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Cytochrome P-450 (CYP) 1A1 plays a key role in phase I metabolism of polycyclic aromatic hydrocarbons and in 
estrogen metabolism. It is expressed predominantly in extrahepatic tissues, including the breast. Four CYP1A1 gene 
polymorphisms (3801T/C, Ile462Val, 3205T/C, and Thr461Asp) have been studied in relation to breast cancer. 
The 3801C variant  is  more  common than the  Val variant. Both variants occur more frequently in Asians than in White 
populations. The 3205T/C polymorphism has been observed in African Americans only. Little data are available on 
the geographic/ethnic distribution of the Thr461Asp polymorphism. The functional significance of the polymorphisms is 
unclear. In 17 studies, no consistent association between breast cancer and CYP1A1 genotype was found. Meta-
analysis found no significant risk for the genotypes 1) 3801C/C (relative risk (RR) ¼ 0.97, 95% confidence interval (CI): 
0.52, 1.80) or 3801T/C (RR ¼ 0.91, 95% CI: 0.70, 1.19) versus 3801T/T, 2)  Val/Val (RR ¼ 1.04, 95% CI: 0.63, 1.74) or 
Ile/Val (RR ¼ 0.92, 95% CI: 0.76, 1.10) versus Ile/Ile, or  3)  Asp/Asp (RR ¼ 0.95, 95% CI: 0.20, 4.49) or Thr/Asp (RR ¼
1.12, 95% CI: 0.87, 1.43) versus Thr/Thr. Future studies should explore possible interactions between CYP1A1 and 
sources of polycyclic aromatic hydrocarbons, markers of estrogen exposure, other lifestyle factors influencing 
hormonal levels, and other genes involved in polycyclic aromatic hydrocarbon metabolism or hormonal biosynthesis. 

breast neoplasms; cytochrome P-450 CYP1A1; epidemiology; polymorphism, genetic 

Abbreviations: CI, confidence interval; COMT, catechol-O-methyltransferase; CYP, cytochrome P-450; GST, glutathione 
S-transferase; PAH, polycyclic aromatic hydrocarbon; PCB, polychlorinated biphenyl; RR, relative risk. 

Editor’s note: This paper is also available on the website aryl hydrocarbon hydroxylase activity, catalyzing the first 
of the Human Genome Epidemiology Network (http:// step in the metabolism of a number of polycyclic aromatic 
www.cdc.gov/genomics/hugenet/). hydrocarbons (PAHs), such as the tobacco carcinogen 

benzo[a]pyrene, to their ultimate DNA-binding forms (2). 
It is also involved in estrogen metabolism, catalyzing the 

GENE hydroxylation of 17b-estradiol at the C-2 position (3, 4). 
The CYP1A1 gene, located at 15q22-q24, comprises 

Cytochrome P-450 (CYP) 1A1 is a key enzyme in seven exons and six introns and spans 5,810 base pairs (5). 
phase I bioactivation of xenobiotics (1). It contributes to In humans, CYP1A1 is under the regulatory control of the 
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aryl hydrocarbon receptor, a transcription factor that 
regulates gene expression (6). 

CYP1A1 expression occurs predominantly in extrahe­
patic tissue (7). CYP1A1 messenger RNA has been detected 
in normal and cancerous breast tissue (8, 9) and can be 
induced in human-breast-derived cell lines (6). 

GENE VARIANTS 

Several mutations in CYP1A1 have been described (for 
CYP1A1 allele nomenclature, refer to the following website: 
http://www.imm.ki.se/CYPalleles), and four polymorphisms 
have been studied in relation to breast cancer. Table 1 
describes these four polymorphisms and the allele nomen­
clature system (10–13). The 3801T/C (14, 15) and 
3205T/C (16) polymorphisms are located in the 3# non­
coding region. The 2455A/G (17) and 2453C/A (13) 
polymorphisms arise close together in exon 7 and result in 
the amino acid changes Ile462Val and Thr461Asp, respec­
tively. Because the studies did not always include informa­
tion on all polymorphisms, it was often not possible to 
identify which of the *2A, *2B, or *2C alleles were present. 
Therefore, the ‘‘3801T/C,’’ ‘‘Ile462Val,’’ ‘‘3205T/C,’’ 
and ‘‘Thr461Asp’’ nomenclature is used throughout this 
review. 

