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Abstract

This paper analyzes the asymptotic properties of long-horizon estimators under both the null hypoth-

esis and an alternative of predictability. Asymptotically, under the null of no predictability, the long-run

estimator is an increasing deterministic function of the short-run estimate and the forecasting horizon.

Under the alternative of predictability, the conditional distribution of the long-run estimator, given the

short-run estimate, is no longer degenerate and the expected pattern of coe¢ cient estimates across hori-

zons di¤ers from that under the null. Importantly, however, under the alternative, highly endogenous

regressors, such as the dividend-price ratio, tend to deviate much less than exogenous regressors, such as

the short interest rate, from the pattern expected under the null, making it more di¢ cult to distinguish

between the null and the alternative.
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1 Introduction

Long-run regressions were made popular by in�uential articles such as Fama and French (1988) and Campbell

and Shiller (1988). When attempting to predict stock returns over longer horizons, often covering several

years, rather than on a month-to-month basis, the evidence in favour of predictability generally appears

much stronger. For instance, the estimated regression coe¢ cients tend to increase almost linearly with

the forecasting horizon. However, in a recent paper, Boudoukh, Richardson, and Whitelaw (2006) (BRW

hereafter) show that this pattern is exactly the one to be expected in the absence of predictability. Although it

is well known that the estimated slope coe¢ cient will increase with the horizon when there is predictability,

BRW appear to be the �rst ones to observe that the same is also true under the null hypothesis. They

interpret their �ndings as a strong critique of the widespread belief that long-horizon regressions provide

solid evidence of predictability (e.g. Cochrane, 2001).1

The aim of the current paper is to understand in more detail the properties of long-horizon estimates

under an alternative of predictability. The practical purpose of this is to establish the pattern of estimated

coe¢ cients that may be expected both under the null and the alternative, across di¤erent forecasting horizons.

Although the generally increasing pattern of coe¢ cients in long-horizon regressions is well established, the

exact asymptotic sampling properties of long-run estimators under an alternative of predictability are not

previously well understood.

I derive the asymptotic distribution of the long-run OLS estimator, with overlapping observations, under

the assumptions that the true data generating process is given by the standard linear predictive regression

model and that the regressors are highly persistent variables. Under the alternative of predictability, the

sampling properties of the long-run estimator are fundamentally di¤erent than under the null hypothesis,

and the limiting distribution is highly non-standard. From a practical perspective, this result is of individual

interest. It shows that con�dence intervals for long-run estimates, based on inverting a test statistic that

is valid under the null hypothesis, will not be correctly sized under the alternative, given the non-standard

distribution.

The theoretical results allow for an exact characterization of the conditional distribution of the long-run

estimator, given the short-run estimate. Under the null hypothesis, the long-run estimator is, asymptotically,

completely determined once the short-run estimate is given. Importantly, however, this is not true under the

alternative of predictability. In fact, the degree to which the long-run estimate can vary independently of

the short-run estimate is determined by the degree of endogeneity of the regressors.2 Long-run estimates for

1Earlier studies discussing other inferential issues in long-horizon regressions include Hansen and Hodrick (1980), Richardson
and Stock (1989), Richardson and Smith (1991, 1994), Hodrick (1992), Goetzman and Jorion (1993), Nelson and Kim (1993),
Richardson (1993), Kirby (1997), and Valkanov (2003).

2A predictive regressor is generally referred to as endogenous if the innovations to the returns are contemporaneously corre-
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highly endogenous regressors, such as the dividend-price ratio, are also almost completely pinned down by

the short-run estimate under the alternative hypothesis. On the other hand, for near exogenous regressors

such as the short interest rate, the long-run estimator has a relatively large independent component given the

short-run estimate.3 Given the short-run estimate, under the alternative of predictability, the implications

are that: (i) the highly endogenous regressor will have a more predictable pattern for long-horizons than the

near exogenous one, and (ii) this pattern will closely resemble that under the null hypothesis.

These results provide an alternative interpretation of the empirical �ndings in BRW. BRW interpret the

�ndings that the dividend-price ratio has a pattern very similar to that predicted under the null, whereas

the short interest rate does not, as evidence against the predictive ability of the dividend-price ratio and in

favor of the predictive ability of the short rate. Given the results in this paper, however, their �ndings could

merely re�ect the fact that there is more independent variation in the long-run estimates for fairly exogenous

regressors.

