
5 8743 M. L. Callabresi & staff
58

	1 Introduction
	2 Syntax
	3 Operators
	3.1 Arithmetic Operators
	3.2 Assignment Operators
	3.3 Relational Operators
	3.4 Boolean Operators
	3.5 String Operators

	4 Predefined Variables
	5 Functions
	5.1 Mathematical Functions
	5.2 String Functions
	5.3 Additional Functions

	6 Units Conversion System
	6.1 Introduction
	6.2 Units Conversion Implementation
	6.3 Usage
	6.4 Additional Comments

	7 Material Database Access System
	7.1 Overview of the MATS System
	7.2 Implementation of the Material Database Access...
	7.3 Code Template Files:
	7.4 Material Files:
	7.5 Additional Comments

	8 Error, Warning, and Informational Messages
	9 Examples
	9.1 Mesh Generation Input File
	9.2 Macro Examples
	9.3 Command Line Variable Assignment
	9.4 Loop Example
	9.5 Units and Material Database Access Example

	10 References
	Contents
	Tables
	Figures

