Chukchi Sea Play 8: Rift Sequence-Stable Shelf

Geological Assessment

<u>GRASP UAI</u>: AAAAA DAI <u>Play Area</u>: 21,319 square miles <u>Play Water Depth Range</u>: 90-170 feet <u>Play Depth Range</u>: 3,500-13,140 feet <u>Play Exploration Chance</u>: 0.16

OCS Planning Area, 2006 Assessment, Undiscovered Technically-Recoverable Oil & Gas													
Assessment Results as of November 2005													
Resource	F	Resources	*										
(Units)	F95	Mean	F05										
BOE (Mmboe)	521	3,787	10,841										
Total Gas (Tcfg)	1.421	9.993	28.681										
Total Liquids (Mmbo)	268	2,009	5,737										
Free Gas** (Tcfg)	0.983	6.609	18.856										
Solution Gas (Tcfg)	0.437	3.384	9.825										
Oil (Mmbo)	217	1,654	4,716										
Condensate (Mmbc)	51	356	1,021										

* Risked, Technically-Recoverable

** Free Gas Includes Gas Cap and Non-Associated Gas

F95 = 95% chance that resources will equal or exceed the given quantity

 ${\it F05}=5\%$ chance that resources will equal or exceed the given quantity

BOE = total hydrocarbon energy, expressed in barrels-of-oilequivalent, where 1 barrel of oil = 5,620 cubic feet of naturalgas

Mmb = millions of barrels Tcf = trillions of cubic feet

Table 1

Play 8, the "Rift Sequence-Stable Shelf" play, is the third-ranking play (of 29 plays) in the Chukchi Sea OCS Planning Area, with 13% (3,787 Mmboe) of the Planning Area energy endowment (29,041 Mmboe). The overall assessment results for play 8 are shown in table 1. Oil and gas-condensate liquids form 53% of the hydrocarbon energy endowment of play 8. Table 5 reports the detailed assessment results by commodity for play 8.

Table 3 summarizes the volumetric input data developed for the *GRASP* computer model of Chukchi Sea play 8. Table 4 reports the risk model used for play 8. The location of play 8 is shown in figure 1.

The reservoirs objectives of play 8 are primarily Late Jurassic to Early Cretaceous sandstones equivalent to the Kuparuk Formation of northern Alaska. Unlike the Rift sequence in the tectonically active rift zone (play 7) to the north, the Rift sequence in play 8 was instead deposited on a tectonically stable shelf and slope that rimmed a deep water "basin plain" area in southernmost Hanna trough. On the stable shelf and slope, we anticipate fine-grained marine shelf sandstones that are probably thinner than their counterparts in tectonic depressions in play 7. This play is charged by the Hanna trough play charging system. All of the "unidentified" prospects used to construct the prospect numbers distribution for this play were estimated using a prospect density (area basis) that was devised from mapping "geobodies" imaged by seismic attributes in three-dimensional seismic data within the correlative sequence in the National Petroleum Reserve-Alaska (NPRA). The size range of these "geobodies" also helped define the prospect area distribution. A prospect within the play was incidentally tested while drilling to a deeper target by Klondike well, encountering pooled oil (inferred from logs) in a sandstone 80 feet thick. Diamond well encountered no sandstones in the Rift sequence (only the Pebble Shale was present) and was barren of hydrocarbons.

The Rift sequence was associated with minor gas shows at Peard No. 1 well onshore. At Barrow, gas production is occurring from Lower Jurassic ("Barrow") sandstones that are apparently unique to the Barrow area.¹ The sequence hosts a gas field at Walakpa that is produced for use by the community of Barrow.

