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Summary 
The purpose of this study was two-fold: (1) Evaluate LiDAR data as a tool for studying tectonic 
geomorphology and earthquake geology and develop methodologies for utilizing these types of 
data in determining various geomorphic metrics of surface processes and landscape history.  (2) 
Characterize the tectonic geomorphology of the NSAF at various temporal and spatial scales in 
order to better understand San Andreas fault geometry, slip distribution and off-fault deformation 
as manifest in landscape development and response. 
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Introduction 
The objective of this research was to analyze LiDAR (LIght Distance And Ranging) 

topographic data of the Gualala block section of the northern San Andreas fault (NSAF) and 
associated marine terraces between the towns of Fort Ross and Mendocino, California acquired 
in February of 2003 to gain earthquake hazard understanding for the NSAF (Figure 1). The 
purpose was twofold:  (1) Evaluate LiDAR data as a tool for studying tectonic geomorphology 
and earthquake geology and develop methodologies for utilizing these types of data in 
determining various geomorphic metrics of surface processes and landscape history.  (2) 
Characterize the tectonic geomorphology of the NSAF at various temporal and spatial scales in 
order to better understand San Andreas fault geometry, slip distribution and off-fault deformation 
as manifest in landscape development and response. 

Specifically, we are focused on the late Pleistocene marine terraces in this region and 
their importance in constraining a SAF slip rate at Alder Creek, near Point Arena, where the 
terraces are offset by the fault as it intersects the coast. 

In addition, we analyzed the topography along the NSAF to constrain patterns of 
distributed, SAF-driven, deformation recorded in the landscape.  Such patterns of deformation 
may reflect SAF geometry and may be useful for inferring rupture behavior and slip history. 
 
 
 
 
 
 

 

Figure 1. Map showing extent of NSAF LiDAR 
coverage and proposed study area. NSAF data 
is represented as a hillshade image. Trace of 
the 1906 earthquake rupture is shown in red. 
(Jennings, 1994). "Example 3" box shows 
approximate location of Figure 2. Figure taken 
directly from: 
http://quake.usgs.gov/research/geology/lidar/ 
without modification. 
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Evaluate LiDAR data as a tool for studying tectonic geomorphology and earthquake geology  
 
GEON LiDAR Workflow and science community support 

Digital data acquisition technologies such as LiDAR (Light Distance And Ranging) 
topography have resulted in an increase in the volume and complexity of scientific data that must 
be efficiently managed, distributed and processed in order for it to be of use to the scientific 
community. Capable of generating digital elevation models (DEMs) more than an order of 
magnitude more accurate than those currently available, LiDAR data offers the opportunity to 
study earth surface processes at resolutions not previously possible yet essential for their 
appropriate representation.  

Unfortunately, access to these datasets for the average user is difficult because of the massive 
volumes of data generated by LiDAR. The distribution and processing of large LiDAR datasets, 
which frequently exceed billions of data-points, challenge internet-based data distribution 
systems and readily available desktop software. Figure 1 shows the conceptual workflow 
required to produce results for scientific analysis using LiDAR. 

Our approach to the distribution and processing of LiDAR data capitalizes on 
cyberinfrastructure developed by the GEON project (http://www.geongrid.org) to harness 
distributed computing resources. We utilize a workflow-based solution, the GEON LiDAR 
Workflow (GLW), which begins with user-defined selection of a subset of point data and ends 
with download (including dynamically generated metadata) and visualization of DEMs and 
derived products. Users perform point cloud data selection, interactive DEM generation and 
analysis, and visualization all from an internet-based portal. Users may experiment with DEM 
resolution and DEM generation algorithms so as to optimize terrain models for their application. 
By using cyberinfrastructure resources, this approach allows users to carry out computationally 
intensive LiDAR data processing without having appropriate resources locally.  