2 Model and assumptions

Let rt+1 denote the one period stock return from t to t+1 and let rt+q (q) =
Pq

j=1 rt+j be the corresponding

q�period return from t to t+ q. The standard long-run forecasting regression is speci�ed as follows,

rt+q (q) = �q + �qxt + ut+q (q) ; (1)

where long-run future returns are regressed onto a one period predictor, xt. Let the OLS estimator of �q in

equation (1), using overlapping observations, be denoted by �̂q. The primary focus of interest will be the

properties of �̂q for di¤erent values of q, and in particular the relationship between �̂1 and �̂q for q > 1.

In order to formally analyze the sampling properties of �̂q, the data generating process for rt and xt need

to be explicitly speci�ed. Following Nelson and Kim (1993) and Campbell (2001), I assume that rt and xt

satisfy:

rt+1 = �+ �xt + ut+1; (2)

xt+1 =  + �xt + vt+1: (3)

lated with the innovations to the regressor. When the regressor is strictly stationary, such endogeneity has no impact on the
properties of the estimator, but when the regressor is persistent in some manner, the properties of the estimator will be a¤ected
(e.g. Stambaugh, 1999).

3The contemporaneous correlation between the innovations to the returns and the innovations to the regressor determines
the endogeneity of a predictive regressor (see previous footnote). Campbell and Yogo (2006) show that for valuation ratios,
such as the dividend-price ratio, this correlation is large and often greater than 0:9 in absolute magnitude. For interest rate
variables, however, the correlation is close to zero and, from the perspective of a predictive regression, these variables are thus
nearly exogenous.
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Thus, the one-period regression in equation (1) coincides with the true data generating process and for any

horizon, xt will be the optimal forecaster of returns given current information at time t.4 To capture the

near persistence found in most forecasting variables, such as interest rates or valuation ratios, it is further

assumed that the auto-regressive root, �, is close to one in a local sense. In particular, it is assumed that

� = 1 + c=T , where c is some �nite parameter and T is the sample size with t = 1; :::; T . This captures the

near unit-root, or highly persistent, behavior of many predictor variables, but is less restrictive than a pure

unit-root assumption. The near unit-root construction, where the autoregressive root drifts closer to unity as

the sample size increases, is used as a tool to enable an asymptotic analysis where the persistence in the data

remains large relative to the sample size, also as the sample size increases to in�nity. That is, if � is treated

as �xed and strictly less than unity, then as the sample size grows, the process xt will behave as a strictly

stationary process asymptotically and the standard �rst order asymptotic results will not provide a good

guide to the actual small sample properties of the model. For � = 1, the usual unit-root asymptotics apply

to the model, but this is clearly a restrictive assumption for most potential predictor variables. Instead, by

letting � = 1 + c=T , the e¤ects from the high persistence in the regressor will appear also in the asymptotic

results, but without imposing the strict assumption of a unit root. Cavanagh et al. (1995), Lanne (2002),

Valkanov (2003), Torous et al. (2004), and Campbell and Yogo (2006) all use similar models, with a near

unit-root construct, to analyze the predictability of stock returns.

The error processes are assumed to satisfy a martingale di¤erence sequence with �nite fourth order

moments. That is, let wt = (ut; vt)
0 and Ft = fwsj s � tg be the �ltration generated by wt. Then

E [wtj Ft�1] = 0, E [wtw0t] = � = [(�11; �12) ; (�21; �22)], suptE
�
u4t
�
<1, and suptE

�
v4t
�
<1:

By standard arguments, T�1=2
P[Tr]

t=1 wt ) B (r) = BM (�) (r) ; where B (�) = (B1 (�) ; B2 (�))0 denotes a

two dimensional Brownian motion and ) denotes weak convergence of the associated probability measures.

Further, as T !1, T�1=2x[Tr] ) Jc (r) =
R r
0
e(r�s)cdB2 (s) and an analogous result holds for the demeaned

variables xt = xt � T�1
Pn

t=1 xt, with the limiting process Jc replaced by Jc = Jc �
R 1
0
Jc (Phillips, 1987,

1988). Let W1 (�) and W2 (�) be the standardized Brownian motions, with unit variance and correlation

� = �12 (�11�22)
�1=2, that correspond to B1 (�) and B2 (�), respectively. By the properties of conditional

normal distributions, W2 =
p
1� �2W2�1 + �W1, where W2�1 is a Brownian motion with unit variance and

orthogonal to W1. Further, let JWc be the standardized version of Jc.