Play 8, Rift Sequence-Stable Shelf, Chukchi Sea OCS Planning Area, 2006 Assessment, Conditional BOE Sizes of Ten Largest Pools													
Assessment Results as of November 2005													
Pool Rank	BO	E Resourc	es *										
1 oor rank	F95	Mean	F05										
1	202	1862	7670										
2	98	633	1516										
3	54	376	941										
4 33 263 712													
5 22 198 510													
6	6 16 156 4												
7	12	127	343										
8	10	106	293										
9	8	91	254										
10	7	79	225										
* Conditional, Techni Energy-Equivalent (N	cally-Recovera 1mboe), from "I	ble, Millions o PSRK.out" file	f Barrels										
F95 = 95% chance th given quantity	nat resources w	vill equal or ex	ceed the										
F05 = 5% chance tha quantity	at resources wil	l equal or exc	eed the given										
BOE = total hydrocarbon energy, expressed in barrels-of-oil- equivalent, where 1 barrel of oil = 5,620 cubic feet of natural gas													
Table 2													

A maximum of 114 hypothetical pools is forecast by the aggregation of the risk model and the prospect numbers model for play 8.

¹ Within the stratigraphic convention used here, the "Barrow" sandstones at the base of the Lower Kingak Formation would be grouped with the Upper Ellesmerian play sequence. In the Beaufort Sea and northern Alaska, the "Barrow" sandstones are grouped with the Rift or "Beaufortian" sequence These 114 pools range in mean conditional (un-risked) recoverable volumes from 2 Mmboe (pool rank 114) to 1,862 Mmboe (pool rank 1). Pool rank 1 ranges in possible conditional recoverable volumes from 202 Mmboe (F95) to 7,670 Mmboe (F05). Table 2 shows the conditional sizes of the 10 largest pools in play 8.

In the computer simulation for play 8 a total of 157,254 "simulation pools" were sampled for size. These simulation pools can be grouped according to the USGS size class system in which sizes double with each successive class. Pool size class 12 contains the largest share (27,192, or 17%) of simulation pools (conditional, technically recoverable BOE resources) for play 8. Pool size class 12 ranges from 64 to 128 Mmboe. The largest 17 simulation pools for play 8 fall within pool size class 20, which ranges in size from 16,384 to 32,768 Mmboe. Table 6 reports statistics for the simulation pools developed in the GRASP computer model for play 8.

GRASP Play Data Form (Minerals Management Service-Alaska Regional Office)

Basin: Chukchi Sea Planning Area Play Number: 08 Play IIAI Number: AAAAA DAI

<u>Assessor</u>: K.W. Sherwood <u>Play Name</u>: Rift Sequence - Stable Shelf

Date: January 2005

<u>Play Area</u> : mi ² (million acres) <u>Reservoir Thermal Maturity</u> : % Ro	21,319 (13 0.80 - 1.73	.644)			Play Dept Expected Play Wate	<u>h Range</u> : feet <u>Oil Gravity</u> : ^O API er Depth Range: fe	et	3,500 - 13,140 (mean = 6,943) 30 90 - 170 (mean = 160)				
POOLS Module (Volumes	s of Pools	, Acre-l	Feet)	E75	E50	Moan/Std Dov	E25	E15	E10	E05	E02	
Prospect Area (acres)-Model Input*	318	135	789	1/3	5440	16931/49898	125	113	37522	105	102	
Prospect Area (acres)-Model Output**	319	666	970	2123	5517	15679/33677	14967	24835	36953	61420		
Fill Fraction (Fraction of Area Filled)	0.25	0.37	0.40	0.45	0.51	0.51/0.09	0.57	0.61	0.64	0.68		
Productive Area of Pool (acres)***	126	320	487	1072	2792	8096/17775	7583	12783	18320	30935	48000	
Pay Thickness (feet)	30	62	69	82	100	104/30	121	135	144	160	180	
 model fit to prospect area data in BESTF output from @RISK after aggregation wil from @RISK aggregation of probability 	IT th fill fraction distributions for p	rospect are	a and fill fra	ction	-							

MPRO Module (Numbers of Pools)

Input Play Level Chance * Output Play Level Chance** Prospect Level Chance 0.16 Exploration Chance

