
Jon Oler and Gary Lindstrom

Department of Computer Science
University of Utah

50 S. Central Campus Drive, Rm. 3190
Salt Lake City, Utah 84112-9205 USA

{oler, gary}@cs.utah.edu

Terence Critchlow

Lawrence Livermore National Laboratory
P.O. Box 808 L-560

Livermore, CA 94550
critchlow@llnl.gov

Abstract
The growing maturity of ODBMS technology is

causing many enterprises to consider migrating relational
databases to ODBMS’s.  While data remapping is relatively
straightforward in most cases, greater challenges lie in
economically and non-invasively adapting legacy application
software.  We report on a genetics laboratory database migration
experiment, which was facilitated by both organization of the
relational data in object-like form and a C++ framework
designed to insulate application code from relational artifacts.
Although this experiment was largely successful, we discovered
to our surprise that the framework failed to encapsulate three
subtle aspects of the relational implementation, thereby
“contaminating”  application code.  We analyze the underlying
issues, and offer cautionary guidance to future migrators.

1.  Introduction
Relational database (RDB) management systems are

the dominant database technology in use today.  Initially
developed in the 1970’s, RDB technology is mature, robust,
flexible, and broadly applicable.   However, in recent years
traditional RDBMS’s have come to be viewed as deficient in
data representational power in comparison to modern application
software, which is increasingly object-oriented.  This  RDB
shortcoming  is being addressed by extended relational systems
(e.g., Postgres [SK91]) and middleware such as object oriented

relational database gateway products (e.g. Persistence [KJA93]).
Such RDBMS extensions have been spurred by competition from
object-oriented database management systems (ODBMS’s),
which combine comprehensive database management
functionality and full-fledged OO data modeling [ABDDMZ89].

Enterprises are understandably cautious in adopting
new technology such as an ODBMS due to risks including lack
of prior experience in effective ODBMS use, concerns for vendor
stability, slow standardization, disruption of application software
development, and fear of failure --- with associated loss of
investment and an embarrassing retreat to prior technology.
Hence a cost effective, reversible, risk mitigating migration
strategy has great appeal.  In fortunate cases, the increasing OO
sophistication of the enterprise’s application software may have
steered the enterprise’s relational data design to a de facto
object-based organization.  Indeed, the database architects may
have been blessed with the foresight to encapsulate RDB
representation details in an OO framework, delivering to
applications an ODBMS-like view on the relational data.  Not
surprisingly, such frameworks are a great aid to migration, in
that they embody a ready solution to the first problem one
encounters: converting data from relational to object form.

We report our experience in employing such a
framework as a migration vehicle.  In many ways, the framework
fulfilled our expectations as a migration aid, especially in terms
of ease of data conversion.   However, the thrust of this paper is
on unforeseen semantic and pragmatic issues encountered in the
migration, arising from subtle aspects of RDB technology
“ leaking”  through the framework and “contaminating”  our
application software.  After sketching our application setting,
framework-based migration strategy, and lessons learned along
the way, we conclude with a chart of dysfunctions, diagnoses and
remedies which may be instructive to other database developers
contemplating a similar migration path.



2. The Utah Center for Human Genome
Research Database

Over the past six years, the Utah Center for Human
Genome Research (UCHGR) has developed a comprehensive
data model, database implementation and application suite for
molecular biology laboratory information.  The key
characteristics of this database are: (i) an object-based meta data
model comprising five fundamental concepts (objects,
relationships, processes, protocols, and environments) in terms
of which all concrete entities are expressed; (ii)  an
implementation of this model using a commercial RDBMS
(Sybase), and (iii) a framework permitting application software
to manipulate database contents as though they were a collection
of persistent C++ objects, i.e., an ODBMS [SFCDML96].

Underlying this database design is a defensive posture
with respect to the most vexing problem the UCHGR database
implementers have faced over the years: frequent but
unanticipatible schema evolution.  Extensive use is made of meta
information which guides access within a “hyper normalized”
implementation by which object attributes are dispersed in
individual tuples logically associated by object identifiers (OIDs)
internal to the database.  The result is an exceptionally supple
data representation, permitting both (i) application data schema
evolution by ordinary RDBMS transactions on meta data tables,
and (ii) representational tolerance to data in many schema
versions, both current and historical.  These two features are
crucial to the rapidly changing, yet archival, nature of molecular
biological data.

