Measurements of the Longitudinal Spin Structure of the Nucleon at COMPASS

Roland Kuhn for the COMPASS Collaboration

TU München Physik-Department E18

June 18, 2007

and

bmb+f - Förderschwerpunkt

Maier-Leibnitz-Labor Garching bei München

Longitudinal Spin Physics at COMPASS Roland Kuhn

Outline

Physics Introduction

- 2 The COMPASS Experiment
 - Polarized Muon Beam
 - Polarized Target
 - Asymmetry Extraction

3 Results

- Inclusive DIS
- Semi-Inclusive DIS
- Delta G

Unpolarized Nucleon Structure

[DIS talk by Olaf Behnke, April 2007]

• quite well known thanks to HERA

Polarized Nucleon Structure

COMPAS:

[de Florian, Navarro, Sassot, Phys.Rev.D 71(2005), 094018]

- valence quark polarization quite well known
- direct measurement of strangeness and glue beginning

The Spin of the Nucleon

Decomposition of the Nucleon Spin

$$J_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q+g}$$

- only quark polarization well known, previously $\Delta\Sigma \approx 0.2 \div 0.3$
- gluon polarization extracted indirectly from QCD fits
- direct measurements of ΔG desirable

Deep Inelastic Lepton Scattering

DIS Variables

$$q = p_{\mu} - p'_{\mu} = (\nu, \vec{q})$$
$$Q^{2} = -q^{2} = \vec{q}^{2} - \nu^{2}$$
$$x_{B} = \frac{Q^{2}}{2M\nu} \in [0, 1]$$
$$y = \frac{\nu}{E_{\mu}} \in [0, 1]$$

Attention

 p_T is the transverse momentum of the produced hadron with respect to the virtual photon direction

Leading Order Polarized DIS

• lepton polarization is transferred to virtual photon, incurring depolarization factor *D*

•
$$\sigma^{\Rightarrow}$$
 selects q^{\downarrow} : vvvvvvv

• asymmetry A_1 between $\sigma^{\overrightarrow{\leftarrow}}$ and $\sigma^{\overrightarrow{\rightarrow}}$ related to $\frac{g_1}{F_1}$

Polarized Muon Beam Polarized Target Asymmetry Extraction

The COMPASS Collaboration

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

273 physicists, 24 institutes, located at CERN SPS

Polarized Muon Beam Polarized Target Asymmetry Extraction

COMPASS at CERN

Polarized Muon Beam Polarized Target Asymmetry Extraction

Production of Polarized Muon Beam

- only left-handed neutrino is produced in weak decay
- angular momentum conservation causes muon to be left-handed also

Roland Kuhn

 selection of muon momentum for given pion momentum determines muon polarization

Polarized Muon Beam Polarized Target Asymmetry Extraction

Beam Polarization

Monte Carlo simulation of the COMPASS beam line yields momentum dependent muon polarization

Polarized Muon Beam Polarized Target Asymmetry Extraction

The COMPASS Experiment

Polarized Muon Beam Polarized Target Asymmetry Extraction

Overview

- "Dilution Refrigerator" for cooling
- superconductive coils for spin alignment
- microwave antenna for dynamic polarization
- both polarizations measured at the same time

Polarized Muon Beam Polarized Target Asymmetry Extraction

Second Order Method

Count Rates in the Target Cells

$$u = \phi a_u n_u \sigma_0 (1 + P_u A_{\text{phys}}) \qquad u' = \phi a'_u n_u \sigma_0 (1 - P_u A_{\text{phys}})$$
$$d = \phi a_d n_d \sigma_0 (1 - P_d A_{\text{phys}}) \qquad d' = \phi a'_d n_d \sigma_0 (1 + P_d A_{\text{phys}})$$

- ϕ and σ_0 cancel in the asymmetry $A = \frac{u-d}{u+d}$
- field reversal yields *u*['] and *d*[']
- if the apparatus does not change during reversal, then

$$\frac{\langle a_u \rangle \langle a'_d \rangle}{\langle a'_u \rangle \langle a_d \rangle} = 1$$

and the set of two equations for the unknowns A_{phys} and $r = \frac{a_u n_u}{a_d n_d}$ simplifies to a quadratic equation in A_{phys}

Polarized Muon Beam Polarized Target Asymmetry Extraction

Acceptance Bias Cancelling

OMP

Physics Introduction The COMPASS Experiment Results Polarized Muon Beam Polarized Target Asymmetry Extraction

Exploiting the Microwave Reversal

Combining the Asymmetries

$$A = rac{w_+ A_+ + w_- A_-}{w_+ + w_-}$$
, $w_i = rac{1}{(\delta A_i)^2}$

- systematic false asymmetry correlated to target dipole polarity cancel if $w_+ = w_-$
- luminosity is equalized between + and better than 10%
- we are not systematics limited, so prefer to reduce statistical uncertainty
- after correcting for $A_{\text{false}} = \frac{1}{2}(A_+ A_-)$, statistical checks for individual asymmetry measurements become available, e. g. pulls method, χ^2 probability, etc.