In this project, we coordinated with our GEON colleagues to serve the Northern California 
earthquake science community by providing training and assistance on access to and processing 
of Northern San Andreas Fault LiDAR data (NASA/USGS). As of April 23, 2008, 972 NSAF 
jobs were submitted processing of 6,610,365,763 points. Our contributions included numersous 
informal consultations with colleagues about the LiDAR data and processing of it. In addition, 
we contributed significant images and expertise to the Northern California LiDAR workshop led 
by Kevin Furlong. Figure 2 shows an example of the tectonic geomorphology along the San 
Andreas Fault near Mill Gulch south of Point Arena. 
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Figure 2. Example view of gridded LiDAR data selected and processed in the GLW using the NASA/USGS dataset 
for the Northern San Andreas Fault. In this ~2 m digital elevation model of Mill Gulch, the green areas show the 
vegetative canopy taller than about 50 cm overlain on the topography. Canopy height is colored in shades of green 
with darker colors indicating taller trees. The red lines show the discontinuous traces of the San Andreas Fault which 
broke in the 1906 earthquake. 

 
Exploiting LiDAR for Regional Morphologic Correlation and Dating of Wave-cut and 
Fault-Controlled Landforms 

The capability to generate high-resolution Digital Elevation Models (DEMs) from LiDAR 
data (Light Distance and Ranging, also known as Airborne Laser Swath Mapping, or ALSM) 
across broad geographic regions provides a new tool for studying landscape response to tectonic 
deformation. Expanded LiDAR coverage from the Plate Boundary Observatory (PBO) and the 
National Center for Airborne Laser Mapping (NCALM) offers the prospect of applying these 
data to a variety of tectonic geomorphic studies. The data volume and point-density of LiDAR 
allows extensive repetition of profile-based landscape analyses without the need for laborious 
total station transects. Traditional DEMs, such as the USGS National Elevation Dataset, lack the 
resolution necessary for these types of analyses.  

We exploited LiDAR data for landform correlation by conducting profile-based morphologic 
dating (linear and non-linear diffusion) of fault scarps and marine, lake and fluvial shorelines. In 
brief, this method assumes that topographic profile development (H(x,t)) results solely from 
transport limited erosion and deposition of slope dependent hillslope transport (e.g., Hanks, et 
al., 1984; Hanks, 2000): 
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θ is initial scarp slope, b is the far-field or fan slope, k is the transport rate, t is time (note that 
kt is the morphologic age—the unique measure of scarp form with respect to age and transport 
rate. It has dimensions of m2). Figure 3 shows the evolution of a simple scarp. 

The resolution and geographic extent of LiDAR coverage makes broad spatial correlations 
possible, assuming that controls on the hillslope processes are relatively constant across the 
region. Due to the high data density, numerous topographic profiles can be extracted from a 
DEM and analyzed for morphologic age. Correlation from profile to profile can then be 
established by comparing morphologic age for various landforms in a research area. With 
calibration, morphologic dating also offers the opportunity to constrain absolute ages of 
landforms. Once calibrated, landforms across the region can be quickly dated via profile-based 
analysis of the LiDAR-derived DEM. In addition, morphologic comparison of landforms of 
known age offers the opportunity to test the role of other constraints, such as aspect, 
microclimate, and substrate type on landform development by diffusive processes.  

 

 
Figure 3. Model of simple linear diffusion of a theoretical scarp-like landform.  Our algorithm assumes 
initially vertical riser morphology rapidly evolves to a steep, ramp-shaped topography via mass wasting 
processes immediately after formation.  Diffusive process then continue to modify the riser (e.g. 
Rosenbloom and Anderson, 1994; Hanks et al., 1984, Hanks, 2000). 
 

 
Tests on synthetic profiles demonstrate the ability of morphologic dating to differentiate 

landforms of morphologic age 50 m2 from ones of 100 m2. Figure 3 shows the results of the 
analysis. We used the Diffusion scarp dater written by George Hilley (Hilley, 2001 and Hilley 
and Arrowsmith, 2001). It allows calculation of finite scarp Root Mean Square Error for fits of 
observed (LiDAR-derived) profile compared to modeled profile and forward modeling of 
topographic transect data. It is available at: http://activetectonics.asu.edu/diffuse.  We were 
certainly able to differentiate the two different-aged landforms, even accounting for ±50 cm of 
noise in the profiles. 