These advantages notwithstanding, it rapidly became
clear that the generality of this meta data representation, plus its
lack of conventional OO structure, make it inappropriate for
direct access by application programs.  Hence a C++ framework
was developed to act as an API to the database.  This framework,
called GORP (for Generic Objects, Relationships and Processes),
presents to applications a reconstructive view of the database
contents, consistent with the current concrete OO data schema
expressed as C++ classes.  Historical data, which is needed far
less frequently, is either accessed through a lower level interface,
or through GORP code specially written to do data evolution on
demand.  Like all class libraries worthy to be termed
frameworks, GORP makes extensive use of abstract classes
serving as interfaces to hidden implementation classes
completing the framework.   The production database currently
comprises the GORP framework plus a completion library

implementing GORP abstract methods in terms of SQL stored
procedures.

3. Migrating the UCHGR Database to
an ODBMS

Beyond its support for fluid schema evolution, the
UCHGR database strategy is also defensive in that it anticipated
eventual adoption of  ODBMS technology, while protecting the
developers from the pains of being an “early adopter”  [GRS94].
The advent and commercial success of well-engineered ODBMS
products, such as ObjectStore [LLOW91], indicate the time is
ripe to seriously investigate migration to a true ODBMS.

The potential advantages of ODBMS’s are well known,
the most important to UCHGR being (i) direct storage of
application-pertinent objects, eliminating the run-time overhead
and the software maintenance cost of representation conversion
code; (ii) faster overall performance, due to direct pointer
navigation rather than multi-way joins (an unfortunate
consequence of UCHGR’s meta data representation); (iii) more
seamless integration with C++ software development tools;  (iv)
more flexible data structuring representation possibilities, and
(v) a true OO representation upon which application
understanding can guide performance tuning and development of
customized consistency and concurrency control policies.

In addition to assessing the practical merit of these
potential advantages, the migration experiment provided a litmus
test for GORP’s representation encapsulation power. The
experiment was approached through a novel migration strategy
exploiting cooperating completions of the GORP framework.  We
describe this strategy in subsequent sections, along with some
surprising pitfalls encountered, and lessons learned.  Throughout,
we focus on effective ODBMS exploitation by applications
accessing current version (rather than historical) data.  In the
concluding section we offer some speculative remarks on how
our migration strategy might be extended to support schema
evolution.

4. Framework-Based Data Migration
The hypothesis underlying our experiment was simple:

that GORP sufficiently encapsulated all RDB-specific aspects of
the  UCHGR database, such that no application software changes
would be necessary if the RDBMS (Sybase) implementation
were replaced by a genuine ODBMS (ObjectStore).  To a first
approximation, our hypothesis was validated.
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Figure 1:  Simplified GORP class hierarchy



4.1 Dual Database Strategy

Our experiment began by building a dual-completion
instantiation of the framework capable of operating in several
modes.  Table 1 summarizes how these modes might be used.
We started with the Read RDB / Write RDB mode already
implemented.  Since this code is in production use, we made the
baseline assumption that it is correct, and relied on it as a
validation standard for other modes.  This mode when will be
used as a performance benchmark for the read ODBMS / write
ODBMS mode when the latter is fully deployed..

Given the purely relational (read RDB / write RDB
mode) completion of the framework, implementing the other
modes described in Table 1 was, with the exception of several
nuances described in the next section, very straightforward.  The
interface exported by the framework was left unchanged; in fact,
the portion of the framework describing GORP database objects
directly formed the basis of the ODBMS schema.

The read RDB / write ODBMS mode was applied on a
wholesale basis to transfer data from the RDB to the ODBMS.
The read ODBMS / write both mode allows both databases to be
updated in tandem.  Each database can then be read to verify that
they returned the same result.  In keeping with our risk
mitigating strategy, this dual write mode constitutes a reassuring
fallback to the fully robust relational version after deploying the
ODBMS version.  That is, if the ODBMS performance lags or
other problems are encountered, it could be pulled from
production and the RDB completion could be quickly redeployed
since its associated database would be a “warm spare” .   The
other two modes, read ODBMS / write RDB and read  RDB /
write both, were added for completeness but have not been
extensively used.