Genotype frequencies 

In 2001, Garte et al. (18) estimated CYP1A1*2A, 
CYP1A1*2B, CYP1A1*2C, and CYP1A1*3 genotype fre­
quencies in Whites, Asians, and Africans by using data from 
33 studies of Whites, nine studies of Asians, and five studies 
of Africans. In comparison, the present review includes data 
from 69 articles, including 20 studies published between 

2002 and 2004, and also summarizes data for the Thr461Asp 
polymorphism. 

Relevant papers were identified by searching MEDLINE 
and EMBASE from 1980 to week 4 of 2004 by using the 
MeSH heading ‘‘Cytochrome P-450 CYP1A1’’ or the text 
words ‘‘CYP1A1’’ or ‘‘P4501A1’’ combined with the MeSH 
headings ‘‘Polymorphism (Genetics),’’ ‘‘Mutation,’’ ‘‘Point 
mutation,’’ ‘‘Genotype,’’ or the text words ‘‘polymorph$,’’ 
‘‘mutation$,’’ ‘‘gene,’’ ‘‘genes,’’ ‘‘genetic$,’’ ‘‘genotyp$,’’ or 
‘‘allel$.’’ Additional articles were identified from the Centers 
for Disease Control and Prevention Genomics and Disease 
Prevention Information System and by hand searching 
reference lists in published papers. Eligible studies presented 
frequencies for each genotype separately in nondiseased 
persons. Studies that did not include controls for breast 
cancer patients were excluded if there were fewer than 200 
subjects in each ethnic group, which would limit precision of 
the estimates of the genotype frequencies. If there appeared 
to be an overlap in subjects between studies, only the largest 
study was reported. Hardy-Weinberg equilibrium was as­
sessed by using the Pearson v 2 test. 

Web tables 1, 2, 3, and 4 show homozygous variant and 
heterozygous genotype frequencies for the 3801T/C, 
Ile462Val, 3205T/C, and Thr461Asp polymorphisms (13, 
17, 19–85). (This information is described in the first four of 
eight supplementary tables; each is referred to as ‘‘Web 
table’’ in the text and is posted on the website of the Human 
Genome Epidemiology Network (http://www.cdc.gov/ 
genomics/hugenet/reviews.htm) as well as on the Journal’s 
website (http://aje.oupjournals.org/).) The subjects in most 
studies are volunteers (with the sampling frame unspecified) 
or hospital or clinic patients. It is unclear whether genotype 
frequencies in such series will reflect those in the general 
population. Considerable data are available from Japa­
nese, western European, and White American populations. 
Data are limited, or not available, for other populations. 

TABLE 1. CYP1A1 3801T/C, Ile462Val, 3205T/C, and Thr461Asp polymorphisms 

Allele 
nomenclature 

(10, 11) 

Nucleotide 
change 

Amino acid 
change 

Location 

Proposed allele nomenclature 

Garte (12) 
Cascorbi 
et al. (13) 

Reference to first 
report: study, year 
(reference no.) 

CYP1A1*1A None CYP1A1*1 CYP1A1*1 

CYP1A1*2A 3801T/C None 3# noncoding region 
(downstream of 
polyadenylation site) 

CYP1A1*2 CYP1A1*2A Bale et al., 
1987 (14); 
Spurr et al., 
1987 (15) 

CYP1A1*2B 3801T/C None 3# noncoding region CYP1A1*2B Hayashi et al., 
1991 (17) 

2455A/G Isoleucine/valine Exon 7, codon 462 

CYP1A1*2C 2455A/G Isoleucine/valine Exon 7, codon 462 
(heme binding 
region) 

CYP1A1*3 Hayashi et al., 
1991 (17) 

CYP1A1*3 3205T/C None 3# noncoding region 
(upstream of 
polyadenylation site) 

