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ABSTRACT

Our ability to predict active and break periods of the Asian summer monsoon is intimately tied to our
ability to predict the intraseasonal oscillation (ISO). The present study analyzes the upper limit of potential
predictability of the northern summer ISO, as it is simulated by the ECHAM5 atmospheric general circu-
lation model forced with climatological SSTs. The leading extended empirical orthogonal functions of
precipitation, computed from a 10-yr control simulation, are used to define four different phases of the ISO.
Fourteen-member ensembles of 90-day hindcasts are run for each phase of the three strongest ISO events
identified in the 10-yr control run. Initial conditions for each ensemble are created from the control
simulation using a breeding method.

The signal-to-noise ratio is analyzed over a region that covers the core of the Asian summer monsoon
activity. Over Southeast Asia, the upper limit for predictability of precipitation and 200-hPa zonal wind is
about 27 and 33 days, respectively. Over India, values of more than 15 days occur for both variables. A
spatial analysis of the different phases of the ISO reveals that the predictability follows the eastward- and
northward-propagating ISO during the active and break phases of the monsoon. Precipitation reveals
increased predictability at the end of the convective phase. Analogous, 200-hPa zonal wind shows strongest
predictability during low and easterly anomalies. This potential predictability is considerably higher than for
numerical forecasts of typical weather variations, particularly for the Tropics, indicating that useful forecasts
of monsoon active and break events may be possible with lead times of more than two weeks for precipi-
tation and the dynamics. A closer look at the breeding method used here to initialize the hindcasts shows
the importance of appropriate ensemble experiment designs.

1. Introduction

The useful prediction of typical weather phenomena
is currently confined to 6–10 days (e.g., Lorenz 1965,
1982; Van den Dool 1994). However, a longer range of
predictability is expected for larger-scale climate fea-
tures with longer periods. The likely limit of predict-
ability for the El Niño–Southern Oscillation (ENSO)
for example is currently on the order of 12 to 18 months

(e.g., Cane et al. 1986; Barnston et al. 1994; Graham
and Barnett 1995; Barnston et al. 1999). However, the
prediction of interannual variations of the Asian sum-
mer monsoon provides an ongoing challenge for nu-
merical weather forecasts. Sperber et al. (2001) found
in a multimodel study with seven models and between
four and nine ensemble forecasts per model that only
the first empirical orthogonal function (EOF), associ-
ated with the tropical convergence zone being located
over the continental landmass, is reasonably predicted
by most general circulation models (GCM).

In addition to the Asian–Australian monsoon circu-
lation and ENSO, the intraseasonal oscillation (ISO),
also known as Madden–Julian oscillation (Madden and
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Julian 1994), has become an important topic in tropical
meteorology. The ISO is largely responsible for the on-
set of active and break events of the Asian–Australian
monsoon system (e.g., Hendon and Liebmann 1990a,b;
Lau et al. 1998; Waliser et al. 2003a) during summer in
the respective hemisphere. During the Asian summer
monsoon, the propagation of the ISO is shifted north-
eastward so that its influence could reach as far north as
to northern India and the Himalayan Mountains (Ya-
sunari 1980, 1981). Other studies (e.g., McPhaden and
Taft 1988; Kessler et al. 1995; Hendon et al. 1998) point
out the relationship of the eastward propagation of con-
vective anomalies over the equatorial western Pacific
Ocean to the modification of the thermocline in the
eastern Pacific Ocean, particularly in Northern Hemi-
sphere winter. Among others, Weickmann (1991) and
Kessler and Kleeman (2000) stated that this modifica-
tion could trigger variations in ENSO. Remote influ-
ences of the ISO include the development of persistent
North Pacific circulation anomalies during Northern
Hemisphere winter (e.g., Ferranti et al. 1990). Also the
rainfall variability along the western United States has
been linked to the longitudinal position of the convec-
tive anomalies associated with the ISO (e.g., Mo and
Higgins 1998b,a; Jones 2000; Higgins et al. 2000), espe-
cially during Northern Hemisphere summer (Maloney
and Hartmann 2000; Higgins and Shi 2001). Analogous
studies for the Southern Hemisphere (e.g., Paegle et al.
2000) found a link between the rainfall variability over
the Pacific–South American sector and the ISO during
the Southern Hemisphere summer.