4.2 Extent Sets

Since the class definitions already existed, the only

work required to complete the ODBMS schema was to organize
the database types into extent sets.  Some ODBMS products
automatically create and maintain class extents for every type in
the database.  While convenient, this service may be wasteful
both in time and disk usage because some object types may only
be accessed exclusively by navigation from another object rather
than through key-based or exhaustive lookup on the extent set of
the type.  ObjectStore, in contrast, leaves the creation and
maintenance of class extents entirely to the user.

Determining how to allocate class extents and index
them for efficient access was quite challenging.  We
experimented with three design alternatives before identifying
the one that best suited our needs.  For background, we provide a
simplified version of the GORP class hierarchy in Figure 1.

Under the first design we allocated class extents for
every class in the database:  an extent set representing all GORP
database objects (the Handle extent), an extent set each
comprising the Objects, Relationships, Processes, Environments,
and Protocols, and finally an extent set for each of the leaves in
the class hierarchy.  As a result, each GORP database object was
referenced from three extent sets. This led to further redundancy
when  indices defined on the base class were recreated in child
classes.  For example, an index was defined on the Handle extent
with Handle’s id attribute as key.  However, this index was also
duplicated on the Object extent as well as on many of the extents
of classes that inherit from Object.  Obviously, this approach
resulted in a potentially large waste of storage.

Unfortunately, this was not the only problem we
encountered with out initial approach:  each time an object is
created (or deleted) it had to be inserted  (removed) from each of
the three distinct extent sets, and more importantly, the indexes
defined on each of the extents had to be updated.  We discovered
that this cost dominated the object’s creation (deletion) time
when we began to populate the database.  Since the database
loading process only required an extent over the Handle class
with one simple index, we deferred building the other class
extents and indexes until after loading the database.  This
dramatically reduced the time required to load the database.

The second design alternative was based on the
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Figure 2:  Pseudo-code for retrieving all GORP objects and relationships
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Table 1:  GORP framework: modes of operation



observation that the redundancy of explicitly creating class
extents for each object type is unnecessary in principle.  That is,
the Process extent is simply the union of the extents of its child
classes; likewise, the Handle extent is the union the Dossier,
Object, Relationship, Process, Environment, and Protocol
extents.  Conversely, assuming the availability of run time type
information, extents for any class in the GORP class hierarchy
can be derived by filtering the Handle class extent.

However, neither of these options is a compelling
choice.  Consider the first; to derive extent sets, a class must be
aware of all of its subclasses — generally bad object-oriented
programming practice.  For example, in order to execute a query
over all processes, the Process class must either first build the
Process extent from the extents of its subclasses, or ask each
subclass to perform the query and combine the results.  The
second option  is even more problematic because it is impossible
to create indexes on the Handle extent based on attributes
defined in subclasses of Handle.  In addition, queries that deal
with a single subclass will take longer to execute.  For example,
to find a Process with a given id, only Process instances need to
be queried; however, if there is only one massive extent set, all
instances participate in the query.

Note that completely eliminating redundancy is only
one option; in fact, we utilize redundant sets to improve
efficiency for common queries, while eliminating them where not
needed.  In our third and final design, the Handle extent is
eliminated once the database is built.  This does not dramatically
effect query performance since interesting queries on Handle are
rare and the direct subclasses of Handle are a fixed part of the
framework unlikely to change.  The reduction in insert/delete
time as well as the space required by the database were
significant.   Additional savings were recognized by eliminating
extent sets on classes that are accessed solely by relationships.
The other extents were kept for performance reasons.  Since
retrieval/update is much more frequent than object
creation/deletion our approach balances the extra space required
by redundant extent sets and slower object creation/deletion
against faster query execution speed.

4.3 Database Open and Close

Generic database functions such as opening and closing
the database, and beginning, committing and aborting
transactions  were already expressed in the GORP framework
and implemented in the RDB completion.  The interfaces to
these functions required no substantial changes to support the
ODBMS completion.  Their implementations, of course, were
modified to perform the operations on the RDB, ODBMS, or
both, depending upon the mode of operation.  The lower-level
database interface code of the GORP framework was extended to
provide ODBMS-specific functionality such as object clustering,
query facilities, and the creation/deletion of indexes.  Since an
API for some of these services has been defined in the ODMG
standard, we wrapped the ObjectStore API within an ODMG-
compliant interface where possible.  This will  ease porting to
another ODBMS in the future, should the need arise.  In all
material respects, the GORP framework design proved to be
adequate to encapsulate these DBMS-specific features, and hide
them from applications.