Polarized Muon Beam Polarized Target Asymmetry Extraction

Event Weighting

The Idea

- every single event gives asymmetry ± 1 with error 1
- physics asymmetry usually greater by kinematic factors
- event-by-event evaluation of weight leads to optimum usage of statistics

Data Taking

- three beam times 2002–2004 (May–Nov)
- sharing *4:1* between longitudinal and transverse target polarization
- recorded 695 TB of raw data in longitudinal mode, integrated luminosity

 $\mathcal{L}\approx 1.5\,\text{fb}^{-1}$

Inclusive DIS Semi-Inclusive DIS Delta G

Measurement of A_1^d , $Q^2 > 1 \, { m GeV}^2/c^2$

- good agreement with global data set
- significant improvement at low *x*_B

COMPAS

Inclusive DIS Semi-Inclusive DIS Delta G

Extraction of g_1^d , $Q^2 > 1 \,\text{GeV}^2/c^2$

[Phys. Lett. B 647 (2007) 8-17]

Inclusive DIS Semi-Inclusive DIS Delta G

Principle of QCD Fits

- set of parameterizations of the parton distribution functions are fitted to the available data points
- DGLAP evolution equations are used to transport the fitted functions to the scale *Q*² of the individual measurements
- ΔG enters via evolution, not direct measurement (so far)
- LO or NLO evolution kernels, depending on desired application of PDFs

Inclusive DIS Semi-Inclusive DIS Delta G

QCD Fit to World Data

OMPA

- two equally good solutions, with $\Delta G > 0$ or $\Delta G < 0$
- significant impact on extrapolation $x_B \rightarrow 0$

Inclusive DIS Semi-Inclusive DIS Delta G

QCD Fit to World Data

Inclusive DIS Semi-Inclusive DIS Delta G

QCD Fit Results

Results with World Data Set

$$\Delta\Sigma = 0.30 \pm 0.01_{stat} \pm 0.02_{evol}$$

 $|\Delta G| \approx 0.2 \div 0.3$

COMPASS g_1^d Only

$$\Gamma_1^d = 0.0502 \pm 0.0028_{
m stat} \pm 0.0020_{
m evol} \pm 0.0051_{
m syst}$$

$$\Delta \Sigma = 9\Gamma_1^d - \frac{a_8}{4} = 0.35 \pm 0.03_{\text{stat}} \pm 0.05_{\text{syst}}$$

scale always $3 \,\text{GeV}^2/c^2$

Inclusive DIS Semi-Inclusive DIS Delta G

Measurement of A_1^d , $Q^2 < 1\,{
m GeV}^2/c^2$

- low x, low Q^2
- very high statistics
- only 2002-2003

Inclusive DIS Semi-Inclusive DIS Delta G

Measurement of A_1^d , $Q^2 < 1 \,\mathrm{GeV}^2/c^2$

COMPA

Inclusive DIS Semi-Inclusive DIS Delta G

Measurement of g_1^d , $Q^2 < 1\,{
m GeV}^2/c^2$

COMPAS

• significant improvement over previous SMC results

[Phys. Lett. B 647 (2007) 330-340]

Inclusive DIS Semi-Inclusive DIS Delta G

Accessing the Valence Quarks

Difference Asymmetry

OMPASS

$$\begin{split} A_N^{h^+ - h^-} &= \frac{(\sigma_{h^+}^{\overrightarrow{\leftarrow}} - \sigma_{h^-}^{\overrightarrow{\leftarrow}}) - (\sigma_{h^+}^{\overrightarrow{\Rightarrow}} - \sigma_{h^-}^{\overrightarrow{\Rightarrow}})}{(\sigma_{h^+}^{\overrightarrow{\leftarrow}} - \sigma_{h^-}^{\overrightarrow{\leftarrow}}) + (\sigma_{h^+}^{\overrightarrow{\Rightarrow}} - \sigma_{h^-}^{\overrightarrow{\Rightarrow}})} \\ &= \frac{\Delta u_v + \Delta d_v}{u_v + d_v} \\ &= \frac{1}{1 - r} (A^{h^+} - rA^{h^-}) \\ r &= \frac{\sigma^{h^-}}{\sigma^{h^+}} = \frac{N^-}{N^+} \cdot \frac{a^+}{a^-} \end{split}$$