F01

60000

195

0.16

F00 497446 488990 1.00

309801 350

* (Apparent oil pay [log] at Klondike well)

* First Occurrence of Non Zero Pools As Reported in PSUM Module

Risk Model	Play 0	Chance			Pet	roleum System Fac	ctors			Prospec	t Chance]		
			Closure Pr amplitude	esence (mo mapping)	ost prospec	ts inferred from ana	log geobodi	es-NPRA 3	D seismic	0	.8			
			Reservoir	Presence (c	ontinuous I	but thin and subject	to stripping	at uncconfo	ormities)	о	.8			
					C	hance Porosity > 10		0.	25					
Fractile	500	505	500		550			545	540	505	500	504		
Thethe	F99	F95	F90	F/5	F50	Mean/Std. Dev.	F25	F15	F10	F05	FU2	F01	FUU	
Numbers of Prospects in Play	28	39	47	62	83	98.04/55.22	120	140	160	190	230	260	561	
Numbers of Pools in Play	3	5	6	6 9 14 15.69/9.55 20 24 27 32 39										
	Zero Pools at F99.98													
Minimum Number of Pools	3 (F99)	[Mean	Number of	Pools	of Pools	114							

1*

0.9995

POOLS/PSRK/PSUM Modules (Play Resources)

Fractile	F100	F95	F90	F75	F50	Mean/Std. Dev.	F25	F15	F10	F05	F02	F01	F00	
Oil Recovery Factor (bbl/acre-foot)	41	84	96	121	162	187/96	271	311	374	440	490	929		
Gas Recovery Factor (Mcfg/acre-foot)	263	645	730	895	1128	1236/496	1462	1675	1862	2163	2600	2900	4998	
Gas Oil Ratio (Sol'n Gas)(cf/bbl)	520	1450	450 1600 1800 2050 2044/424 2300 2450 2550 2700								2850	2950	3600	
Condensate Yield ((bbl/Mmcfg)	ndensate Yield ((bbl/Mmcfg) 13 29 33 4								79	90	105	120	200	
Pool Size Distribution Statistics from POOLS	(1,000 BO	E):	μ (mu)= 11	.232	σ^2 (sigma	squared)= 2.223			Random Number Generator Seed= 682571					
		-												
BOE Conversion Factor (cf/bbl)	5620		Probability	y Any Pool	Contains I	Both Oil and Free (Gas (Gas C	ap)		0.6				
Probability Any Pool is 100% Oil	0.2	I	Fraction of Pool Volume Gas-Bearing in Oil Pools with Gas Cap 0.3											
Probability Any Pool is 100% Gas	0.2	Ī												

 Table 3. Input data for Chukchi Sea play 8, 2006 assessment.