To continue the evaluation of the method, we revisited the classic diffusion modeling studies 
of Hanks, et a., 1984 of the Santa Cruz, California sea cliffs (figure 5 and table 1) and the Hanks 
and Wallace, 1984 study of the Lake Lahontan shoreline scarps (figure 6 and table 2). The results 
show that indeed we could replicate their results, but the method is not strongly sensitive to 
varying parameters, so our equally good results for the Santa Cruz shoreline differs by several 
hundred m2 which is tens of kyr. 
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Figure 4. Illustration of morphologic dating approach that we exploited. In this contrived example, 5 
profiles each from the two terrace risers shown in map view in A are analyzed. B) The synthetic profiles 
were produced by forward model calculations of 500 and 1000 m2 profiles starting with a 10 m riser and 
flat tread (for a diffusion constant (k) of 10 m2/ka the morphologic age (kt) yields an absolute age of 
50,000 yrs and 100,000 yrs respectively). To the resulting profiles we added +/- 50 cm of noise to 
simulate local heterogeneity in the surface as is typically encountered and would be likely in the LiDAR 
derived profiles. Profile data shown in shades of blue are 500 m2 risers while red and yellow data are from 
1000 m2 risers C) Best fitting model profiles to the synthetic "data." D) Illustration of the relationship 
between RMS and morphologic age for the 5 different profiles of the two different risers. 
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Figure 5. A) Santa Cruz, CA marine terrace topographic profile recreated from Hanks et al., 1984.  Ages 
for the three risers come from U-Th and amino acid racemization data, global sea level curves and the 
assumption of a constant uplit rate of 0.35 m/ka (see Hanks et al., 1984  B) Plot showing slope calculated 
along the marine terrace topographic profile.  Plot illustrates qualitative observation that the older risers 
have more subtle topography - peak slope diminishes and the scarp widens. C) Model calculations (solid 
lines) for the Santa Cruz terrace risers.  Assumed initial morphology shown as dashed blue line.  Actual 
topography shown as red dots.  Model parameters are summarized in table 1. 
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Figure 6. A) Lake Lahontan shoreline topographic profiles recreated from Hanks & Wallace, 1985. Shown 
are the profiles for which Hanks & Wallace performed model calculations. B) Model calculations (solid 
lines) for two Lake Lahontan shorelines.  Assumed initial morphology shown as dashed blue line.  Actual 
topography shown as red dots.  Model parameters are summarized in Table 2. 
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Application of this technique to recently acquired LiDAR datasets in northern California and 
in the Basin and Range province illustrates the power of morphologic dating for establishing 
correlations among regional landforms.   

We blindly applied the morphologic dating technique discussed above to fault scarps cutting 
the Sheep Creek alluvial fan in Death Valley California (thanks to Thad Wasklewicz, U. 
Memphis, for generously sharing a portion of his Death Valley ALSM dataset).  Topographic 
profiles were extracted from the ALSM data and then analyzed for morphologic age (Table 3). 
Figure 7 shows the map location of the profiles on shaded relief and a simple slope offset 
analysis (evaluates the changing slope at the scarp midpoint as a function of the offset and age). 
Plotting the topographic transects in the slope offset space revealed significant variation in κt 
along strike. The slope offset plot suggests low morphologic ages (< 5 m2/ka) for the Sheep 
Creek scarps.  It is difficult to assign any scarp to a single κt. Many of the topographic profiles 
reveal an over-steepening of the scarp near its base and a bevel in the upper scarp.  Qualitative 
forward modeling of these transects may yield a very different kt than that of the analytical 
solution, depending upon what portion of the scarp one chooses to fit. 