Based on the above connections between the ISO
and other weather and climate features, particularly the
Asian summer monsoon, the present study focuses on
the predictability of the Northern Hemisphere summer
ISO. Thus far, statistical models have shown predictive
skill of 15–20 days for the ISO (e.g., Waliser et al.
1999a; Wheeler and Weickmann 2001; Mo 2001). Cur-
rently, the India Meteorological Department utilizes
statistical models for the monsoon forecast (e.g., Del-
Sole and Shukla 2002). Since these models are limited
in their ability to reproduce actual weather and other
important climate phenomena, GCM forecasts have
been analyzed for their ability to predict the ISO. For
example, Chen and Alpert (1990), Waliser et al.
(1999a), Jones et al. (2000), and Hendon et al. (2000)
found an ISO forecast skill of less than 7 days in the
National Centers for Environmental Prediction
(NCEP) Medium-Range Forecast (MRF) model’s Dy-
namic Extended Range Forecast (DERF). A model in-
tercomparison by Slingo et al. (1996) found a relatively
weak ISO signature in the National Meteorological
Center (NMC) model, which is a predecessor of the

MRF DERF, compared to other GCMs. The Goddard
Laboratory for the Atmospheres (GLA) GCM was
among the models that generated a more realistic ISO.

A realistic representation of the ISO is a crucial fac-
tor for a predictability study within the intraseasonal
time scale. Waliser et al. (2003c) used the GLA GCM
to analyze the ISO predictability during Northern
Hemisphere summer. They found an extended predict-
ability for the ISO of about 30 days for 30–90-day band-
pass-filtered 200-hPa velocity potential anomalies and
about 18 days for precipitation anomalies associated
with the ISO, although they pointed out some caveats
of the GLA GCM, for example, over the Indian Ocean
less variability of precipitation is associated with the
ISO than in observations; the GLA GCM has a rela-
tively low resolution of 4° latitude � 5° longitude and
17 vertical layers. These caveats, and the fact that
analyses with different models could lead to different
results, motivate the present study to focus on the ISO
simulation with the ECHAM GCM. Kemball-Cook et
al. (2002) found a reasonably well-simulated Northern
Hemisphere summer ISO in the ECHAM model. An-
other improvement of the present study is the use of the
breeding method (Toth and Kalnay 1993) to generate
perturbations for the initial conditions of the ensemble
experiments, which result in fast-growing error modes
and thus cover a broad range of forecast values.

The changes from the ECHAM4 version used by
Kemball-Cook et al. (2002) to the ECHAM5 model
utilized in this study and the experimental framework
are presented in section 2. Section 3 provides the results
of this predictability study and section 4 gives a brief
summary of the present findings.

2. Experimental framework

The spectral ECHAM5 GCM is described in detail
by Roeckner et al. (2003). The prognostic variables are
vorticity, divergence, logarithm of surface pressure,
temperature, specific humidity, and the mixing ratio of
total cloud water. The ECHAM5 model utilizes the
semi-Lagrangian advection scheme by Lin and Johnson
(1996), whereas in ECHAM4 the advection scheme by
Williamson and Rasch (1994) was used. Other new fea-
tures include the usage of a prognostic–statistical
scheme for the total water content (Tompkins 2002).
The standard resolution of the GCM is increased from
T42 (corresponding to 2.8125° � 2.8125°) with 19 ver-
tical layers in ECHAM4 to T63 (corresponding to
1.875° � 1.875°) with 19, and optionally 31, vertical
layers in ECHAM5. The vertical domain is confined to
10 hPa in both vertical resolutions. In this study, the
T63 resolution with 31 vertical layers is chosen since
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Inness et al. (2001) and Liess and Bengtsson (2004)
found an improved simulation of the midlevel convec-
tion and thus the ISO due to increased vertical resolu-
tion.

The present study analyzes the predictability of the
Northern Hemisphere summer ISO, as it is simulated
by the ECHAM5 GCM. The GCM is forced with cli-
matological SSTs in order to eliminate the influence of
the ENSO cycle. The model is integrated for 11 yr with
the first year discarded to avoid influences by the model
spinup. This simulation is referred to as the control
experiment.

Daily averaged data of precipitation and 200-hPa ve-
locity potential from the remaining 10 model years are
used to validate the simulated ISO with 10 years (1988–
1997) of NCEP reanalysis and Climate Prediction Cen-
ter (CPC) Merged Analysis of Precipitation (CMAP)
observations (Xie and Arkin 1997). CMAP data are
available as 5-day averages (pentads) only. Wavenum-

ber–frequency spectra averaged over the equatorial re-
gion from 5°N to 5°S (Fig. 1) are calculated according
to Hayashi (1981). Negative (positive) frequencies de-
note westward (eastward) propagation. The peaks be-
tween �1 and �1 cycles per year describe the annual
means and annual cycles, which are not removed from
these data. CMAP precipitation and NCEP 200-hPa
velocity potential clearly show the eastward propagat-
ing ISO with peaks between 5 and 10 cycles per year.
The simulated ISO is weaker and slightly slower but
still detectable in the unfiltered data. The northward
propagation of the precipitation pattern can be ana-
lyzed in the meridional wavenumber–frequency spectra
from 25°N to 10°S averaged between 60°E and 180°
(Fig. 2). Again, the simulated oscillation of about eight
cycles per year is weaker but still detectable.