- fragmentation functions cancel in LO
- no PID required
- direct access to polarization of valence quarks, using MRST04 fit for uv + dv
- for x > 0.3, g₁
 can also be used
 [PLB 230(1989) 141]

Inclusive DIS Semi-Inclusive DIS Delta G

Measurement of $A_N^{h^+-h^-}$, $Q^2>1\,{
m GeV}^2/c^2$

Inclusive DIS Semi-Inclusive DIS Delta G

Measurement of Valence Quark Polarization

COMPA

Inclusive DIS Semi-Inclusive DIS Delta G

Spin Contribution of the Valence Quarks

COMP.

- *x* region [0.7, 1] contributes 0.004 (DNS fit)
- antisymmetric light sea favored over symmetric sea

	x range	Q^2	$\Delta u_v + \Delta d_v$		$\Delta \overline{u} + \Delta \overline{d}$	
			measurement	DNS	measurement	DNS
SMC	0.003 - 0.7	10	$0.26 \pm 0.21 \pm 0.11$	0.386	$0.02 \pm 0.08 \pm 0.06$	-0.009
HERMES	0.023 - 0.6	2.5	$0.43 \pm 0.07 \pm 0.06$	0.363	$-0.06 \pm 0.04 \pm 0.03$	-0.005
COMPASS	0.006 - 0.7	10	$0.40 \pm 0.07 \pm 0.05$	0.385	_	-0.007
is	0 - 1	10	$0.41 \pm 0.07 \pm 0.05$	-	$0.00 \pm 0.04 \pm 0.03$	-

Roland Kuhn

Longitudinal Spin Physics at COMPASS

Inclusive DIS Semi-Inclusive DIS Delta G

Accessing the Gluon Polarization

- open charm
 - asymmetry in production of *D* mesons
- high transverse momentum
 - high p_T hadron pairs at $Q^2 > 1 \,\text{GeV}^2/c^2$
 - high p_T hadron pairs at $Q^2 < 1 \,\text{GeV}^2/c^2$
 - high p_T single hadrons at $Q^2 < 0.5 \,\text{GeV}^2/c^2$ (in preparation)

Physics Introduction Inclusive DIS The COMPASS Experiment Semi-Inclusive DIS Results Delta G

Accessing the Gluon Polarization: Open Charm

- negligible background from LO process
- reconstruct *D* mesons in the final state
 - requires PID
 - challenging at fixed target experiment
 - tagging with *D**
- analyzing power *a*_{LL} calculable
- MC needed for gluon kinematics

Extraction Formula

$$A_{\exp} = \frac{N^{\overrightarrow{\Rightarrow}} - N^{\overrightarrow{\leftarrow}}}{N^{\overrightarrow{\Rightarrow}} + N^{\overrightarrow{\leftarrow}}} = f P_{\text{beam}} P_{\text{target}} \frac{a_{LL}}{a_{LL}} \frac{S}{S+B} \frac{\Delta G}{G} + A_{bk}$$

Inclusive DIS Semi-Inclusive DIS Delta G

Open Charm: Signal/Background

two channels:

- direct reconstruction from identified πK pair (RICH)
- tagged by additional π from D* decay
- *S*/(*S*+*B*) parameterized by fitting spectra for event weighting

Inclusive DIS Semi-Inclusive DIS Delta G

Open Charm: Analyzing Power

- hard scattering matrix element calculated in LO needs gluon kinematics
- AROMA Monte Carlo used for simulation
- *a*_{LL} directly extracted event-by-event from neural network parameterization and used in weighting

Inclusive DIS Semi-Inclusive DIS Delta G

Open Charm: Result

Systematic Error

background asymmetry	0.07
binning procedure	0.04
false asymmetries	0.10
fitting procedure	0.09
AROMA parameters	0.05
target polarization	0.03
target polarization	0.03
beam polarization	0.03
dilution factor	0.03