 
Figure 7. A) Hillshade of 1 m DEM derived from ALSM data.  Three fault scarps clearly offset the Sheep 
Creek fan.  Locations of topographic profiles extracted from the DEM are shown as colored lines (red: 
scarp 1, green: scarp 2, orange: scarp 3). B) Slope offset plot for topographic transects across the three 
Sheep Creek fan scarps.  Transect data shown as colored Xs.  Also shown are model calculations for a 
variety of kt values.  The transects generally plot at low kt values (< 5 m2/ka) however the significant 
scatter in the data makes it difficult to associate any scarp with a single kt value. 
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Morphologic dating has potential utility for correlating marine terraces over significant 

lengths of coast line.  In this final portion of the morphologic dating study, we compared 
topographic transects extracted from a small piece of coastal LiDAR data to test the technique's 
ability to differentiate risers of different ages. We applied this to the extensive marine terraces 
mapped by Prentice and Crosby at Point Arena (Figures 8, 9, and Table 4). 
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Figure 8. A) Hillshade of 1.8 m bare earth DEM derived from LiDAR data. The three lowest marine terrace 
risers are mapped by colored lines  (blue: riser 1, green: riser 2, orange: riser 3).  Mapping is from aerial 
photography and the LiDAR data.  Topographic profiles extracted for this study are  shown as straight line 
segments, colored by riser. B) Calculated model fit to transect across riser 1 (black line). The green line 
shows a qualitative best fit to the upper portion of the riser.  The analytical solution is driven to higher κts 
due to excess mass on the terrace platform.  We favor a best fitting model of the upper riser where the 
mass excess problem exists. 

 
Figure 9. Riser 1. Upper plot shows centered topographic profiles across riser 1.  Lower plot shows slope 
along the topographic profile.  Red lines denote one sigma buffer around the red profile to demonstrate 
the extent of the high-frequency noise in the LiDAR data.  Note the along strike variation in riser 
morphology. Riser 3. Upper plot shows centered topographic profiles across riser 3.  Lower plot shows 
slope along the topographic profile.  Note the along strike variation in riser morphology - risers shown with 
blue, yellow and cyan dots and blue x's all show evidence for rejuvenation. 
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In conclusion, application of morphologic dating techniques to LiDAR/ALSM datasets offers 
an opportunity to correlate landforms over broad geographic regions. This study demonstrates 
that diffusion equation analysis is an over-simplified technique that is highly dependent on 
transect selection.  The abundance of high-resolution topographic data provided by LiDAR 
creates a new suite of complications that need to be addressed in order to make morphologic 
correlation effective.  Ultimately, these complications provide insight into the geomorphic 
process. Complications in the morphologic age analysis can be traced to these causes:  landform 
rejuvenation, non-transport limited conditions, non-linear diffusion, and non-diffusive 
conditions. High-frequency noise in the LiDAR data effects slopes along the profile.  
Undersampling or filtering the DEM for the slope calculations helps with this problem. Further 
statistical analysis of the profile data will quantify correlation and help to resolve some of the 
complications that LiDAR data introduces to morphologic analysis. 
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Exploration of LiDAR point cloud data artifacts, return density, and digital elevation model 
generation 

The growing availability of LiDAR (Light Distance And Ranging (a.k.a. ALSM – Airborne 
Laser Swath Mapping)) data in the earthquake geology and tectonic geomorphology 
communities means that these powerful data are being utilized in an increasing number of 
research projects. LiDAR point cloud data (x, y, z, return classification) (Figure 10) are 
challenging to manipulate, so users typically only take advantage of interpolated surfaces (digital 
elevation models; DEMs) generated by the LiDAR data vendor for their analysis. However, by 
not returning to the LiDAR point cloud data, users may fail to fully exploit the richness of these 
data sets. 