The bulk of the work in implementing the ODBMS
GORP completion involved modifying the query and update
functions to access an ODBMS rather than an RDB.  As
explained earlier, the relational database employs a meta data
representation which performs reconstructive querying in order

to deliver concrete objects.  In the RDB completion, this service
is provided by SQL stored procedures, which apply meta data
querying and component-wise accesses to reconstruct GORP
objects for application presentation.  However, because the
ODBMS queries don’ t have to dynamically reconstruct objects
and relationships between objects, the queries are much simpler
than their relational counterparts.  In contrast to the RDB
completion where application data is stored in decomposed, meta
data mediated form, the ODB completion has the luxury of
retaining persistent objects in concrete application form.

4.4 Populating the Database

The ODBMS was populated by a transfer program
using the GORP interface to traverse all objects in the database
using the read RDB / write ODBMS mode.   A simple traversal
algorithm identifies each base object, and all data accessible
from it.  As each object is retrieved, a check is performed to see
if an object with the same GORP OID has already been recorded.
If the object was previously entered, it is ignored; otherwise, it is
persistently allocated in the ObjectStore database.  Once each
object has been instantiated in the ODBMS, relationships
between the objects can be established as shown in simplified
form in Figure 2.  Due to the simplicity of the underlying data
model, less than 500 lines of C++ code were required to perform
this migration.

5. Issues

We now examine three areas in which the migration
did not proceed as smoothly as expected.  In some areas, the
causes can be attributed to inadequate foresight in the GORP
framework design. However, since the relational completion of
the GORP framework was implemented by experienced
developers with extensive experience in both relational database
development and object-oriented frameworks, we believe that
their approach is typical of many projects exploiting an object-
oriented interface to a relational database.  In other areas, more
fundamental semantic disparities emerge between RDBMSs and
ODBMSs, and the application software architectures they
commonly engender.

5.1 Issue 1:  Object Mapping
Four basic operations on GORP database objects are

exported to application programs by the GORP framework:
create, delete, retrieve, and update.  One of the most compelling
ODBMS virtues is the  elimination of object copying between
application memory and the supporting database.  Unfortunately,
this virtue introduces subtle differences between the RDB and
ODBMS semantics.  This is a theme we will return to frequently
throughout this paper.

There are currently a large number of commercial
middleware products available to aid in mapping objects between
an RDB and an object oriented programming language.  These
products vary widely in their approach to transactions, caching,
mapping capabilities, scalability, database access (RDB-like vs.
ODB-like), etc.  Virtually everyone who has worked on the RDB
completion of the GORP framework concurs that the necessity of
writing custom code to map objects between the programming



language and RDB representations is one of GORP’s most
unpleasant aspects.  Mapping code occupies approximately 30
percent of the RDB version of the framework and must be
maintained as the database schema changes.  Employing
middleware to do at least part of this job would provide a
significant boost to productivity.  Whether a project develops
custom code, uses an RDB middleware product, or a true
ODBMS, the mapping of objects from the database to application
programs is an important issue.  We now examine object
mapping  issues for each of the four basic GORP database
operations.

5.1.1 Object Creation
The ODBMS completion of the framework invokes

ObjectStore’s rebindings of the C++ !��w-  and ����� ���'�  operators to
create and destroy objects in persistent storage.  Implementing
this rebinding was facilitated by the framework design in which
every persistent class has at least one static create method.  This
function originally allocated class instances on the application’s
transient heap, e.g.,  for containing the results of a database
query. We easily modified these methods to accept a boolean flag
indicating whether the object should be allocated on persistent
storage instead.

Persistence-awareness also dictated that supporting
classes allocate their internal data structures on persistent
storage. Container classes (i.e. lists, bags) and a string class are
examples of such classes.  Of course, these implementation
classes are part of the framework completion, rather than the
GORP application interface, so their modification was
completely transparent.  To maintain their generality, these
classes were augmented so they could allocate storage in either
persistent or transient memory, depending on which creation
method was invoked.   These modifications were easily
accomplished.  For example, strings are implemented using an
array of characters.  The string constructor was modified to
recognize whether the enclosing structure is allocated on
persistent or transient memory  (which is easily done using
ObjectStore’s ��
	�������'������
#��� � � (   or ��
	��
x�=+�y`�=!��_� � � (  operators), and to
allocate the character array appropriately.