Result

$$\frac{\Delta G}{G} = -0.57 \pm 0.41_{\text{stat}} \pm 0.17_{\text{syst}}$$
$$x_g \approx 0.15$$
$$\mu^2 = 13 \,\text{GeV}^2/c^2$$

Physics Introduction Delta G Results

Accessing the Gluon Polarization: High p_T

selection

- $p_{T,i} > 0.7 \text{GeV}/c$ $\sum p_T^2 > 2.5 (\text{GeV}/c)^2$
- either $Q^2 < 1 \,\text{GeV}^2/c^2$ or $O^2 > 1 \,{\rm GeV}^2/c^2$
- very high statistics
- Monte Carlo simulation necessary for
 - fraction of photon–gluon fusion
 - background asymmetries
 - analyzing power

Inclusive DIS Semi-Inclusive DIS Delta G

High p_T , $Q^2 < 1 \,\mathrm{GeV}^2/c^2$: R_{PGF}

- PYTHIA simulation with pos. and neg. saturation of resolved photon polarized PDF
- $R_{PGF} = 0.32$

COMPA

Inclusive DIS Semi-Inclusive DIS Delta G

High p_T , $Q^2 < 1 \,\text{GeV}^2/c^2$: Kinematic Distributions

Inclusive DIS Semi-Inclusive DIS Delta G

High p_T , $Q^2 < 1 \, {
m GeV}^2/c^2$: Result

Result

Systematic Error

asymmetry extraction0.014 R_{PGF} (MC)0.052resolved photon PDF0.013

$\frac{\Delta G}{G} = 0.016 \pm 0.058_{\text{stat}} \pm 0.055_{\text{syst}}$ $x_g \approx 0.085$ $\mu^2 = 3 \,\text{GeV}^2/c^2$

Inclusive DIS Semi-Inclusive DIS Delta G

High p_T , $Q^2 > 1 \,\mathrm{GeV}^2/c^2$

 $= 0.06 \pm 0.31_{stat} \pm 0.06_{syst}$

- resolved photon effects negligible
- simulation using LEPTO+RADGEN
- $R_{PGF} = 0.34 \pm 0.07$
- only 2002–2003 data
- new analysis with considerable improvement under way, using better cuts and full statistics

 $(x_g \approx 0.13, \mu^2 = 3 \,\mathrm{GeV}^2/c^2)$

Result

 $\frac{\Delta G}{G}$

Summary

OMPAS

Quark Polarization Results

- $\Delta\Sigma = 0.30 \pm 0.01_{stat} \pm 0.02_{syst}$
- $\Gamma_1^d = 0.0502 \pm 0.0028_{\text{stat}} \pm 0.0020_{\text{evol}} \pm 0.0051_{\text{syst}}$
- $\Delta u_v + \Delta d_v = 0.40 \pm 0.07_{\text{stat}} \pm 0.05_{\text{syst}}$
- antisymmetric light sea favored over symmetric sea

Outlook

- measurement with proton target scheduled this year
- 2006 data hold significant improvement in statistics
- single-inclusive high p_T hadron analysis under way

Inclusive DIS High p_T , $Q^2 < 1 \text{ GeV}^2/c^2$ High p_T , $Q^2 > 1 \text{ GeV}^2/c^2$

 $A_1^d, Q^2 < 1 \,\mathrm{GeV}^2/c^2$

COMPASS

Inclusive DIS High p_T , $Q^2 < 1 \text{ GeV}^2/c^2$ High p_T , $Q^2 > 1 \text{ GeV}^2/c^2$

 g_1^d , $Q^2 < 1 \,{
m GeV}^2/c^2$

COMPASS

Inclusive DIS High p_T , $Q^2 < 1 \text{ GeV}^2/c^2$ High p_T , $Q^2 > 1 \text{ GeV}^2/c^2$

High p_T , $Q^2 < 1 \,\text{GeV}^2/c^2$: Data/MC for $p_{T,1}$

COMPASS

Inclusive DIS High p_T , $Q^2 < 1 \text{ GeV}^2/c^2$ High p_T , $Q^2 > 1 \text{ GeV}^2/c^2$

High p_T , $Q^2 < 1 \,\text{GeV}^2/c^2$: Data/MC for $p_{T,2}$

Inclusive DIS High p_T , $Q^2 < 1 \text{ GeV}^2/c^2$ High p_T , $Q^2 > 1 \text{ GeV}^2/c^2$

High p_T , $Q^2 > 1 \,\text{GeV}^2/c^2$: Data/MC for p