Initiating geomorphic analyses and visualizations with the point cloud gives users more 
understanding of the data and control over how those data characterize the landscape. Details 
such as the interpolation algorithm and grid resolution can significantly affect the manner in 
which the resulting DEM represents the landscape. In addition, beginning with the LiDAR point 
cloud data allows the user to assess the homogeneity and density of ground returns in the area of 
interest (Figure 11) and to evaluate potential artifacts in the data caused by errors in data 
acquisition and processing (e.g. point misclassification) (Figure 10). By understanding the 
variation in ground return density (which can vary due to topography, canopy characteristics and 
acquisition parameters) (Figure 11), the user has a better understanding of potential artifacts that 
may be introduced into their DEMs by this variation. 

Using LiDAR point cloud data from the Northern San Andreas Fault (Figure 1) recently 
made available via the GEON LiDAR Workflow (GLW) 
(http://www.geongrid.org/science/lidar.html), we focused on evaluation of LiDAR point return 
density in both forested and unforested landscapes near Fort Ross, California. This prototypical 
methodology was originally presented as Crosby et al., 2006 and demonstrates that by evaluating 
LiDAR ground return density before generating a DEM, the user is able to performed 
“informed” DEM generation whereby the resolution of the DEM is optimized to take full 
advantage of the data resolution (Figures 11, 12, and 14). This analysis revealed that DEMs 
generated from LiDAR point cloud data often do not take full advantage of the point return 
density, producing DEMs that have multiple returns per DEM cell. LiDAR DEMs can be 
accurately produced down to a one point per pixel on average threshold. We also explorde the 
accuracy of common DEM interpolation algorithms to fit the LiDAR point cloud (Figure 13). In 
areas of high-ground return density relative to the grid resolution, there is little variation between 
interpolation algorithms in the accuracy with which they fit LiDAR ground returns. 