With some ODBMS products, such as the Java version
of ObjectStore, object persistence may be determined at
transaction commit time by identifying all objects reachable from
a persistent root; with others, objects may be electively migrated
from transient to persistent memory.  With the C++ version of

ObjectStore, persistent objects must be explicitly allocated in
persistent memory when the object is created.  Unfortunately, the
relational completion of GORP allows applications to create a
new GORP object transiently by invoking a class constructor, and
subsequently confer persistence on the object by calling the
object’s 
x���#��z3{  operation.  This is problematic because it is
complex, costly, and perhaps ill-advised to move an object from
transient to persistent memory in this version of ObjectStore.
Indeed, this is particularly expensive if an entire graph of objects
were created in transient memory, because a deep copy of this
graph must occur when 
#���#��z#{  is invoked on a transient object.

Since all existing GORP applications know at object
creation time whether an object will persist or not, we decided
against implementing object migration from transient memory to
the ODBMS in the GORP framework.  Instead, we changed the
semantics of the class constructors for GORP objects in the
framework: persistent objects must be created exclusively with a
call to the static �#�)�����_�=za{  method provided by each GORP class.
Temporary objects may be created either through this �#�)�����_�=z`{
method or through a class constructor.  This allows temporary
objects to still be efficiently allocated and deallocated on either
the stack or the heap, and prevents applications from having to
use DBMS-specific calls to persistent !��w- .  The difference
between the two methods is demonstrated in Figure 3.  This
experience suggests that creation time determination of object
transience or persistence should be mandatory in future GORP
application development.

5.1.2 Object Deletion
Object deletion is encapsulated via �=��
|�'�)��}  methods in

GORP interface classes.  Typically, applications (all initially
written for the RDB completion of GORP) use the ����� ���'�  operator
to free the transient memory occupied by GORP objects.  The
ODMG standard (as well as the ObjectStore API) overrides the���=� ���_� operator to remove a persistent object from the database.
We chose to reimplement the ����� �w�_�  operator of each GORP class
to be operative only if the object resides on the transient heap or
the stack.  If the object is persistently allocated, no action is
taken.  However, finessing the issue in this manner has the side
effect that useless �=��� ���'�  operations remain in the code,
potentially confusing future maintenance programmers.  It should
be noted that this problem could be averted altogether by using
an language and an ODBMS that supports persistent garbage
collection.
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Figure 3:  Modifications to GORP for object creation



5.1.3 Object Retrieval/Update
We now consider object retrieval and updating, which

exposed additional, more subtle differences between the
semantics of these operations in the RDB and ODBMS
completions of the GORP framework. Figure 4 gives pseudo-
code for a typical interaction between an application and the
GORP framework.  Invoking +���� ����!�$��)�w�x��
	
#������y � �#�)���_� �'�)������� 
x"��w
xz {
in the RDB version causes the GORP framework to issue an SQL
query which returns a set of tuples representing unprocessed
microtitre dishes. The GORP framework maps each microtitre
dish tuple returned to a transiently allocated  C++ microtitre dish
object. The $��)�w�x��
	
#z�{  member function of class y`� �#�)���'� �_�)���k��� 
#"
modifies the microtitre dish as a C++ object.  Note, however,
that the persistent representation of the microtitre dish is not
affected until the microtitre dish 
x���#��z&{  operation is invoked.
The 
#���#��z�{  operation performs an SQL update synchronizing the
transient C++ microtitre dish representation with its persistent
representation in the RDB.  Thus the GORP framework, and
consequently the application software it supports, fundamentally
embodies a copy in, copy out view of persistent data (the “client /
server” viewpoint).

By contrast, the ODBMS completion of GORP handles
the interaction of Figure 4 quite differently.  The method
invocation +���� ����!�$=�)���x�w
|
#������y � �#�)���_� �_�)�����=� 
x"=��
xz�{  queries the
database as before, but no translation or explicit copy is required
to convert the database representation of a microtitre dish to the
C++ representation.  Although a transient C++ replica of each
unprocessed microtitre dish object is still created (by the
ObjectStore ODBMS, in the application’s address space,
operating as a database cache), this replication is transparent to
the GORP framework and application code.  In reality,
modifications made to microtitre dish objects by invoking$��)���#��
	
xza{  are made to the transient copies as before.  However,
unlike in the RDB GORP completion, the 
x�w�x��z�{  operation is an
empty function in the ODBMS GORP completion.  This is
because the modifications made to the microtitre dish objects are
automatically updated in the persistent store by the ODBMS
when the surrounding transaction commits.  Just as no code is
required to translate the object from persistent memory to
transient memory, no code is required to translate the object from
transient memory to persistent memory.