	Risk Analysis Form - 20	06 National Assessn	nent						
Assessment Province:	Chukchi Sea OCS Planning Area	Play Number, Name:	8. Ri	ft Sequence - S	Stable Shelf				
Assessor(s):	K.W. Sherwood	Play UAI:	AAAAA DAI						
Date:	1-Jan-05								
For each component, a <i>qu</i> certainty) based on consic probability that the minimu	<i>cantitative</i> probability of success (i.e., between zero a leration of the <i>qualitative</i> assessment of ALL element m geologic parameter assumptions have been met c	and one, where zero indicates hts within the component was or exceeded.	no con assigne	fidence and one ind d. This is the asse	licates absolute ssment of the				
				Play Chance Factors	Averge Conditional Prospect Chance ¹				
1. Hydrocarbon Fill	component (1a * 1b * 1c)		1	1.0000	1.0000				
a. Presence of a C	uality, Effective, Mature Source Rock	at a barrier of a start and a start	r		1				
Probability of effi	cient source rock in terms of the existence of sufficie quality located in the drainage area of the reservoirs	nit volume of mature source	1a	1.00	1.00				
b. Effective Expute	sion and Migration	•			1				
Probability of efferences	ective expulsion and migration of hydrocarbons from	the source rock to the	1b	1.00	1.00				
C. Preservation Probability of effe	ective retention of hydrocarbons in the prospects afte	r accumulation.	1c	1.00	1.00				
2. Reservoir compo	nent (2a * 2b)		2	1.0000	0.2000				
a. Presence of res	ervoir facies	ss and not/gross ratio (as							
specified in the r	esource assessment).	ss and hergioss fallo (as	2a	1.00	0.80				
b. Reservoir qualit	y								
Probability of effe permeability (as	ectiveness of the reservoir, with respect to minimum especified in the resource assessment).	effective porosity, and	2b	1.00	0.25				
3. Trap component	(3a * 3b)		3	1.0000	0.8000				
a. Presence of trap Probability of pre assessment).	p sence of the trap with a minimum rock volume (as sp	pecified in the resource	3a	1.00	0.80				
b. Effective seal m	echanism				-				
Probability of effe	ective seal mechanism for the trap.		3b	1.00	1.00				
Overall Play Chance	(Marginal Probability of hydrocarbons, MP	Phc)		1.0000					
(1 * 2 * 3) Produ	ct of All Subjective Play Chance Factors								
Average Conditional (1 * 2 * 3) Produ	Prospect Chance ¹ ct of All Subjective Conditional Prospect Chance Fac	ctors			0.1600				
¹ Assumes that Must be consis	the Play exists (where all play chance factors = 1. stent with play chance and prospect distribution -	.0) See discussion on Page 3	of Gui	de					
Exploration Chance (Product of Over	all Play Chance and Average Conditional Prospect C	Chance)		0.	1600				
Comments: See quida	nce document for explanation of the Risk Analysis Fr	าะกา							
2b: Chance That P	orosity >10%, Based on Regional Mode	I for Porosity vs Reser	voir T	hermal Maturit	у				
Oil (apparent log pa	y) in Rift Sequence sandstone at Klondi	ike 1 well.							

 Table 4. Risk model for Chukchi Sea play 8, 2006 assessment.

GRASP - Geologic and Economic Resource Assessment Model - PSUM Module Results

Minerals Management Service - Alaska OCS Region

GRASP Model Version: 8.29.2005) Computes the Geologic Resource Potential of the Play

Play UA	I: AAAAAD	AI	Play No.		8	
World	Level	-	World	Level	Resources	
Country	Level	-	UNITED	STATES	OF	AMERICA
Region	Level	-	MMS	-	ALASKA	REGION
Basin	Level	-	СНИКСНІ	SEA	SHELF	
Play	Level	-	Play		8 Rift Seque	nce - Stable Shelf
Geologist	Kirk	W.	Sherwood			
Remarks	20	05 Assessment				
Run Date & Time:		Date	19-Sep-0)5 Time	13:53:	19

Summary of Play Potential

Product	MEAN	Standard Deviation
BOE (Mboe)	3,787,100	3,694,300
Oil (Mbo)	1,653,500	1,826,500
Condensate (Mbc)	355,610	428,940
Free (Gas Cap & Nonassociated) Gas (Mmcfg)	6,609,100	7,582,800
Solution Gas (Mmcfg)	3,383,500	3,796,300

10000 (Number of Trials in Sample)

0.9995 (MPhc [Probability] of First Occurrence of Non-Zero Resource)