To identify regional characteristics, Fig. 3 shows com-
posites of the 30–90-day bandpass-filtered spatiotem-
poral pattern of precipitation for observations on the

FIG. 1. Zonal wavenumber–frequency spectra of (left) precipitation and (right) 200-hPa zonal wind averaged from 5°N to 5°S. (top)
Observations and reanalysis data, and (bottom) model results. Positive (negative) frequencies indicate eastward (westward) propaga-
tion.
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left and for the ECHAM5 simulation on the right for
pentad average values of Northern Hemisphere sum-
mer (May–October) over the region 31.25°N to 31.25°S,
50°E to 180°. Most of the boreal summer ISO variabil-
ity is found in this region (e.g., Wang and Rui 1990) and
a connection to the Asian summer monsoon rainfall is
apparent (Kang et al. 2002). A 30–90-day Lanczos filter
(Duchon 1979) is applied to isolate the ISO signal in the
data. The total filter length is 150 days. Extended EOFs
(EEOFs) over the above domain are calculated with
the extended time dimension ranging from �5 to �5
pentads.

The composites are created from the associated first
EEOF and include all pentads that have an amplitude
greater than 0.8 in the normalized principal component
time series (see the top of Fig. 5 for the ECHAM5 time
series), analogous to the analysis by Waliser et al.
(2003c).

The composites consist of 24 (20) events for the ob-
servations (ECHAM5). For a concise intercomparison
and compact illustration two successive pentads are av-
eraged together and renamed with their averaged num-
ber, beginning with pentad �5 and pentad �4 averaged
to pentad �4.5 and ending with pentad �3 and pentad
�4 averaged to pentad �3.5. The observed ISO cycle
begins with the onset of a break event during the sum-
mer monsoon. The strongest precipitation is found over
the west Pacific warm pool and the Philippines. At pen-
tad �2.5, deep convection forms over the equatorial
Indian Ocean and the negative precipitation anomaly
moves northward with a northwest tilted shape. At pen-
tad �0.5, the precipitation of the growing convection
cell reaches southern India. The monsoon precipitation
spreads out over central India at pentad �1.5 and the
northwest tilt in the precipitation pattern is detectable.
Pentad �3.5 resembles pentad �4.5; thus the period of
the northward propagation is about 40 days, as previ-
ously observed by Yasunari (1981). The first EEOF of
the simulation is nearly in phase with that of the obser-
vations. In addition to the eastward shift of the precipi-
tation pattern, the bimodal southwest–northeast struc-
ture is not as clear as in the observations. Figure 3 also
shows that the GCM fails to reproduce consistent large-
scale cloud clusters and thus the cohesive characteristic
of the observed precipitation pattern. A realistic repre-
sentation of precipitation is dependent on various
GCM components including the convection scheme
and the parameterization of cloud cover. Raymond
(2000) and Tompkins (2002) point out general uncer-
tainties related to the parameterization of cloud–
radiative feedback. The present analysis is similar to an
intercomparison of 10 GCMs in Fig. 7 of Waliser et al.
(2003a) and while not in their study, ECHAM5 shows
relatively realistic results.

The composite cycle of the 200-hPa velocity potential
(Fig. 4) is created from the principal component of
EEOFS of the precipitation data. It starts with a posi-
tive anomaly over the central Indian Ocean during pen-
tad �4.5, indicating large-scale sinking motion. Please
note that the whole Tropics are shown due to the global
characteristics of the velocity potential. While the
NCEP reanalysis shows a single peak over the central
Indian Ocean, the simulation contains a bimodal struc-
ture with one peak over the central Indian Ocean and
the other already farther eastward over the west Pacific
warm pool, which is coherent to the simulated negative
precipitation anomalies at pentad �4.5 in Fig. 3. At
pentad �2.5, the positive 200-hPa velocity potential
anomaly extends over most of the west Pacific warm
pool with a lower amplitude in the model. A negative
velocity potential anomaly develops over tropical Af-

FIG. 2. Meridional wavenumber–frequency spectra of precipi-
tation between 25°N and 10°S averaged from 60°E to 180°: (top)
CMAP observations and (bottom) model results. Positive (nega-
tive) frequencies indicate northward (southward) propagation.
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FIG. 3. Precipitation composites (mm day�1) of (left) CMAP observations and (right) ECHAM5 simulations. Segments are separated
by 10 days with time increasing from top to bottom. Each map is an average of the two adjacent pentad composites starting with pentad
�5 and ending with pentad �4 (see text for more explanations).
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rica. At pentad �0.5, this negative velocity potential
anomaly is strongest with one peak over the central
Indian Ocean in the reanalysis data and two peaks over
the central Indian Ocean and the west Pacific warm
pool in the model. The center of negative velocity po-
tential anomaly is located farther northeastward at pen-
tad �1.5, coinciding with the propagation of the pre-
cipitation in Fig. 3. In the NCEP data, pentad �3.5 lags
about one pentad behind pentad �4.5.