4There are two primary reasons why the analysis of the long-run regression in equation (1) is of interest under the assumption
that the true model is given by the short-run equation (2). First, there is the long standing popular belief that predictability is
more evident in the long run, and that there may therefore be power gains to analyzing the long-horizon regression, even if the
short-run speci�cation given by equation (2) is correct; for instance, Campbell (2001) analyzes the power of long-run tests under
the same speci�cation that is used in this paper. Alternatively, since there appears to be no other data generating processes
that are widely used for modeling return predictability, in the short- or long-run, the results derived under the data generating
process given by equations (2) and (3) can be viewed as a benchmark against which to compare results from other speci�cations.
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To ease the notation, de�ne

�1 �
�Z 1

0

dW1J
W
c

��Z 1

0

�
JWc
�2��1

and �2 �
�Z 1

0

dW2J
W
c

��Z 1

0

�
JWc
�2��1

; (4)

and write �2 =
p
1� �2�2�1 + ��1; where �2�1 �

�R 1
0
dW2�1J

W
c

��R 1
0

�
JWc
�2��1

.

3 Asymptotic distributions under the null and the alternative

3.1 The limiting distribution of �̂q

The foundations for the subsequent analysis is given in the following theorem, which outlines the asymptotic

properties of �̂q under both the null hypothesis of no predictability and the alternative of predictability.

Theorem 1 Suppose the data are generated by equations (2) and (3).

1. Under the null hypothesis that � = 0, as T !1,

T
�
�̂q � 0

�
) q

�Z 1

0

dB1Jc

��Z 1

0

J2c

��1
= q

r
�11
�22

�1: (5)

2. Under the alternative hypothesis that � 6= 0, as T !1,

T
�
�̂q � �q

�
)
�
q

Z 1

0

dB1Jc + �� (�; q)

Z 1

0

dB2Jc

��Z 1

0

J2c

��1
= q

r
�11
�22

�1 + �� (�; q) �2; (6)

where �q � �� (�; q) with � (�; q) =
�
1 + �+ :::+ �q�1

�
= q + O

�
T�1

�
, and � (�; q) �

Pq�1
h=1

Pq�1
p=h �

p�h =

q(q�1)
2 +O

�
T�1

�
. For � = 1, it holds exactly that � (�; q) = q, and � (�; q) = q(q�1)

2 .

Remark 1.1 Note that the asymptotic distribution of �̂1 is identical under the null and the alternative.

That is, for any value of �,

T
�
�̂1 � �

�
)
r
�11
�22

�1: (7)

This follows both from standard asymptotic theory applied to the one-period OLS estimator, but also from

plugging in q = 1 in equations (5) and (6).

Remark 1.2 Under the null hypothesis, the asymptotic distribution of �̂q is identical to that of �̂1, apart

from a scaling factor. This result follows from the persistent nature of the regressors; the intuition behind it

is discussed in more detail in Hjalmarsson (2007). For the purposes of this paper, the implications are that

the short-run and long-run estimators are perfectly correlated asymptotically. In fact, from equation (5) it
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follows that,

�̂q �
q

T

r
�11
�22

�1 and �̂1 �
1

T

r
�11
�22

�1; (8)

where � is used to denote an approximate distributional equivalence. Asymptotically, therefore, the condi-

tional distribution of �̂q given �̂1 satis�es �̂q
��� �̂1 = q�̂1. Given �̂1, the estimator �̂q is thus asymptotically a

deterministic linear function of the forecasting horizon. This is similar to the result in BRW, which is derived

under the assumption of a �xed autoregressive root � that is strictly less than unity.

Remark 1.3 Under the alternative hypothesis, the long-run estimator converges to the parameter �q =

�� (�; q), which for � = 1 + c=T implies that �q = q� +O
�
T�1

�
. That is, the �true�parameter value, �q, as

well as the estimator �̂q, grows approximately one-to-one with the forecasting horizon.