CYP1A1*4 CYP1A1*3 Crofts et al., 
1993 (16) 

CYP1A1*4 2453C/A Threonine/ 
asparagine 

Exon 7, codon 461 
(heme binding 
region) 

CYP1A1*5 CYP1A1*4 Cascorbi et al., 
1996 (13) 
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Information is also lacking on genotype frequencies in 
different age groups. Most studies consider only the 
3801T/C and/or Ile462Val polymorphisms, which has the 
potential to result in misclassification. When individual 
polymorphisms are assessed, those persons who do not carry 
the specific variant may not be true wild-type homozygotes; 
a proportion may carry another variant. Moreover, the 
presence of the Thr461Asp polymorphism may interfere 
with detection of the Ile462Val polymorphism, resulting in 
overestimation of the Val allele if the polymerase chain 
reaction product has not been digested with BsrD1 (13). 
Genotype frequencies were in Hardy-Weinberg equilibrium, 
except in two studies of the 3801T/C polymorphism (63, 
65) and nine studies of the Ile462Val polymorphism (19, 41, 
53, 64, 67, 70, 76, 78, 82). 

3801T/C (CYP1A1*2A, CYP1A1*2B). The 3801C var­
iant is most prevalent in Asian populations, where the 
frequency of the C/C genotype is 2–18 percent and that of 
the T/C genotype is 32–55 percent. In European and White 
American series, 0–5 percent are C/C and 9–28 percent are 
T/C. Frequencies in African Americans are intermediate 
between White and Asian populations (4–6 percent C/C, 
35–39 percent T/C). 

In our pooled analysis, the C/C genotype frequency was 
13 percent (95 percent confidence interval (CI): 12.0, 14.0) 
in Asians, 1 percent (95 percent CI: 0.9, 1.4) in Whites, and 
6 percent (95 percent CI: 3.7, 8.1) in African Americans. 
The heterozygote frequency was 44 percent (95 percent CI: 
42.6, 45.6) in Asians, 17 percent (95 percent CI: 16.5, 18.0) 
in Whites, and 36 percent (95 percent CI: 31.7, 40.6) in 
African Americans. 

Ile462Val (CYP1A1*2B, CYP1A1*2C). In all ethnic 
groups, the Val variant occurs less frequently than the 
3801C variant. Similar to the 3801C variant, it is most 
common among Asians, where 1–8 percent are Val/Val and 
15–46 percent are Ile/Val. In Europeans and US Whites, at 
most 3 percent are Val/Val and as many as 15 percent are Ile/ 
Val. The  Val variant is less common among African 
Americans than Whites. In studies including African 
Americans, no subjects had the Val/Val genotype, but up 
to 6 percent were Ile/Val. 

Our pooled estimate of Val/Val genotype frequency was 5 
percent (95 percent CI: 4.0, 5.0) in Asians, 0.7 percent (95 
percent CI: 0.5, 0.8) in Whites, and 0 percent in African 
Americans. The pooled estimate of Ile/Val genotype fre­
quency was 31 percent (95 percent CI: 29.5, 31.7), 8 percent 
(95 percent CI: 7.8, 8.9), and 5 percent (95 percent CI: 3.2, 
7.3), respectively. 

3205T/C (CYP1A1*3). The 3205C variant was origi­
nally thought to occur in African Americans only. This view 
is supported by studies of Turkish (34), French (84), German 
(13), Polish (50), Russian (51), and US White subjects (63, 
65) in whom the 3205C variant was not found. In four 
African-American series, less than 1 percent had the C/C 
genotype, while 14–24 percent were heterozygotes. In our 
pooled analysis, the C/C and T/C genotype frequencies were 
0.1 percent (95 percent CI: 0.0, 0.8) and 15 percent (95 
percent CI: 12.8, 18.3), respectively, in African Americans. 

Thr461Asp (CYP1A1*4). Asp/Asp homozygotes are very 
rare (�1 percent). The Thr/Asp genotype frequency is 4–12 
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percent in Turkish, European, and White North American 
populations. The pooled estimates of the Asp/Asp and Thr/ 
Asp genotype frequencies in Whites were 0.2 percent (95 
percent CI: 0.1, 0.4) and 8 percent (95 percent CI: 7.1, 8.8), 
respectively. 