5.2 Issue 2:  Transactions and Swizzled
References

As mentioned earlier, the GORP framework includes
basic operations for starting, committing, and aborting
transactions.  However, the copy in / modify / copy out paradigm
of  the RDB version, plus ambivalence concerning the
appropriateness of strict serialization of GORP applications as
long running transactions, resulted in a laissez faire utilization of
these features by UCHGR application programmers.  Although
database consistency issues were recognized clearly to be a
concern, we encountered a different, rather subtle issue as a

consequence.  This issue concerns the lifetime and binding of
object references, and their relationship to transaction semantics
and duration.  Although this problem manifests in various ways
among ODBMS products, we believe them to be endemic to
ODBMS technology.

Currently, and into the foreseeable future, real
databases must be able to grow larger than the address space of
the machines that access them.  Unfortunately, this poses
obstacles in fully integrating persistent data into a programming
language, i.e., converting an object-oriented programming
language into an ODBMS data manipulation language.  If
persistent objects are to be accessed in the same way as transient
objects, applications must be able to access them through
references native to the programming language, i.e. in swizzled
form [EM92].  These references are bound to a block of memory
into which the persistent object is mapped in the address space of
the application process.  However, if a process references a
working set of persistent objects that exceed the size of its
address space, some objects need to be removed to make way for
new objects.

This requirement is benign if the evicted objects are
not referenced again; however, it is difficult to determine at
runtime which objects may be accessed again and which can be
safely evicted.  Hence it is often necessary to maintain valid
swizzled references to persistent objects, even if they have been
invalidated and evicted from an application’s address space.  To
address this requirement, the API of most ODBMS products
provide a  “ long pointer”  data structure constituting a universally
valid persistent object reference.  This provides a reliable way
for an object to be recovered and remapped into a process’
address space in the event it has been evicted between
references.  Indeed, some ODBMS’s require persistent objects to
be referenced only through unswizzled pointers.  Unfortunately,
this encapsulated access requires an extra level of indirection
each time an object is accessed.  Other ODBMS products, like
ObjectStore, allow both swizzled and unswizzled references.

The ObjectStore ODBMS unmaps all persistent objects
from an application’s address space at transaction commit time.
As a result, all swizzled pointers in an application become
invalid at that time.  However, applications written presuming
the RDB completion of GORP expect that pointers to persistent
objects remain valid across transaction boundaries --- which is a
reasonable assumption because the application is operating on
transient copies rather than the persistent objects.

Figure 5 shows a gene object referenced in two
different transactions.  With the RDB completion, the framework
caches a transient copy of the gene object until the application
explicitly deallocates the object.  Therefore, the gene reference in
the second transaction is valid, but may not reflect changes to the
database between the time the first transaction commits and the
second transaction begins.  With the ODB completion, the gene
reference is invalidated when the first transaction commits.  This
leads to two error conditions when an attempt is made to access
the gene in the second transaction: an invalid pointer dereference
exception, or the worse possibility of an undetected erroneous
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Figure 4:  Example GORP framework operation



reference to an arbitrary location in a database segment
subsequently mapped into that memory region.

There were several options available to us to overcome
this problem.  First, we could simulate the RDB version of
GORP by making transient copies of each object read from the
ODBMS.  References to these transiently allocated objects would
not be invalidated across transaction boundaries.  This approach
also had the advantage of overcoming the object mapping
concerns previously identified as Issue 1.   However, this
proposal was quickly rejected as ODBMS heresy, as well as
because the additional overhead was deemed unacceptable.

A second option was to adopt longer duration
transactions whereby transactions do not commit until it is no
longer necessary to reference any object.  Because of the
programming style used to implement the applications, this
amounted to wrapping the entire application within a single
transaction.  This approach was rejected not only due to the
resulting poor throughput but also because these applications
may reference more data than can fit within the application’s
address space.  When the address space is exhausted,
ObjectStore aborts the transaction.