Through interactive exploration and interpolation of LiDAR point cloud data, users gain a 
better understanding of the strengths and weakness of their data and are able to optimize DEM 
generation to represent the landscape they are studying. This approach to working with LiDAR 
data allows tectonic landforms to be delineated more efficiently and with greater detail than by 
working with the vendor generated DEMs. 
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Figure 10. 3D visualization of classified LiDAR point cloud data. These images show a NE view up Mill 
Gulch near Fort Ross, CA. Note U.S. Highway One in the lower left of each image. A) 3D rendering of 
ground returns (black) and vegetation returns (green) over the bare earth DEM (brown). B) 3D rendering 
of ground returns (black) and vegetation DEM (shades of green color coded by height with darker shades 
of green for taller vegetation -- maximum tree height is approximate 280 ft) over the bare earth DEM 
(brown). C) 3D rendering of ground returns (black) over the bare earth DEM (brown). Note the lack of 
ground returns (gaps in the black points) underneath the canopy. D) 3D rendering of vegetation returns 
(green) over the bare earth DEM (brown). Note returns classified as vegetation on the flat surfaces in the 
foreground. These points are misclassified, reclassifying them as ground returns would yield higher 
ground return densities in these areas. The misclassification of these points is likely an error due to swath 
mismatches within the processed data set. This offset is likely traceable to the mislocation of the aircraft 
due to GPS or Inertial Navigation problems. 
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Figure 11. LiDAR return density evaluation. This figure shows the number of LiDAR ground (A) and 
vegetation (B) returns for each 6 ft pixel in the DEM. Note the limited vegetation returns on the flat, grass-
covered, marine terraces and high return density (up to 12 per pixel) in the heavily forested drainages. 
Also note the very low number of ground returns (< 1 per pixel) beneath the forest canopy (recall Figure 
I.1C). This lack of ground returns beneath dense vegetation is likely due to poor penetration of the LiDAR 
pulse through the canopy and the point classification algorithm. The plots show the distribution of points 
per pixel for both ground (C) and vegetation (D) returns. Note that the majority of 6 ft pixels have 2 or 
more ground returns. Thus, in certain portions of the data set, it may be appropriate to generate DEMs at 
resolutions better than 6 ft in order to take full advantage of the richness of these data. Conversely, these 
figures illustrates that in certain areas, due to poor penetration of the tree canopy, there are very few 
ground returns. In these areas the density of ground returns may not support the 6 ft DEM resolution as 
produced by the data vendor. If DEM generation is going to be undertaken in these areas of very low 
return density, it is necessary to interpolate to span the gaps in the data and thus the method (gridding 
algorithm) becomes important. 
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Figure 12. Testing digital elevation model resolution based on LiDAR ground return density. In order to 
illustrate how and understanding of ground return density can inform the generation of digital elevation 
models (DEMs) from LiDAR point cloud data, a ~280,000 ground return subset of the Northern San 
Andreas LiDAR data was selected. A) The dataset extent is shown in the yellow box. This region was 
selected because it is largely unvegetated and has a high density of ground returns (B). In addition, the 
area is crossed by a marine terrace riser and also contains a number of sea stack remnants. With the 
except of the brush in the upper portion of the sample area, the point density evaluation (B) shows that 
each 6 foot DEM pixel is sampled by at least 2 LiDAR ground returns. This density of ground returns 
suggests that a DEM at resolutions greater than 6 feet are supported by the data. C) Standard, vendor 
provided 6 foot DEM for the area shown in (B). D) Point cloud data interpolated to produce a 3 foot DEM. 
Note the increased clarity of subtle features in the landscape when compared to the 6 ft DEM (C). E) 
Point cloud data interpolated to produce a 1.5 foot DEM. Again, note the increased clarity of subtle 
landscape features when compared to both the 6 (C) and 3 foot (D) DEMs. Given the ground return 
density evaluation shown in (B), the 1.5 foot DEM is likely at the threshold of what is appropriate for this 
data set. 
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Figure 13. Comparison of common DEM generation interpolation algorithms. The images in this figure 
explore the accuracy of common DEM interpolation algorithm to fit the LiDAR point cloud. The analysis is 
performed for the region shown in the yellow box in Figure 12A. Each image is a 3 foot DEM produced 
with one of four interpolation algorithms: A) Spline B) TIN (Triangular Interpolation Network) C) IDW 
(Inverse Distance Weighted) D) Kriging. The elevation of the grid at each of the 280,000 individual ground 
return points was then extracted from the DEMs to test the fit of the surface to the original ground returns. 
The histograms show the differences between the points and the corresponding DEM pixel. The mean 
and standard deviation are also indicated. This analysis indicates that in areas of high-ground return 
density (like this sample data set), there is little variation between interpolation algorithms in the accuracy 
with which they fit LiDAR ground returns. Therefore, interpolation algorithm is likely not the most important 
factor in the generation of DEM in such situations. 
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Figure 14 (following pages). Digital elevation model generation in areas of low ground return density. A) 
Hillshade of the first return surface (full feature) DEM for a portion of the Northern San Andreas fault 
(NSAF) LiDAR data (Figure 1) that is characterized by very dense forest canopy on steep slopes. B) 
Hillshade of the bare earth DEM of the area shown in (A). The San Andreas fault zone crosses the image 
from the upper left to lower right (with in the orange box). Much of the NSAF is located in landscapes like 
this example. Although the LiDAR data help to reveal the geomorphology of the SAF fault zone, the 
density of ground returns in these areas is low due to difficulty of LiDAR penetration through the dense 
forest canopy. When these data are interpolated, the sparse density of ground returns results in artifacts 
such as the triangular facets (associated with the TIN interpolation used by the data provider) visible in 
the bare earth image. Changing interpolation algorithm and/or parameters may enhance the landscape 
representation in these areas by altering the way that the interpolated surface treats the sparse ground 
returns. C) This image shows the number of ground returns per 6 foot DEM pixel. Note that in most of the 
forested areas there is less than one ground return per pixel. Interpolating these data to DEMs of 
resolutions less than 6 feet would not be appropriate in this case. D) Hillshade of a 6 foot bare earth DEM 
of the area shown in (A). This DEM was generated by interpolating the same ground return LiDAR point 
cloud data (~301,000 points) as in (B) but the spline algorithm (settings: DMin=1 ft, tension=40, 
smoothing=0.1) available in the GEON LiDAR workflow was used instead of a TIN. The spline algorithm 
does not produce the large facets associated with the TIN so it provides a smoother representation of the 
landscape. The spline surface is characterized by generally smooth surface with occasional bumps or 
“pimples”. However, the extent to which the representation of the SAF fault zone geomorphology is 
enhanced by the spline is open to debate. Furthermore, the triangular facets artifact produced by the TIN 
are a clear indication of low ground return density. These facets alert the users to the return density 
problem with the data set while the spline algorithm conceals some of these data density issues and may 
therefore fool the user into believing that the data set is robust. One could also use a semi-transparent 
overlay color coded by return density to assess this issue. For the reasons discussed above, users 
working with these data may wish to further explore the role of interpolation algorithm and parameters in 
low-ground return environments. 
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Characterize the tectonic geomorphology of the NSAF at various temporal and spatial scales 
in order to better understand San Andreas fault geometry, slip distribution and off-fault 
deformation as manifest in landscape development and response. 