The composites are in close resemblance to an unfil-
tered analysis in Fig. 10 of Higgins and Shi (2001). In
the simulation, pentad �3.5 resembles pentad �4.5,
only with slightly less amplitude. This relatively weak
signal in pentad �3.5 is related to the weak equatorial
heating from precipitation, as seen in Fig. 3. The rela-
tively slow peak in the wavenumber–frequency spec-
trum in Fig. 1 is not captured in this composite analysis.
In general, the simulated scales of the ISO signal are
smaller than observed over the Indian Ocean and the
strongest variability is shifted eastward. However, the
study by Waliser et al. (2003a) showed that most ana-
lyzed GCMs produce a less realistic ISO pattern. A
realistic precipitation pattern over the Indian Ocean is
crucial for the prediction of the Indian summer mon-

soon. Although ECHAM5 fails to reproduce the ISO
amplitude over certain areas, the simulated ISO period
and thus the period of active and break events of the
Indian summer monsoon is relatively well captured.

The three strongest ISO events are defined by root-
mean-square averaged amplitudes of four consecutive
maxima and minima in the principal component time
series of the first two EEOFs (Fig. 5). They are marked
as numbers 1 to 3 in Figs. 5a and 5b. The maxima and
minima of both time series provide four phases of each
selected ISO event. These four phases are in quadra-
ture to each other. The middays of the respective pen-
tads are used as starting dates for perturbation experi-
ments since the predictability might be different de-
pending on the phase of the ISO.

The strongest ISO event is found during model year
6. The maximum (minimum) of the principal compo-
nent time series for the first EEOF appears on 5 July
(30 July). The maximum (minimum) for the second
EEOF appears on 15 July (9 August). The maximum
(minimum) amplitudes associated with the four phases
of the second strongest event occur during model year
9 on 25 June, 5 July, 15 July, and 25 July. For the third
strongest event, the respective dates are 11 June, 21

FIG. 4. As in Fig. 3 but for 200-hPa velocity potential (106 m2 s�1) from (left) NCEP reanalysis and (right) ECHAM5 simulation.
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June, 1 July, and 11 July of model year 2. The four
consecutive phases of each event are referred to as
phase 1 to phase 4 in this text. Fourteen ensemble ex-
periments are integrated for each of these dates. To
provide optimum initial conditions for those perturba-
tion experiments, the breeding method (Toth and Kal-
nay 1993) is used. In numerical weather forecast, the
advantage of the breeding method is the growth of
large forecast uncertainties and the damping of small
uncertainties. The fast-growing modes obtained by
breeding are known as bred vectors and are essentially
the finite-time, nonlinear extension of local Lyapunov
vectors (Toth and Kalnay 1993; Cai et al. 2003). The
breeding method requires a short model integration
with an arbitrary initial perturbation. In the present
study, this perturbation is 10% of the daily variability of

the unfiltered prognostic variables during July of the
year of the detected ISO since most variability of the
simulated Northern Hemisphere summer ISO occurs
during July. The 14 initial perturbations for one specific
date are obtained by adding or subtracting the above
10% of the daily variability of the prognostic variables
during July to the initial conditions of each of the seven
days between three days before and after the detected
ISO maximum. For instance, the first (last) seven dif-
ferent initial conditions for the first phase of the strong-
est event are created by selecting the initial conditions
for 2 to 8 July and adding (subtracting) 10% of the daily
variability of the prognostic variables during July of
year 6. The date of these initial conditions is then set to
the given forecast date, in this example to 5 July.

The perturbed initial conditions are expected to cre-
ate simulations that differ from the control experiment
based on the fastest growing modes of the dynamical
system. This growth will be limited by a saturation level
due to the presence of nonlinear effects, which are re-
sponsible for the stability of the dynamical system. The
application of the breeding method requires a short
model integration, that is, one breeding cycle, after
which the prognostic variables have to be scaled down
to the order of a rescaling mask. In the present case the
rescaling mask is defined as the amplitude of 10% of
the daily variability (in terms of the standard deviation)
of the prognostic variables during July of the year of the
detected ISO. Cai et al. (2003) tested several rescaling
factors for the ENSO variability and found promising
results with a rescaling of 10% of the model variability.
However, they concluded that values between 1% and
20% could be used instead without a large difference in
the results.