Remark 1.4 Under the alternative hypothesis of predictability, the distribution of �̂q is quite di¤erent than

under the null hypothesis. To understand the intuition behind this result, note �rst that the true model is

given by equations (2) and (3). The long-run regression equation is thus a �tted regression, rather than the

data generating process. As shown in Appendix A, the long-run returns rt+q (q) actually satisfy the following

relationship when ignoring the constant, derived from equations (2) and (3):

rt+q (q) = �qxt + ut+q (q) + �

q�1X
h=1

0@q�1X
p=h

�p�h

1A vt+h: (9)

There are now two error terms, the usual ut+q (q) plus the additional term �
Pq�1

h=1

�Pq�1
p=h �

p�h
�
vt+h, which

stems from the fact that at time t there is uncertainty regarding the path of xt+j for j = 1; :::; q � 1. That

is, since the true model is given by equations (2) and (3), there is uncertainty regarding both the future

realizations of the returns as well as of the predictor variable when forming q�period ahead forecasts. The

�rst error term, ut+q (q), corresponds to the asymptotic �1 term in the limiting distribution and the second

error term, �
Pq�1

h=1

�Pq�1
p=h �

p�h
�
vt+h, corresponds to the �2 term. For large q, the second error term in (9)

will clearly dominate the asymptotic properties since it is of an order of magnitude larger than the �rst one,

a result re�ected in the weights on �1 and �2 in equation (6). However, the weight on �2 in (6) also depends

on �. Thus for � close to zero, �1 will still be important for relatively large q.

Remark 1.5 Following the analysis in BRW, the results are derived under the assumption that q is �xed

as T ! 1. However, it is easy to show that the results remain similar if q increases with the sample

size T , but at a slower pace, such that q=T ! 0, as q; T ! 1. Under this assumption, it follows easily

under the null hypothesis that Tq

�
�̂q � 0

�
)
q

�11
�22
�1. Under the alternative hypothesis,

T
�(�;q)

�
�̂q � �q

�
=

5



T
q

�
�̂q
q �

�q
q

�
+ op (1) ) ��2, where the �rst term in (6) now disappears asymptotically. As discussed in

the previous remark, however, the �rst term in (6) will still be important for relatively large q, provided �

is small; this can be achieved also for asymptotically large q by treating � as small in a local sense. All the

results in this paper therefore hold also under the general assumption that q grows with the sample size but

at a slower pace. As shown in Hjalmarsson (2007), asymptotic results derived under this assumption seem to

provide good approximations of the �nite sample properties of �̂q for forecasting horizons spanning upwards

of 15 to 20 percent of the sample size. For completeness, however, Appendix B presents the results for the

case where q is asymptotically large relative to T , in a manner such that q=T = � 2 (0; 1), as T ! 1; i.e.

when q grows at the same pace as the sample size.

3.2 Finite sample adjustments

In the analysis of BRW, it follows that under the null hypothesis, �̂q � � (�; q) �̂1 (see equation 6 in BRW),

rather than �̂q � q�̂1, as found here, where � (�; q) is de�ned in Theorem 1.5 However, under the current

assumption of � = 1 + c=T , it follows that � (�; q) = q + O
�
T�1

�
. Thus, for the local-to-unity speci�cation

of � that is used here, � (�; q) and q are asymptotically indistinguishable, and replacing q by � (�; q) does not

a¤ect the asymptotic arguments but merely provides a �nite sample adjustment. As the analysis of BRW

implies, along with simulation results that are not reported here, the rate of growth of �̂q under the null

hypothesis seems to correspond best to � (�; q), rather than q, in �nite samples.

Likewise, in Part 2 of Theorem 1, the factor q in front of �1 can be replaced by � (�; q), since this multiplier

arises in an identical manner to the one in Part 1. That is, under the alternative hypothesis, one can write,

T
�
�̂q � �q

�
) � (�; q)

r
�11
�22

�1 + �� (�; q) �2: (10)

In the analysis in the next section, I use these �nite sample adjusted results. This does not qualitatively

change any of the results, and for � = 1 it holds exactly that q = � (�; q).

4 The relationship between the long-run and the short-run

The results in the previous section provide the necessary building blocks for understanding the properties of,

and relationship between, the long- and short-run estimators both under the null hypothesis and under the

alternative of predictability. In this section, I consider the implications of these results through an informal

5 I use the ���sign here because in the framework of BRW, the asymptotic distribution of �̂q is not entirely pinned down by
�̂1.
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analysis. For ease of notation, it is assumed that �11 = �22 = 1.