ObjectStore’s default behavior of unmapping the
virtual address space occupied by persistent objects at transaction
commit time can be disabled.  In this case, once an object is
mapped to a virtual address, the mapping is retained until the
application exits.  Like the previous option, the application’s
address space can be exhausted.  Potentially, applications could
free portions of the address space at appropriate times through
the ODBMS API, but this is not very elegant and is difficult to
do in some GORP applications with dynamic transaction
boundaries.

The final and most general approach is to use the
unswizzled (“ long” ) pointers supplied by ObjectStore.  The
primary disadvantage of this approach is that application source
code must be modified to use long pointers to persistent objects
referenced across transaction boundaries.  Alternatively,  the
GORP framework could encapsulate the swizzled pointers in a�o�v�a�2����� !w�_���  class and modify all GORP functions to return
references to this class rather than C++ pointers.  This option
was rejected because it introduces at least one additional level of
indirection, and resulting overhead, for every pointer deference.

The prospect of changing all applications to use �o�v�a�2����� !w�_���
references was daunting, as well.

The approach we ultimately adopted constitutes a
hybrid of the last two approaches. Where appropriate, we
extended transaction boundaries to encompass multiple object
references.  We also modified application source code to use
unswizzled pointers for the remaining database references that
cross transaction boundaries.

One of the lures of ODBMS technology is that the
programming language becomes the database data manipulation
language.  The hallmark of such a DML is uniform (“seamless” )
access of persistent and transient data alike. Unfortunately,
native programming language pointers are not sufficient to
support all references to persistent objects.  Today’s
programming languages were not designed to support
transactions and concurrent access to shared data by multiple
processes.  Encapsulated access through unswizzled pointers is
the price to pay for such features.

5.3 Issue 3:  Object Identity
As mentioned briefly in an earlier section,  the GORP

framework defines unique object identifiers for all objects in the
database which may be accessed by applications.  In the original
specification of the RDB version of the GORP framework, GORP
OIDs were defined to be opaque data types with only one valid
operation, a test for equality.  Concretely, the RDB completion of
GORP implements OIDs as integers.  Unfortunately, in the rush
to push applications into production, application developers were
allowed to rely on the implementation of OIDs as integers. They
took advantage of OID stability and external significance, e.g., a
user could retrieve an OID, jot it down in a lab notebook, and
later initiate a GORP object retrieval using it as a key.

In contrast, OIDs are a hidden implementation artifact
in most ODBMS’s.  Hence in the ODBMS completion of GORP,
it is not ipso facto appropriate to maintain a separate, GORP
specific notion of OID. Had OIDs originally been implemented
correctly as opaque data types, we could have easily changed the
implementation of GORP OIDs to use the ODBMS OID.
Although there is never any reason for an application to do
anything but compare two OIDs for equality, application
programmers have used the integer representation of OIDs in
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Figure 5:  Differences in lifetime of object references



their code in so many ways that it is unfeasible to undo it.
Consequently we are reluctantly maintaining both forms of OID
in the ODBMS version of the framework for backwards
compatibility with older applications.

The lesson offered here to framework designers is that
the concept of OIDs and externally visible keys should be built
into the framework.  However, we feel strongly that these two
concepts should be strictly separated from each other.  That is, it
is ill-advised to use OIDs to implement external keys or external
keys to implement OIDs.

5.4 Final Remarks on Portability
When the RDB version of GORP was conceived, it was

designed to accommodate an ODBMS port with relative ease.
Ideally, no application code would need to be modified.  For the
most part, this has proved to be true.  With the exception of
adding transaction boundaries and some long pointers, we have
not modified any application code.  In short, encapsulating all
data accesses to persistent objects within a framework like
GORP has enabled us to port many applications with very little
modification of source code between two very different DBMS
products.

However, it would also be desirable to port the
framework across ODBMS products with minimal effort.  We
believe that the GORP design sufficiently abstracted the notion
of a relational database to make porting it from one RDBMS to
another a fairly painless task requiring very few changes to the
framework.  It is important to note that one of the fundamental
reasons this abstraction is successful is because of the acceptance
of SQL as a standard interface to relational databases.
Unfortunately, considerably more work would be required to port
the current ODBMS version of GORP from ObjectStore to
another ODBMS.  Because a standard API does not currently
exist for ODBMSs, all the queries within the GORP object
completion would have to be converted from ObjectStore’s
proprietary query facilities to another proprietary API.  We are
optimistic current work by ODMG on OQL [C96] and ANSI/ISO
on SQL3 [SQL3] may make ODBMS queries much more
portable in the future.