The difference of the initial rescaling mask and the
amplitude S at the end of the breeding cycle � is called
the bred vector of the corresponding breeding cycle.
The perturbation resulting from the rescaling is added
to the control experiment at the new time step and the
model is again integrated for a short time. Toth and
Kalnay (1993) and Cai et al. (2003) assumed that an
ideal perturbation is reached after four iterations. Then
the final perturbation is nearly independent of the ini-
tial perturbation at the time step four integrations ago.
The bred vectors increase with time to demonstrate the
breeding toward the fastest growing modes. In the
present case, � is chosen to be one pentad to detect the
modes that grow fastest on the intraseasonal time scale
without being influenced too strongly by higher-
frequency weather modes. In numerical weather fore-
cast, the breeding cycle � is only 6 h (Toth and Kalnay
1993) and for ENSO predictions Cai et al. (2003) used
� equal to three months. The perturbation amplitude S

FIG. 5. Time series of (top) first and (bottom) second principal
component of the respective EEOFs for ECHAM5 precipitation.
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is defined by the L2 norm, as described in Eq. (1) in Cai
et al. (2003) and repeated below in Eq. (1):

S �

��
i�1

n ���Vi
p � Vi

c�2 dx dy

�i
2 �

	n
. �1�

Here Vi is one of the prognostic variables: vorticity,
divergence, temperature, specific humidity, or surface
pressure, used to determine S. Each of the 31 vertical
levels is treated as a different variable so that n is equal
to 125. The values of perturbed experiments are de-
noted by p and the ones of the control simulation by c;

i represents the standard deviation of the correspond-
ing unfiltered variable. The horizontal integration in xy
directions is performed over the global model domain.

The scaling factor that leads to the initial conditions
for one ensemble member is determined from the re-
scaling mask. At the beginning of each forecast day, the
values for S are calculated according to Eq. (1). After
five days, the perturbation is scaled down to the scaling
factor. The fifth iteration is the beginning of the per-
turbed forecast for the first ISO phase. The initializa-
tions of the other three phases are obtained by a con-
tinuation of the breeding method. Most ensembles in-
dicate a slightly decreased size of the bred vectors after
the first breeding cycle and a nearly constant growth
rate afterwards. This is in contrast to the increase in
growth rate as theoretically expected. A modification
to the breeding method is discussed in section 4. This
change leads to the expected increase in the growth
rate.

Table 1 describes the variance of precipitation and
200-hPa zonal wind over the 14 bred vectors of the first
case at the starting dates of the four phases and 10 days
before the first forecast. Averaged over the region 25°N
to 25°S, 60°E to 180° the values barely increase as a
result of the breeding method as it is used in the present
study. Prior to downscaling, the strongest variance oc-
curs during phases 1 and 3, which are identified by the
first EEOF. The variances during phases 2 and 4 (iden-

tified by the second EEOF) are slightly lower. How-
ever, these variances show virtually no difference to the
variances 10 days before the first forecast experiments.
After downscaling, the variances indicate even less dif-
ference between the different phases. The spatial dis-
tribution of variances over the region specified above
also reveals no significant changes in the variance in
precipitation and 200-hPa zonal wind (not shown). This
shows that the breeding method as it is used in the
present study does not significantly improve the initial
conditions.

The obtained initial conditions are used to produce
90-day forecasts for all ensemble members. Since the
current study only provides insight into the simulated
ISO as opposed to the observed ISO, only the theoret-
ical or potential predictability can be calculated. Addi-
tionally, it is assumed that ISO predictability is strong-
est for strong events; hence assessing predictability of
the three strongest ISO events in the time series results
in the upper limit of ISO predictability.

3. Results

Two different approaches are applied to identify the
ISO signal in the ensemble forecasts. In the first ap-
proach, the forecasts are appended to the previous 120
days of the control experiment. In accordance with Wa-
liser et al. (2003c), a 40-day triangular taper is applied
to either end of the resulting 210-day time series in
order to be able to bandpass filter the data with the
30–90-day Lanczos filter. However, although time fil-
tering is widely used to examine the ISO signal, this
approach is worrisome for predictability studies since
predictability can be overestimated. In the second ap-
proach, the upper limit of ISO predictability is investi-
gated using daily averaged anomalies, reconstructed
from a projection on the first four EOFs of Northern
Hemisphere summer data from the 10-yr control simu-
lation. Wheeler and Hendon (2004) used a similar
method by projecting daily data on the first two EOFs.
Figure 6 shows the first four EOFs for precipitation.
These EOFs reflect the eastward and northward propa-
gating ISO pattern described in Fig. 3.

TABLE 1. Variance of precipitation and 200-hPa zonal wind over the 14 bred vectors of the first case at the starting dates of the four
phases and 10 days before the first forecast. The values are calculated before and after downscaling and then averaged over the region
25°N–25°S, 60°E–180°.