Under both the null and the alternative, the short-run estimator satis�es, T
�
�̂1 � �1

�
) �1, and one

can write informally,

�̂1 � � +
1

T
�1: (11)

Similarly, under the null with � = 0, the long-run estimator satis�es

�̂q � � (�; q)
1

T
�1 = � (�; q) �̂1: (12)

Thus, as noted above, under the null-hypothesis, �̂1 and �̂q are perfectly asymptotically correlated.

Under the alternative of predictability,

�̂q � �q +
� (�; q)

T
�1 + �

� (�; q)

T
�2 = � (�; q) �̂1 + �

� (�; q)

T

�p
1� �2�2�1 + ��1

�
: (13)

The distribution of �̂q is now a function of �̂1, as well as an additional term. Note, however, that given �̂1,

the random variable �1 is �xed, and the only independent information in �̂q, given �̂1, derives from the �2�1

variable.

To better understand the properties of �̂q under the alternative hypothesis, it is useful to consider the

two special cases of � = 0 and � close to �1. The case of � close to 1 will be symmetrical to that of � close

to �1, but the latter is much more common in stock return applications. To more easily understand the

variation in �̂q, Figure 1 shows the density plots for �1, for di¤erent values of �, and �2 for the case of c = 0

(� = 1); the density of �2�1 is identical to that of �2.

As is seen in Figure 1, �2, and hence �2�1, is almost always negative, a fact which will be used in the

discussion below. To see this analytically, consider the case when c = 0 and note that one can then write

�2 =
�
1
2

�
W2 (1)

2 � 1
�
�W2 (1)

R 1
0
W2 (r) dr

��R 1
0
W 2

2

��1
. Since W2 (1)

2 is distributed as a �21 variable,

there is an approximately two-thirds probability that the �rst term in the numerator will be negative. The

second term will also tend to be negative, since the correlation betweenW2 (1) andW2 (r) is positive. Further,

when W2 (1)
2 is large, the denominator will also be large, skewing the distribution further to the left. The

ratio will therefore be negative most of the time and have a negative mean. A similar argument can be made

for c 6= 0.

4.1 The case of � = 0

When � = 0,

�̂q � � (�; q) �̂1 + �
� (�; q)

T
�2�1; (14)
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where the second term is stochastically independent of �̂1. Since E [�2�1] < 0, as is apparent from Figure 1

and the discussion above, �̂q will tend to be below the curve �̂1� (�; q); the 5th, 50th and 95th percentile of

�2�1, for c = 0, are given by �14:05, �4:37, and �0:13, respectively. To further understand the relationship

between �̂1 and �̂q in this case, consider a simple example. Suppose T = 500; q = 50, c = 0, and �̂1 = 0:015,

which is a typical estimate of the short-run slope parameter in a regression with monthly standardized data

such that �11 = �22 = 1 (e.g. Campbell and Yogo, 2006). If the true value of � is equal to zero, then

asymptotically, �̂q = � (�; q) �̂1 = 0:75. On the other hand, if � = 0:015, so that the short-run estimate is

equal to the true value, then conditional on �̂1, the 5th, 50th and 95th percentiles of �̂q are equal to 0:234,

0:589, and 0:745, respectively, based on equation (14) and the percentiles of �2�1.

4.2 The case of � � �1

As � # �1;

�̂q � � (�; q) �̂1 � �
� (�; q)

T
�1: (15)

For � close to minus one, �1 is almost always positive, and �̂q will tend to be smaller than � (�; q) �̂1. Note

also, that once �̂1 is determined, there is no additional variance left in the estimator �̂q. That is, since

�̂1 � � + �1=T , for a given �̂1 and �, �1 is pinned down, and hence �̂q as well.

Consider a similar thought experiment to that above. Again, suppose T = 500; q = 50, c = 0, and

�̂1 = 0:015. If � = 0, then �̂1 = �1=T , which implies that �1 = 7:5 and �̂q = q�̂1 = 0:75: Now, if � = 0:01,

then �̂1 = � + �1=T implies that �1 = 2:5, and �̂q = 0:689. If � = 0:015, then �1 = 0, and �̂q = 0:75: To

the extent that � is greater than or equal to zero, a large negative correlation � severely limits the range of

probable values that �̂q can attain once �̂1 is �xed. (The 5th, 50th and 95th percentile of �1 for � = �0:99

and c = 0, are given by 0:10, 4:32, and 14:03, respectively.)