Associations between the CYP1A1 polymorphisms. Stud­
ies of linkage between the polymorphisms are limited by 
the relative rarity of the variants. From the comparatively 
few studies carried out, the 3801T/C and Ile462Val 
polymorphisms appear to be closely linked in Asians (17, 
21, 25, 34), less closely linked in Europeans (41, 52), and 
not linked in African Americans (60). In 81 Africans and 
African Americans carrying the 3205C variant, 23 percent 
also carried the 3801C variant, and no subjects carried the 
Val variant (18). The Thr461Asp and 3801T/C poly­
morphisms were not linked in Turkish (34), German (13), or 
Polish (50) populations. No evidence for linkage between 
the Thr461Asp and Ile462Val polymorphisms was found in 
White American (64) or German series (13). 

Functional effects 

Because the 3801T/C polymorphism is located in 
the noncoding region, it was originally thought that any 
apparent functional consequences of the variant were due to 
linkage with another polymorphism in, for example, the 
coding region or the aryl hydrocarbon receptor. However, 
polymorphisms in noncoding sequences may influence gene 
function by altering the level, location, or timing of gene 
expression or messenger RNA stability (86). 

Studies of the 3801T/C polymorphism and basal and/or 
induced CYP1A1 messenger RNA expression in lympho­
cytes and placenta have been inconsistent (87–91). For the 
Ile462Val polymorphism, one study found that mean 
messenger RNA (induced/basal) levels increased with 
number of Val variants (92). In another study, heterozygotes 
for both 3801C and Val variants had twofold increased basal 
CYP1A1 expression compared with homozygotes for the 
3801T and Ile alleles. (63). In one study, the 3205T/C and 
Thr461Asp polymorphisms were not associated with 
steady-state CYP1A1 messenger RNA levels (87). 

The Val variant caused a twofold increase in comple­
mentary DNA–expressed activity in transformed yeast cells 
(93), but the kinetic properties of the two variants do not 
differ (94). In purified Escherichia coli, there was no 
difference between the allelic variants in benzo[a]pyrene 
bioactivation (95). 

Studies of genotype and CYP1A1-dependent enzymatic 
activity in lymphocytes are inconsistent. Studies either 
suggested high activity associated with the 3801C and Val 
variants (89, 92, 96–98) or produced null findings (99–102). 
No significant effect of the Thr461Asp polymorphism has 
been found (101, 102). 

The 3801C variant has been associated with higher levels 
of DNA adducts in breast tissue in some studies (103, 104), 
but not others (105–107). Findings from one study of 
Ile462Val and Thr461Asp polymorphisms and breast tissue 
adducts were null (106). Results of studies of 3801T/C, 
Ile462Val, and Thr461Asp polymorphisms in other tissues 
have been inconsistent (91, 108–112), as have those in white 
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blood cells (111–122). Findings of studies of 3801T/C 
and/or Ile462Val and levels of DNA damage, as assessed by 
8-hydroxydeoxyguanosine in breast tissue (123), urine (124, 
125) or leukocytes (126), or DNA-protein cross-links (33) 
have been null. 

The 3801T/C polymorphism does not appear to be asso­
ciatedwith serum estrone or estradiol levels (127) or the ratio 
of baseline urinary estrogen metabolites (2-hydroxyestrone/ 
16-hydroxyestrone) (63). However, after indole-3-carbinol 
was ingested, the 2-hydroxyestrone/16-hydroxyestrone ratio 
increased significantly for persons with the 3801T/T geno­
type; heterozygotes showed no significant increase (63). 

In some (74, 128–132), but not all (75, 111, 115, 116, 
133–135), studies, the 3801C and Val variants are associated 
with higher urinary levels of 1-hydroxypyrene, a biomarker 
for PAH exposure. Results of studies of Ile462Val and 
urinary levels of 2-naphthol, another PAH biomarker, are 
inconsistent (74, 135). Findings of studies of the CYP1A1 
genotype and urinary levels of cotinine (136), malondialde­
hyde (124), and biomarkers for organic solvent exposure 
(137) have been null. 