Rescaling Day �10 Phase 1 Phase 2 Phase 3 Phase 4

Precipitation (mm2 day�2) Before 8.430 9.066 5.244 8.584 5.123
After 1.182 1.253 1.201 1.259 1.166

200-hPa zonal wind (m2 s�2) Before 9.412 8.468 6.044 9.881 8.465
After 0.635 0.684 0.597 0.729 0.746
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In the first approach, precipitation and 200-hPa ve-
locity potential are analyzed to compare the present
results to a previous study by Waliser et al. (2003c). In
the second approach, 200-hPa zonal wind is addition-
ally analyzed since it is a measurable and, therefore, a
more direct and useful variable for climate predictions.
To avoid a too strong influence of the subtropical jet
streams, the EOFs for 200-hPa zonal wind are confined
between 20°N and 20°S. Figures 7 and 8 depict time
series for all ensemble members in the first phase of the
strongest case averaged over the region 10°–20°N, 90°–
120°E, which roughly corresponds to Southeast Asia
(see box in Fig. 11). The thin lines show each one of the
15 ensemble members including the control experiment
and the thick line represents the mean of all members.
Day zero indicates the start of the forecast experiments.
Due to bandpass filtering, the forecast error is nonzero
at forecast day zero in Fig. 7. Since the ISO signals of
each member diverge with increasing time, the ampli-
tude of the mean signal decreases, indicating less pre-
dictability with time. However, the 30–60-day period is
still detectable after 60 forecast days. For a more quan-
titative approach of the predictability, the signal-to-
noise ratio of the forecast experiments is obtained ac-
cording to Waliser et al. (2003c). This enables a more
direct comparison to their results. The signal 
s for one
phase � of one case k is obtained at a given forecast day
j by calculating the variance 
s�kj

within a sliding win-

dow t ranging from �L days to �L days [Eq. (2)]; L is
predefined as 25 days, hence the sliding window con-
tains approximately one complete ISO cycle; X repre-
sents the geophysical quantity that is analyzed. The su-
perscript 0 indicates the control experiment:

�s�kj
�

1
2L � 1 �

t��L

L

�X�,k, j�t
0 �2. �2�

The corresponding noise 
e at a given forecast day j,
also known as the forecast error relative to the control
experiment, is averaged over the 14 ensemble members
m for one phase � of one case k. It is defined as

�e�kj
�

1
14 �

m�1

14

�X�,k, j
m � X�,k, j

0 �2. �3�

Figures 9 and 10 show the mean signal and noise aver-
aged over all four phases � of all three cases k over the
same region as in Figs. 7 and 8. Considering a signal-
to-noise ratio of one as a limit for useful predictability,
the average predictability of bandpass-filtered precipi-
tation (200-hPa velocity potential) is limited to 28 (36)
days with the 95% confidence interval starting at 25
(33) days. Using the more appropriate projection on
EOFs, the average predictability is reduced to 27 days
for precipitation and 23 days for 200-hPa velocity po-
tential. The 200-hPa zonal wind is still predictable for
about 33 days. The 95% confidence interval starts

FIG. 6. Empirical orthogonal functions 1 through 4 for ECHAM5 precipitation.
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about one day earlier for all three variables. This shows
the lower variability of the ensembles when only the
first four EOFs are considered. The 95% confidence
interval is calculated with a Student’s t test.

The left panels of Fig. 11 show maps of the variance
of the composites for precipitation, 200-hPa velocity
potential and 200-hPa zonal wind as they are depicted
in Figs. 3, 4 and 14. The right panels show, for each grid
point, the lead time at which a signal-to-noise ratio of
one or lower is reached for EOF-projected data. These
lead times provide further insight into the spatial dis-
tribution of the ISO predictability. High lead times in-
dicate a high predictability of the simulated ISO. Areas
with strong variance, and therefore strong signals, are
not necessarily areas with high lead times. Over the
equator, high lead times of more than 30 days can be
found up to 30° east of the strongest variance, espe-

FIG. 7. Error growth of (top) 30–90-day filtered precipitation and
(bottom) 200-hPa velocity potential predictions for phase 1 in case
1. Values are averaged over the region 10°–20°N, 90°–120°E.

FIG. 8. As in Fig. 7 but for (top) EOF-projected precipitation,
(middle) 200-hPa velocity potential, and (bottom) 200-hPa zonal
wind predictions.
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cially for precipitation and 200-hPa zonal wind over the
Maritime Continent and the central Pacific where the
effect of the eastward propagating ISO is strongest.
Also farther away from the equator, lead times can be
highest to the east of the strongest variance, as over the
South China Sea and the west Pacific warm pool. For
precipitation, the long lead time is extended to the east-
ern Indian Ocean, whereas long lead times of 200-hPa
zonal wind can be found over the western Indian Ocean
and over most of the west and central Pacific. Addi-
tionally, a long lead time for prediction of 200-hPa zonal
wind is found near the South Pacific convergence zone
(SPCZ) (Vincent 1994) at about 15°S near the date line.
Matthews et al. (1996) proposed that subtropical

FIG. 9. Signal-to-noise ratio of (top) bandpass-filtered precipi-
tation and (bottom) 200-hPa velocity potential predictions aver-
aged over all four phases in all three cases. Shading represents the
significance at the 95% interval for all 12 forecasts. All values are
averaged over the region 10°–20°N, 90°–120°E.

