

EPR Severe Accident Design Features

Tim Stack Technical Integration AREVA NP, Inc.

NRC Severe Accident Guidance

- Following 1979 accident at Three Mile Island-2, NRC recognized that severe accidents needed further attention.
- NRC developed guidance for resolving safety issues for reactor accidents more severe than DBAs:
 - Severe accidents are events in which substantial core damage occurs
 - Severe accidents represent the major risk remaining for nuclear plant operation
- For existing plants, NRC determined that severe accidents do not pose an undue risk to the public.
- For new plants, NRC determined that enhanced features should be provided to mitigate consequences of severe accidents. Per SECY-90-016 & 93-087, following issues require consideration:
 - Hydrogen Generation and Control
 - Core Concrete Interaction
 - High Pressure Core Melt Ejection
 - Containment Performance

Severe Accident Licensing Basis in U.S.

Consideration of severe accidents is integral part of NRC licensing review for new plant, but it is <u>not</u> part of plant "design basis".

NRC guidance for severe accident mitigation features for new plants reflects this position:

- Non-safety related systems
- Not seismically qualified
- Equipment survivability; not environmental qualification (10 CFR 50.49)
- Consideration of single failure not required

U.S. EPR Safety Philosophy

> EPR safety philosophy is hierarchical:

- Prevent deviations from normal operation
- Detect deviations and prevent escalation to DBA conditions
- Control DBAs and prevent escalation to severe accidents
- Mitigate consequences of severe accidents

EPR design features aimed at limiting radiological consequences

 Design objective to minimize need for countermeasures (e.g., evacuation)

Robust U.S. EPR design features for severe accidents

U.S. EPR Severe Accident Philosophy

U.S. EPR designed for broad spectrum of severe accident phenomena and issues:

- Hydrogen Generation and Control
- Core Concrete Interaction
- High Pressure Core Melt Ejection
- Containment Performance

Robust design of severe accident mitigative features demonstrated through evaluation of bounding sequences.

Severe accident mitigation philosophy is focused on maintaining containment integrity

AREVA NP, INC.

R&D Basis for Severe Accident Features

U.S. EPR features built upon results of testing programs, for example:

- ACE, MACE, OECD-MCCI programs at Argonne National Labs
- CORESA, KALI, H2PAR, KATS programs in Europe
- Internal testing programs in AREVA

R&D basis supports deterministic design conclusions <u>and</u> validation of analytical codes (e.g., MAAP).

Severe Accident Design Features

Core Melt Stabilization System (CMSS)

- CMSS protects integrity of containment basemat
- CMSS designed to passively spread and stabilize molten core debris

CMSS features accomplish staged melt progression

- In-vessel melt progression
- Controlled RPV failure
- Melt retention and conditioning
- Melt relocation and quenching
- Long-term melt stabilization

In-Vessel Melt Progression

- In-vessel melt progression is dependent on RPV internals
- Corium will accumulate in lower RPV head as melt progresses
- Accumulation in lower head can lead to RPV failure and relocation into reactor cavity

Severe Accident Depressurization Valves

- Dedicated valves preclude high RC pressure core melt ejection concerns
- Valve sizing ensures rapid depressurization of RCS
- EPR reactor cavity design limits Direct Containment Heating in case of RPV failure at elevated pressure

AREVA

Melt Retention and Conditioning

- Reactor cavity is designed to temporarily retain molten core debris prior to spreading and stabilization processes
- Melt retention and conditioning is integral part of melt stabilization strategy
 - Limits uncertainties associated with RPV release states
 - Core concrete interaction within reactor cavity lowers melting temperature of corium and promotes spreading

Melt Spreading and Relocation

- After melt plug failure, conditioned melt will relocate into spreading area (shallow crucible)
- Large mass and low viscosity of conditioned melt promotes spreading
- Large melt spreading area promotes cooling, and aids in subsequent stabilization processes
- Spreading area is dry at time of melt relocation to preclude exvessel steam explosion

Spreading Area and Cooling Structure

- Core melt is retained within spreading area and is passively cooled on all sides
- Cooling structure consists of finned iron elements that are protected from corium with sacrificial concrete
- Flooding of spreading area is initiated by thermally sensitive spring-loaded valves (passive)
- Water from IRWST gravity fills cooling channels and overflows onto melt surface
- Melt quenching is performed at low flow rates to minimize fuel coolant interactions

Short – Term Melt Stabilization and Cooling

Passive Melt Cooling:

Gravity-driven flow of water from IRWST

At equilibrium water level, cooling is also established for debris remaining within transfer channel and lower reactor cavity pit

Active cooling is <u>not</u> required for ~12 hours to maintain containment pressure within design limits

Severe Accident Heat Removal System

Long-Term Melt Stabilization and Cooling

Active Melt Cooling:

Water injection by SAHRS into spreading area with overflow into IRWST

Elevated water level establishes long-term cooling for all debris that potentially remains in either transfer channel, reactor cavity pit, or RPV

Formation of sub-cooled water pool above melt precludes need for further containment spraying (atmospheric pressure)

Combustible Gas Control System (CGCS)

- CGCS manages hydrogen risk inside containment following severe accidents and design basis LOCAs, and accomplishes following functions:
 - Maintains <u>local</u> atmospheric concentration of hydrogen below 10% (by volume)
 - Reduces <u>global</u> atmospheric concentration of hydrogen below 4% (by volume) ignition limit prior to containment spray actuation
 - Maintains adiabatic isochoric complete combustion (AICC) pressure from global hydrogen combustion below containment design pressure for representative severe accident sequences

> U.S. EPR CGCS is comprised of:

- Passive Autocatalytic Recombiners
- Rupture panels (passively actuated on differential pressure) located at top of SG compartments
- Mixing dampers (passively actuated on differential pressure) located in lower portions of containment

Passive Autocatalytic Recombiners (PARs)

- PARs use catalyst to chemically recombine hydrogen and oxygen
- 47 PARs distributed throughout containment
- PARs used in EPR have high efficiency, even in steam saturated atmosphere
- Efficiency of PARs demonstrated through testing programs
- PARs currently used in KONVOI plants

Summary – Severe Accident Features

U.S. EPR includes design features to manage broad spectrum of severe accidents issues:

- Hydrogen Generation and Control
- Core Concrete Interaction
- High Pressure Core Melt Ejection
- Containment Performance
- Severe accident management strategy of U.S. EPR is based on domestic and international research
- Severe accident design features of U.S. EPR aimed at limiting radiological consequences and minimizing need for countermeasures (e.g., evacuation)