In order to address the stated research objectives, we utilized a combination of detailed 
geomorphic mapping and landform characterization combined with analysis of Digital Elevation 
Models (DEMs) in a Geographic Information System (GIS) environment.  The primary datasets 
used in this research are late Pleistocene marine terrace mapping (Prentice et al., 2003) and high-
resolution digital topography (both 1.8 m and 10 m DEMs) from LiDAR and the USGS National 
Elevation Dataset (NED).  

Prentice (1989) provides a late Pleistocene slip rate for the SAF at Alder Creek of 16 to 24 
mm/yr based on tentative terrace correlations (Muhs et al., 2003; Prentice et al., 2000 and 2001). 
This slip rate is the only Pleistocene rate for the SAF north of Point Reyes and is a critical data 
point for understanding SAF system behavior and segmentation.  This slip rate is based upon the 
terrace mapping shown at left.  The uncertainty in terrace correlation translates directly into 
uncertainty in the late Pleistocene slip rate for the SAF at Alder Creek.  On of the greatest areas 
of uncertainty in the terrace correlation is matching the terraces across the SAF.  The significant 
elevation difference of the terraces across the SAF raises questions about the validity of the 
correlation.   

Figure 15 shows our tentative correlation for the three lowest, late Pleistocene, marine 
terraces between Fort Ross and Mendocino overlain on a hillshade of the Northern San Andreas 
fault LiDAR dataset.  This terrace correlation was established via geomorphic mapping from 
aerial photography and LiDAR data and with simple relative position arguments.  This terrace 
correlation provides an important datum that may be used to constrain horizontal and vertical 
deformation associated with the SAF.  Age control for the late Pleistocene terraces along this 
portion of coastal California is limited to three Alpha- spectrometric U-series analysis of three 
marine terrace corals collected near the Point Arena Lighthouse (Muhs et al., 1990, 1994, 2003). 

We have compiled an updated map of the late Pleistocene marine terraces along 
approximately 125 km of coastline in Sonoma and Mendocino Counties.  To determine the 
elevation of the marine terrace inner edges throughout the study area, we began with the inner 
edge mapping shown in Figure 15.  Next, the elevations of the inner edges were extracted from 
the NSAF LiDAR DEM.  Analysis of this mapping in tandem with the NSAF LiDAR data 
suggests significantly higher marine terrace elevations in an area bounded by the SAF on the 
south and the Navarro River to the north. Figure 16 shows the inner edge elevations of the three 
lowest marine terraces between Fort Ross and Mendocino.  These terraces provide an excellent 
marker for the study of spatial and temporal variation in off-SAF deformation.  The plot shows 
elevation vs. the northing component of the California State Plane coordinate system. 