6. Related work
The complexity of representing genomic data has been

recognized by many other researchers [F91] [GRS94b].
MapBase, and its successor, LabBase, are genomic information
systems developed at the Whitehead Institute similar in scope to
that developed at the UCHGR [GRS94a] [RSG95] [G94].
However, both MapBase and LabBase were implemented using
an ODBMS (ObjectStore) from the beginning.  The fact that both
the Whitehead Institute and the UCHGR have independently
chosen to use an ODBMS is evidence of the difficulty in
representing complex genomic data in a relational format.

The creators of Intermedia, a hypermedia framework
developed at the Institute for Research in Information and
Scholarship, considered porting their framework from an
RDBMS to an experimental ODBMS [SZ87].  Although
ODBMS technology was in its infancy at the time, the Intermedia
researchers were mainly interested in overcoming the need to
make transient copies of persistent objects stored in the RDBMS
as well as the impedance mismatch between an object’s
representation in an RDBMS and an object-oriented
programming language.

A comparison of performance for various pointer
swizzling and non-swizzling schemes is described in [M92].  The

Texas [SKW92] persistent store implemented pointer swizzling
mechanisms very similar to that used by ObjectStore.  The
developers of Texas also recognized the problem of address
space consumption and made some novel suggestions of how to
deal with this problem by means other than invalidating all
references to persistent objects at transaction boundaries
[WK92].

As described above, the original version of the GORP
framework had an ill-defined form of relaxed consistency due to
the creation and manipulation of transient copies of database
objects.  This problem can be generalized in terms of a cache
consistency problem [F96].  Efficient protocols for allowing
appropriate degrees of consistency in a distributed computing
environment with long running, interactive transactions remain
an open research question.

7. Conclusions and Future Work
The lessons learned from our migration experience are
summarized in Table 2, relying on a clinical metaphor.  In the
words of Waverly Root, “ Every virtue is accompanied by its
inseparable vices”  [W66, p. 14].   For ODBMS’s, the virtue is
direct manipulation of persistent objects by application software.
The inseparable vices are the semantic and operational burdens
attending such direct manipulation.  Perhaps it is too much to ask
for an application framework to support deft and natural
manipulation of objects in both off line (RDB) and  on line
(ODBMS) form.  In any case, we offer the humble opinion that
data representation issues --- the subject of much research in the
academic database community --- are not the difficult problems.
Instead, the core issues lie in areas long recognized to be among
the most vexing of persistent data: object identity (copying vs.
replication), transaction semantics (nature and lifetime of data
ownership), and object naming (significance of OIDs and
reference binding).
 Despite the cautionary tone of this paper, we are
pleased with the relative success of this experiment, and are
encouraged to pursue several promising directions for future
work. From a practical standpoint, UCHGR developers remain
enthusiastic regarding the original goal of achieving a risk
mitigating RDB to ODBMS migration strategy.  Consequently a
full-fledged port and performance comparison is underway.  The
project staff is particularly keen on exploiting the ODBMS
version to explore relaxed concurrency control mechanisms
appropriate for molecular biology applications, in which database
modifications are mostly monotonic, and some degree of data
inconsistency is part of daily life [BK91].

On a research level, we continue to be
intrigued by the question of data evolution within this dual
database environment.  As remarked early on, among the many
services provided by GORP framework is meta to concrete data
representation conversion.  The question thus arises:  if the
ODBMS port is a complete success, and the RDB is retired, how
will data evolution be accommodated?  We speculate that this
dual database approach constitutes a “best of both worlds”
solution:  the ODBMS provides direct, fast, application-pertinent
object access, and the RDB provides a generalized evolution-
tolerant representation.

The long term solution thus may be a hybrid system, in
which the ODBMS manages the live data, which is flushed to the
RDB when data evolution is required.  The GORP framework is
then updated to present the new concrete data model, recompiled
(along with applications, as necessary) and live data are loaded
(or faulted in) as production resumes.  The upshot is an ironic
denouement of our plot:  the RDB is now the cache.
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