4.3 Implied long-horizon estimates

Thus, when the predictor is exogenous, so that � = 0, somewhat substantial deviations in �̂q from that

predicted under the null are possible and to some extent expected. When the regressors are highly endogenous,

and � is close to minus one, the range of possibilities also under the alternative is more restricted and large

deviations from that predicted under the null are not likely.6

Figure 2 further illustrates this last point. Using equations (14) and (15), it plots potential outcomes of

6Apart from increasing slope coe¢ cients, increasing R2s have also been used as an argument in favor of long-run predictability.
In Appendix C, I �rst replicate BRW�s �nding that R2 increases with the forecast horizon under the null hypothesis. In addition,
I show that the asymptotic properties of R2 under the alternative hypothesis are not a function of the degree of endogeneity of
the regressor and that R2 still increases almost linearly with the forecasting horizon. Thus, unlike for �̂q , there is no systematic
di¤erence in the asymptotic properties of R2 for exogenous and endogenous regressors under the alternative hypothesis.
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�̂q, given �̂1 = 0:015, for four di¤erent values of the true � = 0; 0:005; 0:010; 0:015. The same parameters as

in the examples above are used, with T = 500 and c = 0. For � � �1, once �̂1 and � are �xed, the outcome

of �̂q is fully determined and there is thus no range of possibilities. For � = 0, there is independent variation

left in �̂q, given �̂1 and �, in the form of �2�1. The graphs for � = 0 show the lower bound of �̂q, based

on the 5th percentile of �2�1. The upper bound, based on the 95th percentile of �2�1 is virtually identical to

� (�; q) �̂1, since the 95th percentile of �2�1 is almost equal to zero.

The graphs clearly demonstrate the limited range of plausible outcomes for �̂q given a typical one-period

estimate of �̂1, when the regressor is highly endogenous. Indeed, when the estimate �̂1 is in fact identical to

the true �, the outcome is observationally equivalent to that under the null hypothesis. When the predictor

is exogenous, the range of outcomes is obviously much larger, and there is a fair chance of detecting patterns

that deviate substantially from those expected under the null.

In their empirical analysis, BRW show that the coe¢ cients for the dividend-price ratio, which is highly

endogenous, are nearly linear in the forecasting horizon whereas those for the short interest rate, which

is nearly exogenous, grow at a much slower pace. In light of Figure 2, these �ndings are suggestive of

predictive ability in the short interest rate, but can say little or nothing regarding the predictive ability of

the dividend-price ratio.7

5 Summary and conclusion

To sum up, under the null hypothesis, the long-run estimator is asymptotically completely determined by

the one-period estimate and the persistence in the regressor. Under the alternative hypothesis, the degree

to which the long-run estimates can vary independently of the one period ones is determined by the degree

of endogeneity in the regressors. Nearly exogenous predictors, such as the short interest rate, allow for more

independent variation than highly endogenous predictors such as the earnings-price ratio. Unfortunately,

long-run estimates therefore provide additional information in cases where short-run inference is relatively

straightforward but adds little in the case of endogenous regressors where short-run inference is fraught with

di¢ culties (i.e. Stambaugh, 1999, and Campbell and Yogo, 2006).

Finally, it is worth pointing out, that the asymptotic framework used in this paper delivers an asymp-

totically degenerate distribution of �̂q given �̂1, under the null hypothesis. This prevents the construction

7The results in this paper are all based on the assumption that the regressor follows a near unit-root process. For a �xed
autoregressive root � strictly less than unity, the e¤ects arising from endogeneity would not appear in the asymptotic analysis,
although one could perhaps obtain some similar results using the �nite sample bias derived in Stambaugh (1999). In practice,
of course, the near unit-root construction is designed to asymptotically capture the �nite sample bias that arises from highly
persistent and endogenous regressors, which are not necessarily unit-root processes. For regressors with very low persistence,
i.e. � << 1, there will be no e¤ects from endogeneity and there should thus be no systematic di¤erence between endogenous
and exogenous regressors in the behavior of either the short-run or the long-run estimators. However, most relevant predictors
of stock returns tend to be highly persistent.
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of formal, and asymptotically meaningful, tests on the joint distribution of �̂1 and �̂q under the null. BRW

devise a joint test of �1 = �2 = ::: = �q = 0 under the assumption of a �xed � strictly less than one.

