A Unified Relational Approach to Grid Information Services (GWD-GIS-012-1 (Informational))

Peter A. Dinda, Northwestern Beth Plale, Georgia Tech

<u>Claim</u>

Applications need *common compositional* queries over information of *varying dynamicity*

<u>Approach</u> Build down from an RDBMS world-view Relational = relational data model and queries Unified = tables and streams

Research Questions

How "far down" must we go? What extensions are needed?

Specific Components

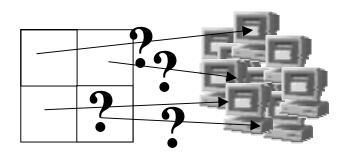
- Extensible type hierarchy
- Extensible schemas and indices
- Data streams as relations
- High update rates and freshness
- Compositional queries -> joins
- Time-bounded non-deterministic queries
- Friendly interfaces for non-experts
- Decentralized administration and data

Outline

- Needs of Grid applications
- Limitations of current models
- Our approach (and research)
 - Prototype system
 - Schema and indices (including example)
 - Fast updates and streaming
 - Data stream support with dQUOB
 - Time-bounded non-deterministic queries

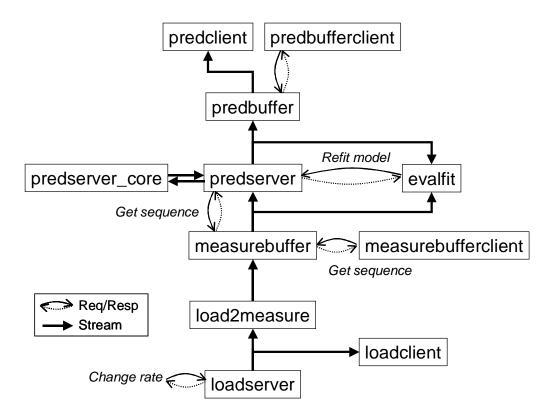
Needs of Grid Applications

Compositional queries


- Application-specific information aggregration

- Support for information of varying dynamicity

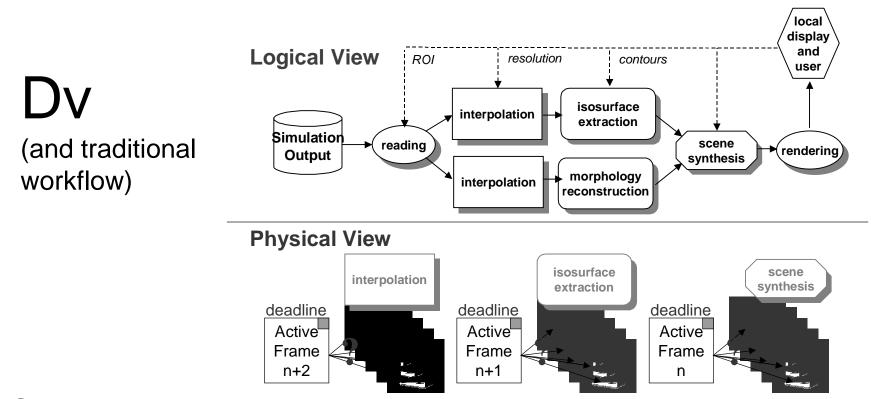
 Varying update rates and freshness requirements
 Seamless inclusion of streaming data
- A common data and query model


 Powerful, high level, declarative, easy-to-optimize

Data Parallel SOR

- Startup: "Find 4 hosts which all have the same architecture and have a combined memory of at least 2 GB and whose network path bandwidths to each other are comparable" Compositional Query Over Static Information
- Adaptation: "Tell me about instances in which the predicted load on any one of those 4 hosts exceeds the average of their predicted loads by 50%" Compositional Query Over Dynamic Information

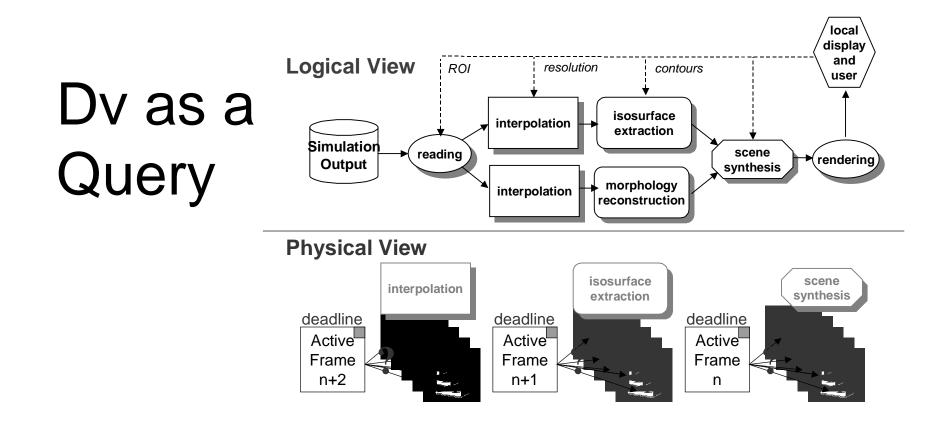
Resource Prediction System



• Software Configuration Management: "For each of those hosts, find an RPS prediction stream corresponding to a measurement stream from a load sensor on the host"

Compositional Query Over Semistatic Information

• Performance Monitoring Streams: "Tell me about instances in which the predicted load on any one of those 4 hosts exceeds the average of their predicted loads by 50%"


Compositional Query Over Dynamic Streams

 Startup: "Find a pool of five hosts each of which have at least a GB of memory for interpolation, a second pool of five different hosts with at least 1 GFLOP/s performance for isosurface extraction, and a third pool of five different hosts with special scene synthesis hardware, where the inter-pool bandwidth is at least 10 MB/s."

Compositional Query Over Static Information

 Adaptation: "What is the host within the isosurface extraction pool which is expected to have the minimum load over the next 10 seconds?" Compositional Query Over Dynamic Streams

 "Show me the results of rendering the scene synthesized by combining the results of isosurface extraction and morphology reconstruction over regularly grided data resulting from interpolation of this region of the simulation database"

Compositional Query Describing An Application No Specific Query Plan is Implied

Grid Schedulers

- Similar needs, more flexibility
- But these abstractions are important
 - GridSearcher [Schopf]
 - Compositional Queries over MDS

Supporting Compositional Queries

Set operations -> Relational Algebra -> RDBMS

- ANSI SQL
- Time-bounded Non-deterministic queries

Type Hierarchies

Query Example (RPSDB)

Schemas and Indices

Non-deterministic Timebounded Queries

Data Stream Support

Distributed Operation

Interaction with other GIS and Grid Performance Systems

Fast Updates and Freshness

Performance Evaluation

Tensions to explore

- RDBMS versus distributed data and decentralized administration and multiple security domains
- RDBMS versus expensive queries
- Power versus usability (SQL)

Prototype System(s)

- RPSDB
- dQUOB

Unification

ACID?

Conclusions

• Come join us