Windowing Feature: used

Empirical Probability Distributions of the Products

Greater Than Percentage	BOE (Mboe)	Oil (Mbo)	Condensate (Mbc)	Free (Gas Cap & Nonassociated) Gas (Mmcfg)	Solution Gas (Mmcfg)
100	0	0	0	0	0
99.99	0	0	0	0	0
99	203,350	89,692	18,593	351,210	183,050
95	520,860	217,450	50,640	983,120	437,460
90	792,410	351,240	70,893	1,376,200	704,700
85	1,039,700	455,090	96,492	1,811,600	931,480
80	1,256,800	539,190	118,760	2,238,600	1,127,200
75	1,481,400	635,420	140,340	2,679,900	1,285,700
70	1,701,100	752,710	158,170	2,941,100	1,500,000
65	1,926,900	814,210	193,110	3,537,200	1,630,800
60	2,169,900	940,370	203,200	3,849,600	1,918,200
55	2,433,000	1,047,600	232,240	4,312,400	2,168,300
50	2,705,300	1,184,700	256,370	4,754,500	2,350,400
45	3,021,500	1,373,500	268,830	4,921,000	2,830,100
40	3,359,400	1,501,100	300,650	5,681,600	3,072,000
35	3,723,900	1,713,700	327,410	6,018,700	3,438,800
30	4,205,800	1,943,000	370,710	6,702,700	3,931,100
25	4,741,100	1,996,000	474,860	8,664,700	4,094,000
20	5,475,700	2,493,400	472,820	9,024,400	5,078,800
15	6,464,700	2,828,000	620,730	11,270,000	5,680,200
10	7,994,400	3,478,200	732,630	14,105,000	7,158,200
8	8,762,900	3,537,300	902,370	17,060,000	7,236,500
6	9,916,200	4,510,100	860,910	16,421,000	9,122,300
5	10,841,000	4,716,100	1,021,200	18,856,000	9,825,300
4	11,995,000	5,084,500	1,165,400	21,504,000	10,783,000
2	15,282,000	6,326,900	1,517,700	28,552,000	13,248,000
1	18,524,000	8,853,900	1,536,800	27,674,000	18,034,000
0.1	31,938,000	15,349,000	2,503,300	47,397,000	31,767,000
0.01	39,124,000	19,665,000	2,790,200	52,417,000	41,266,000
0.001	42,937,000	25,788,000	1,301,900	33,411,000	55,647,000

 Table 5. Assessment results by commodity for Chukchi Sea play 8, 2006 assessment.