However, under these assumptions, the standard asymptotic distribution of the test is not likely to be well

satis�ed due to the standard complications in inference with endogenous and persistent variables. Monte

Carlo simulations not reported in this paper con�rm that for a large negative �, the BRW test will tend to

severely over reject. It is also interesting to note that the Wald statistic of BRW is scaled by (1� �)�1, which

diverges to in�nity as � ! 1. The degenerate case encountered in the current asymptotics thus follows as a

limiting case in their analysis. The construction of an asymptotically valid and correctly sized joint test of

�1 and �q for � close to unity is thus left unresolved.

A Proof of Theorem 1

Proof. For ease of notation the case with no intercept is treated. The results generalize immediately to

regressions with �tted intercepts by replacing all variables by their demeaned versions. Part 1 is proved in

Hjalmarsson (2007), but is repeated here for completeness.

1. Under the null hypothesis,

T

q

�
�̂q � 0

�
=

 
1

qT

T�qX
t=1

ut+q (q)xt

! 
1

T 2

T�qX
t=1

x2t

!�1
=

0@ 1

qT

T�qX
t=1

qX
j=1

ut+jxt

1A 1

T 2

T�qX
t=1

x2t

!�1
:

By standard arguments, 1
qT

PT�q
t=1

Pq
j=1 ut+jxt =

1
qT

PT�q
t=1 (ut+1xt + :::+ ut+qxt) )

R 1
0
dB1Jc; as T ! 1,

since for any h > 0, 1T
PT

t=1 ut+hxt )
R 1
0
dB1Jc. Therefore, T

�
�̂q � 0

�
) q

�R 1
0
dB1Jc

��R 1
0
J2c

��1
:

2. By summing up on both sides in equation (2),

rt+q (q) = � (xt + xt+1 + :::+ xt+q�1) + ut+q (q)

= �

 �
xt + �xt + :::+ �

q�1xt
�
+ vt+1 + (�vt+1 + vt+2) + :::+

qX
p=2

�q�pvt+p�1

!
+ ut+q (q)

= �qxt + �

q�1X
h=1

0@q�1X
p=h

�p�h

1A vt+h + ut+q (q) ;
where �q = �

�
1 + �+ :::+ �q�1

�
= �� (�; q). Thus,

rt+q (q) = �qxt + �

q�1X
h=1

0@q�1X
p=h

�p�h

1A vt+h + ut+q (q) = �� (�; q)xt + � q�1X
h=1

0@q�1X
p=h

�p�h

1A vt+h + ut+q (q) ;
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and

T
�
�̂q � �q

�
=

0@� q�1X
h=1

0@q�1X
p=h

�p�h

1A 1

T

TX
t=1

vt+hxt +
1

T

TX
t=1

ut+q (q)xt

1A 1

T 2

TX
t=1

x2t

!�1
:

Observe that 1T
PT

t=1 vt+hxt )
R 1
0
dB2Jc for all h. Let � (�; q) =

Pq�1
h=1

Pq�1
p=h �

p�h and it follows that, as T !

1,
Pq�1

h=1

�Pq�1
p=h �

p�h
�
1
T

PT
t=1 vt+hxt ) � (�; q)

R 1
0
dB2Jc. By the results in Part 1., 1

T

PT
t=1 ut+q (q)xt )

q
R 1
0
dB1Jc, as T !1, and the desired result follows. Note that,

� (�; q) =

q�1X
h=1

q�1X
p=h

�
1 +

c

T

�p�h
=

q�1X
h=1

q�1X
p=h

�
1 +

c (p� h)
T

�
+O

�
T�2

�
=
1

2
q (q � 1) +O

�
T�1

�
:

B Results for the case when q=T = � 2 (0; 1) as T !1

Some of the literature on long-horizon regressions has analyzed the case where q is asymptotically large

relative to T , such that q=T = � 2 (0; 1), as T !1. In the context of this study, such asymptotics are less

useful because the long-run OLS estimator will not converge to a properly de�ned long-run coe¢ cient. Since

the current focus is on the distribution of the long-run estimator conditional on the short-run estimator, it

makes more sense to consider the case when the long-run estimator does converge. Nevertheless, it is still

interesting to see if any of the results derived in the main text continue to hold under this assumption.