FIG. 10. As in Fig. 9 but for (top) EOF-projected precipitation,
(middle) 200-hPa velocity potential, and (bottom) 200-hPa zonal
wind predictions.
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Rossby wave propagation associated with the ISO ac-
counts for the poleward and eastward extension of con-
vection along the SPCZ. The forecast of 200-hPa ve-
locity potential is rather uniformly distributed and
much lower in the EOF-projected signal than in the
bandpass-filtered signal (not shown). The area between
10°–20°N, 90°–120°E, which is analyzed in Figs. 7–10, is
marked by a black rectangular box.

Figure 12 shows the predictability of precipitation
during the four different phases of the ISO. The initial
conditions for the four consecutive phases 1 to 4 have
similar horizontal patterns to the composited pentads
�0.5, �1.5, �3.5, and �2.5 in the right side of Fig. 3.
The third phase also corresponds to pentad �4.5. In
general, the strength of predictability resembles the sig-
nal of precipitation with high values over the northern
summer ITCZ and the SPCZ. The strongest predict-
ability is found in phase 2 at the end of the convective

ISO phase and during the active Indian summer mon-
soon. Predictability decreases during phases 3 and 4. It
is lowest during phase 1, at the beginning of the con-
vective phase. In phases 2 and 3 the predictability
reaches more than 30 days over the South China Sea,
the west Pacific warm pool and most parts of the Mari-
time Continent. Over the west Pacific warm pool, it
shifts slightly northward from phase 2 to 3, following
the northward propagation of deep convection. Al-
though predictability decreases in general during
phases 4 and 1, values of more than 20 days can still be
found. Over the eastern Indian Ocean, predictability
even increases, confirming a stronger predictability of
an upcoming dry phase than an upcoming convective
phase. The predictability over southern India is lower
but still reaches more than 15 days during all four
phases.

The predictability of 200-hPa velocity potential (Fig.

FIG. 11. Variance of composites from (left) Figs. 3, 4, and 14 and number of forecast days until (right) the signal equals the noise
for (top) precipitation, (middle) 200-hPa velocity potential, and (bottom) 200-hPa zonal wind.

SEPTEMBER 2005 L I E S S E T A L . 3331

Fig 11 live 4/C



13) reaches high values over the Maritime Continent in
phases 2 and 3. Strong predictability shifts from the
Maritime Continent to the central Indian Ocean and
the SPCZ in phases 3 and 4. In phase one it shifts back
to the Maritime Continent. However, in addition to not
being a directly measurable variable, the broad scale of
velocity potential makes it a less useful variable for
climate predictions. Figure 14 shows the composites of
200-hPa zonal wind, analogous to Figs. 3 and 4, as well
as the corresponding predictability for each phase. As
with precipitation and 200-hPa velocity potential, the
strongest predictability is found over the Maritime
Continent and the central Pacific during phase 2. Dur-
ing phase 3, predictability decreases over these regions
but increases over the west Pacific warm pool. In phases
4 and 1, predictability decreases and extends farther
eastward. It shifts northward following the region of
low anomalies. Analogous to precipitation, strong pre-
dictability occurs during low anomalies and easterlies,
related to the end of the convective phase. Over the

Indian Ocean, predictability is in general lower than
downstream of strong ISO activity. However, during
phases 1 and 2, predictability still reaches more than 20
days over India. Although the location of long lead times
changes slightly with the ISO phase, the predictability is
in general highest over areas with a strong ISO signal.
This strong signal reveals a potential for an improve-
ment in intraseasonal prediction over the associated ar-
eas and by this an improvement of the prediction of the
active and break phases of the Asian summer monsoon.

In regards to the breeding method, it should be noted
that contrary to what is expected and desired, the
breeding method as used in this study did not signifi-
cantly increase the intraensemble variability of the ini-
tial condition perturbations with time. To test the sen-
sitivity of the results to this characteristic, additional
breeding cycles were calculated. To focus on tropical
motions, the vorticity is omitted from Eq. (1). The first
bred vector reaches a forecast value S of 17.5 and the
forecast value increases with each iteration. After four
iterations, a saturation value is reached as proposed by
Toth and Kalnay (1993). In the shown test calculation

FIG. 12. Number of forecast days until the signal equals the
noise for precipitation. See text for more explanation about how
the four phases of the oscillation are defined.