If uplift rates north of the SAF are in fact higher, this signal should also be expressed in older 
portions of the landscape. To test this hypothesis, we undertook an analysis of local relief in the 
high topography adjacent to the marine terraces (Figure 17).  10 m DEMs were used to construct 
topographic envelopes and sub-envelopes and to calculate the topographic residual (e.g. 
Burgmann et al., 1994).  Through the analysis of envelope/sub-envelope residuals, zones of high 
relief can be located in the landscape. These zones have been shown to correspond directly with 
regions of greatest tectonic uplift and deformation.  The topographic residual analysis provides 
an independent test of the apparent differential uplift observed in the marine terraces and may be 
an opportunity to constrain SAF fault geometry and/or segmentation.  
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Figure 15.  Overview of NSAF LiDAR with mapping of the San Andreas Fault and marine terraces. See 
text for explanation. 
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Commentary about terrace elevation plot 
(figure 16): 

 

• Inner edge elevations for the three lowest 
marine terraces are significantly higher 
immediately to the north of the SAF than they 
are at greater distances north or south of the 
SAF.   
• The area of elevated marine terraces is bound 
by the SAF on the south and the Navarro River 
to the north. This bulge in the terraces is 
asymmetric with the highest elevations 
immediately to the north of the SAF.  Terrace 
elevations decreasing gradually to the north 
until they level off just north of the Navarro.  
• Terrace elevations at the southern and 
northern ends of the study area are similar.  
• Warping of the terraces between Gualala and 
Point Arena may indicate increased uplift rates 
in this area as well. 
• The scatter in elevations for a given terrace 
inner edge is largely due to variation in the 
thickness of sediment / colluvium overlying the 
bedrock terrace platform.  Other factors 
contributing to the elevation scatter include 
digitizing errors and locations where the inner 
edge mapping crosses drainages incised into the 
terrace. 
• Plots such as this one provide an indication of 
potential errors in the terrace correlation and 
should help to guide us to refine the terrace 
mapping and correlation   
 
Assuming the terrace correlation is correct, 
tentative late Pleistocene uplift rates vary by a 
factor of three in the study area: 
--Immediately north of the SAF:  ~0.75 - 0.95 
mm/yr 
--South of Gualala/near Mendocino:  ~0.28 - 
0.38 mm/yr 
 
 
 
 
Figure 16.  Marine terrace inner edge elevations 
versus distance along the coast in feet. Variable 
elevations indicate differential surface uplift along 
the coast. 

 26



The greatest local topographic relief is immediately north of the SAF. This zone of high 
relief extends northward to the Navarro and east to the edge of the study area.  Intuitively, the 
area of greatest local relief corresponds directly with the area of highest topography in the study 
area. The geometry of the high relief region suggests uplift adjacent to the SAF and tilting of the 
range up and away from the fault. The hinge for this tilting appears to be just to the north of the 
Navarro. The orientation of the Navarro is almost perfectly coincident with the margin of the 
high relief zone, one may hypothesize that the location of the Navarro has been migrating 
northward with time as the topography to the south gains elevation, forcing the drainage to slip 
to the north. The spatial correlation between high topographic residuals and increased terrace 
elevations suggests that the observation of elevated inner edge elevations are due to higher uplift 
rates north of the SAF and not due to errors in the marine terrace correlation. 

In summary, it is possible to infer that the 16-24 mm/yr slip rate given by Prentice (1989) for 
the SAF at Alder Creek is valid. Assuming the terrace correlation is correct, uplift rates just north 
of the SAF are ~0.75 - 0.95 mm/yr.  Rates away from the SAF in the study area are 
approximately three times slower at ~0.28 - 0.38 mm/yr. Additional work is necessary to 
examine possible Pliocene marine terrace units (e.g. Higgins, 1960) in the higher topography that 
may be used to constrain vertical deformation rates over a longer temporal range.  Boundary 
element modeling of the observed deformation pattern can be used to help to constrain SAF 
geometry. 

 
Figure 17.  (top to bottom on right): current topography in the study area, envelope surface and points 
used to construct it, topographic residual and sub-envelope with channels that constrain this surface.  On 
the left is the topographic residual shown in map view.  Note that the areas of greatest local relief are 
located north of the SAF and south of the Navarro River. 
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