-			_																				
Basin:		SEA SHELI	F			Model Simu	lation "Pools	" Report	ed by "H	leidsiz	e.out" G	RASP M	lodule										
UAIN	:у. ммммми	JAI																					
	Classifica	ation and Siz	е	Poo	I Count Statis	stics	tics			ount	Mixed P	ool Range	Oil Po	Oil Pool Range		Gas Pool Range		ool Range		Pool Resource Statistics (MMBOE)			
	Min	Мах			Trial	Trials w/Pool		Mixed		Gas													Average
Class	(MMBOE)	(MMBOE)	Pool Count	Percentage	Average	Avg		Pool	Oil Pool	Pool	Min	Max	Min	Max	Min	Max	Min	Max		Min	Max	Total Resource	Resource
1	0.0312	0.0625	0	0	0	0		0	0	0	0	0	C	0	C	0 0	0) ()	0.000000	0.000000	0.000000	0.000000
2	0.0625	0.125	0	0	0	0		0	0	0	0	0	C	0	C	0 0	0) ()	0.000000	0.000000	0.000000	0.000000
3	0.125	0.25	0	0	0	0		0	0	0	0	0	C	0	C	0 0	0) ()	0.000000	0.000000	0.000000	0.000000
4	0.25	0.5	0	0	0	0		0	0	0	0	0	C	0	C	0 0	0) ()	0.000000	0.000000	0.000000	0.000000
5	0.5	1	37	0.023529	0.0037	0.003701		12	18	7	1	1	1	1	1	1	1	2	2	0.603754	0.988783	30.477555	823.717713
6	1	2	327	0.207944	0.0327	0.032713		163	96	68	1	2	1	2	1	1	1	2	2	1.013303	1.999470	537.800213	1.644649
7	2	4	2533	1.61077	0.2533	0.253401		1415	654	464	1	4	1	3	1	2	1	5	5	2.000288	3.999088	7887.362000	3.113842
8	4	8	7531	4.789067	0.7531	0.753401		4449	1716	1366	1	8	1	5	1	3	1	11		4.001388	7.999891	45694.988000	6.067586
9	8	16	14452	9.190228	1.4452	1.445778		8666	3086	2700	1	11	1	6	1	6	1	17	,	8.000485	15.999937	171504.878000	11.867208
10	16	32	21358	13.581848	2.1358	2.136655		12667	4390	4301	1	17	1	6	1	6	1	28	8	16.000466	31.998939	501535.339000	23.482317
11	32	64	25854	16.440918	2.5854	2.586435		15567	5154	5133	1	14	1	9	1	7	1	24	<u>k</u>	32.001918	63.994172	1200509.000000	46.434170
12	64	128	27192	17.291771	2.7192	2.720288		16098	5503	5591	1	15	1	7	1	10	1	22	2	64.001982	127.995397	2509824.000000	92.300087
13	128	256	24934	15.855877	2.4934	2.494398		14979	4800	5155	1	1/	1	6	1	9	1	25	2	128.021736	255.999943	4551534.000000	182.543274
14	256	512	1/1/8	10.923729	1./1/8	1./1848/		10398	3176	3604	1	12	1	6	1	5	1	16	2	256.000509	511.853647	6172346.000000	359.316925
15	512	1024	9578	6.090783	0.9578	0.958183		5642	1916	2020	1		1	4	1	4	1	10	2	512.019023	1023.363000	6853461.000000	/15.541992
16	1024	2048	41//	2.656212	0.4177	0.417867		2494	764	919	1	5	1	3	1	3		6		1024.817000	2046.183000	5801264.000000	1.388859
17	2048	4096	1187	0.75483	0.1187	0.118748		681	243	263	1	3	1	2	1	4			5	2048.760000	4090.440000	3350382.000000	2.822563
10	4090	16204	227	0.427334	0.0072	0.007227		403	120	143	1		1		1	2				9227 760000	16260 454000	2452470.000000	10 000000
20	16384	32768	17	0.144332	0.0227	0.022709		120	40	24	1	1	1	1	1	1		4		16/13 273000	20178 212000	2453470.000000	20 322860
21	32768	65536	0	0.010011	0.0017	0.001701		0	0	0	0	0	0	0	0)	0.000000	0.000000	0.00000	0.000000
22	65536	131072	0	0	0	0		0	0	0	0	0	0	0	0				<u>,</u>	0.000000	0.000000	0.000000	0.000000
23	131072	262144	0	Ő	Ö	0		0	0	0	0	0	0	0	0)	0.000000	0.000000	0.000000	0.000000
24	262144	524288	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0	0)	0.000000	0.000000	0.000000	0.000000
25	524288	1048576	0	0	0	0	1	0	0	0	0	0	Ċ	0	C) 0	0) ()	0.000000	0.000000	0.000000	0.000000
Not Cla	ssified		0	0	0	0	Below Class	0	0	0									Below Class	0.000000	0.000000	0.000000	0.000000
		Totals	157254	100.000008	15.7254	15.731693	Above Class	0	0	0									Above Class	0.000000	0.000000	0.000000	0.000000
Numb Numb Numb	Iumber of Pools not Classified: 0 Min and Max refer to numbers of pools of the relevant size class that occur within any single trial in the simulation. Min and Max refer to aggregate resources of the relevant size class that that occur within any single trial in the simulation. Iumber of Pools below Class 1: 0 Iumber of Trials with Pools: 9996 Min and Max refer to aggregate resources of the relevant size class that occur within any single trial in the simulation. Min and Max refer to aggregate resources of the relevant size class that occur within any single trial in the simulation.																						

 Table 6. Statistics for simulation pools created in computer sampling run for Chukchi Sea play 8, 2006 assessment.

Figure 1. Map location of Chukchi Sea play 8, 2006 assessment.