FIG. 13. As in Fig. 12 but for 200-hPa velocity potential.

3332 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 62

Fig 12 13 live 4/C



the saturation value ranges from 36 to 42, whereas the
saturation value in the initial use of the breeding
method reaches only values around 17. Figure 15 shows
results of one 14-member ensemble forecast, created
with 1) the breeding method originally used in this
study and 2) with the modified approach described
above. The modified approach results in an expected
decrease in potential predictability due to the inclusion
of a larger model uncertainty. However, although the
predictability of 200-hPa zonal wind decreases from
more than 30 days to less than 10 days over the previ-
ously analyzed region in Southeast Asia, this example
shows no decrease of predictability for precipitation.
The results for precipitation obtained from the originally
used breeding method are still within the 95% confi-
dence interval of a t test over all 14 ensemble members.

4. Conclusions

This study revisits the predictability of the northern
summer ISO (see, e.g., Waliser et al. 2003c) using the

ECHAM5 atmospheric GCM. ECHAM5 was chosen
because it exhibits a relatively realistic ISO as well as
more realistic precipitation variability over the Indian
Ocean compared with earlier models used to study the
ISO. In addition, the model was run at relatively high
resolution (T63 and 31 layers up to a height of 10 hPa
in the vertical). A further difference from previous
studies is that we initialize the runs using a breeding
method (Toth and Kalnay 1993) designed to better cap-
ture the fastest growing disturbances.

The ensemble forecasts in Waliser et al. (2003c) were
initialized with random perturbations. They found the
limit of predictability for bandpass-filtered data at
about 15 days for precipitation and about 25 days for
200-hPa velocity potential over an area covering India
and Southeast Asia. The present study shows that
bandpass filtering leads to an overestimation of predict-
ability compared to projecting the forecasts on the first
four EOFs. This study focuses on the three strongest
ISO cases and detects an upper limit of predictability of
more than 15 (20) days over India and more than

FIG. 14. (left) Composites of 200-hPa zonal wind (m s�1). (right) Forecast days as in Fig. 12 but for 200-hPa zonal wind.
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20 (30) days over Southeast Asia for precipitation (200-
hPa zonal wind), as shown in Fig. 11. It is suggested that
the restriction to the three strongest ISO cases in the
present study is responsible for the increase in predict-
ability since the inclusion of weaker ISO events is ex-
pected to decrease the signal of the intraseasonal vari-
ability (Waliser et al. 2003b,c). For the above reason,
the current results provide the upper limit of predict-
ability. Over parts of Southeast Asia, the predictability
reaches about 27 days for precipitation and about 33
days for 200-hPa zonal wind (see Figs. 10 and 11). Re-

sults for 200-hPa velocity potential reveal a uniform
predictability of more than 20 days over the analyzed
regions, but these results should be treated with caution
since velocity potential is not measurable and thus a
more indirect variable.

The spatial analysis of different phases of the ISO
reveals that the predictability follows the eastward and
northward propagating ISO during the active and break
phases of the monsoon. Precipitation reveals increased
predictability at the end of the convective phase.
Analogously, the 200-hPa zonal wind shows strongest
predictability during low and easterly anomalies. Ow-
ing to the long lead time in the upper limit of theoret-
ical predictability, there appears to be untapped pre-
dictability for the propagation of the ISO and hence the
evolution of the subsequent monsoon phase, either the
active or the break phase. The present study provides
detailed maps of areas with high potential predictability
within the intraseasonal time scale. Although different
areas are favored during different phases of the mon-
soon, the regions in South Asia most affected by the
monsoon reveal strong potential predictability during
all four phases. Hence the present study motivates fur-
ther improvements in the simulation and forecast on
the intraseasonal time scale.

As with all results obtained by numerical simulations,
caution is warranted. The systematic model errors as
described in Figs. 1–4 have been neglected in the cur-
rent study. Hence the current study is only a broad
estimate for the upper limit of predictability of ob-
served intraseasonal variability. Waliser et al. (1999b)
showed that a coupling of the atmospheric GCM to a
mixed layer model could lead to a more realistic simu-
lation of the ISO compared to the use of climatological
SSTs as in the present study. Hence the exclusion of
SST coupling may lead to an underestimation of the
predictability. A future study will utilize an atmo-
spheric GCM coupled to a mixed layer ocean model
and the predictability will be studied with observed ini-
tial conditions.
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FIG. 15. (top) Signal-to-noise ratios of EOF-projected pre-
cipitation and (bottom) 200-hPa zonal wind predictions for
the first phase in the second case. The modified noise is obtained
from the 14 forecast experiments with vorticity omitted in the
calculation for initial conditions. Shading represents the signifi-
cance at the 95% interval for the 14 ensembles of the modified
noise. All values are averaged over the region 10°–20°N, 90°–
120°E.
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