Again treating the case without an intercept, Valkanov (2003) shows that under the null hypothesis,

with q=T = � as T ! 1; �̂q )
�R 1��

0
B1 (r;�) Jc (r)

��R 1��
0

J2c

��1
, where B1 (r;�) � B1 (r + �) � B1 (r).

Under the alternative,
�̂q
T ) �

�R 1��
0

Jc (r;�) Jc (r)
��R 1��

0
J2c

��1
, where Jc (r;�) �

R r+�
r

Jc (r) : Thus, �̂q

no longer converges to a constant and it is therefore not surprising that the strong connection between the

asymptotic distributions for the short-run and long-run estimators is no longer apparent. Indeed, given the

highly non-standard limiting distributions, it is di¢ cult to get a grasp of the properties of �̂q. A very rough

approximation, however, can provide some guidelines.

Note that B1 (r + �) � B1 (r) =
R r+�
r

dB1 (s) � �dB1 (r) and
R r+�
r

Jc (r) � �Jc (r). Under the null

hypothesis, it follows that �̂q � �
�R 1��

0
dB1Jc

��R 1��
0

J2c

��1
� �T �̂1 = q�̂1, and under the alternative

hypothesis, �̂q � T�� = q�. Thus, also for q=T = �, it would appear that �̂q will grow with the forecasting

horizon. Under the null hypothesis, there is still some indication of the relationship between �̂q and �̂1,

but under the alternative hypothesis the more subtle connections between the short-run and the long-run

estimator are no longer evident, as might be expected given the lack of a consistent long-run estimator.
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C Asymptotic properties of R2

Let R2q be the coe¢ cient of determination from the q�period regression in equation (1). Using the same argu-

ments as in the proof of Theorem 1, it follows that under the null hypothesis, TR21 ) 1
�11

�R 1
0
dB1Jc

�2 �R 1
0
J2c

��1
.

Similarly, TR2q ) q
�11

�R 1
0
dB1Jc

�2 �R 1
0
J2c

��1
; using the result that 1

qT

PT
t=1 u

2
t+q (q) !p �11, which is de-

rived in Hjalmarsson (2007). Thus, asymptotically, under the null hypothesis, R2q
��R21 = qR21.

Because xt is a near-integrated regressor, it follows easily that R2q !p 1 as T !1. This is not very useful

from a practical perspective and it is more interesting to analyze the properties under a local alternative,

� = b=
p
T . Under this alternative, using similar arguments as before, R21 ) 1 � �11

�11+b2(
R 1
0
J2c )
; and R2q )

1 � �11
�11+qb2(

R 1
0
J2c )
: Standardizing so that �11 = 1, and using the approximation that (1 + x)�1 � 1 � x, it

follows that R21 � b2
�R 1

0
J2c

�
and R2q � qb2

�R 1
0
J2c

�
� qR21.
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Figure 1: Density plots of �1 and �2 for c = 0. The graphs show the densities for the Brownian functionals
�1, for di¤erent values of �, and �2, obtained by kernel estimation of simulated data using 100; 000 repetitions
and a sample size of 500 in each repetition. The shape of the density of �2�1 is identical to that of �2:
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Figure 2: Possible outcomes of �̂q given �̂1 and �. The graphs show potential outcomes of �̂q, given that

�̂1 = 0:015, for � = 0; 0:005; 0:01; 0:015. The left hand side panel shows the case for exogenous regressors
with � = 0 and the right hand side shows the case with highly endogenous regressors. The plots are formed
using equations (14) and (15), letting T = 500 and c = 0. For � � �1, once �̂1 and � are �xed, the outcome
of �̂q is fully determined and there is thus no range of possibilities. The graphs for � = 0 show the lower

bound of �̂q, based on the 5th percentile of �2�1. The upper bound, based on the 95th percentile of �2�1, is

virtually identical to � (�; q) �̂1; i.e. the line for � = 0.
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