Mammographic breast density is positively related to 
breast cancer risk (138, 139). In one study, neither the 
3801T/C nor the Ile462Val polymorphisms were associ­
ated with breast density (140). 

DISEASE 

In 2002, over 1 million new cases of breast cancer were 
diagnosed worldwide (141). In both developed and de­
veloping countries, it is the most common cancer in women 
(142). In developed countries, incidence increases rapidly 
with age to about age 50 years; thereafter, rates rise less 
rapidly with age (143). There is a 16-fold variation in 
incidence between the population with the highest rate 
(Montevideo, Uruguay, world age-standardized incidence 
114.9 per 100,000 in 1993–1995) and that with the lowest 
(The Gambia, 7.0 per 100,000 in 1997–1998) (144). In 
many populations, there has been a consistent long-term rise 
in incidence, which cannot be entirely attributed to the 
introduction of mammographic screening (145). 

The autosomal dominant susceptibility genes, BRCA1 
and BRCA2, account for about 5 percent of breast cancers 
(146, 147). Familial aggregation, which confers increased 
risk for first- and second-degree relatives (148, 149), does 
not appear to be entirely due to BRCA1 and BRCA2 (150), 
suggesting that other aspects of genetic susceptibility are 
important. 

The products ofCYP1A1 are involved in estrogen and PAH 
metabolism. The most firmly established risk factors for 
breast cancer relate to cumulative exposure of the breast to 
endogenous hormones, particularly estrogen (143). Risk is 
increased for women with longer cumulative exposure, that 
is, for those experiencing early menarche, late menopause, 
late first full-term pregnancy, or no pregnancies (151). 

Exogenous hormones have also been associated with 
increased risk of breast cancer. Risk is increased among 
current users of hormone replacement therapy (152, 153) 
and current users of oral contraceptives (154, 155). Other 

lifestyle risk factors, such as postmenopausal obesity, lack 
of physical activity (156), and alcohol intake (157), may 
influence risk via effects on estrogen levels. 

PAHs may be involved in breast cancer etiology. These 
substances are lipophilic and are stored in adipose tissue, 
including that of the breast (158), and they are activated and 
metabolized by breast epithelial cells (159). Adduct levels 
are higher in normal breast tissue of breast cancer cases than 
in that of healthy controls (160), although it is unclear 
whether this is a cause or effect of disease. PAHs also affect 
estrogen production and metabolism, thereby acting as 
xenoestrogens; many xenoestrogenic compounds induce 
mammary carcinogenesis in experimental animals (161). 
PAHs themselves are powerful mammary carcinogens in 
mice (162). 

Tobacco smoke is a major environmental source of PAH 
exposure (163). Most studies of breast cancer and smoking 
show a weak positive or null association (164–170), although 
the association may be stronger for premenopausal women or 
for those who started smoking at an early age (171, 172) or 
smoked before their first full-term pregnancy (173). Al­
though positive associations with passive smoking have been 
reported (168, 174, 175), a recent review concluded that this 
factor was unlikely to increase risk (176). 

PAHs (and heterocyclic amines) are formed when meats 
are exposed to temperatures that cause pyrolysis (177). An 
expert review of observational evidence and a recent meta­
analysis suggested that high-meat diets increase breast 
cancer risk (178, 179), and, whereas most investigators 
have not considered cooking methods, some studies found 
raised risk with increased consumption of fried, broiled, 
and/or well-done meat (180–183). 

ASSOCIATIONS 

Web tables 5, 6, 7, and 8 summarize 17 studies of CYP1A1 
and breast cancer risk (25, 32, 33, 38, 45, 56, 63, 65, 66, 73, 
79, 81, 83, 107, 127, 184, 185) identified by using the search 
strategy described earlier, with the addition of the MeSH 
heading ‘‘Breast neoplasms’’ or the text word ‘‘breast.’’ The 
subjects included in the studies of Huang et al. (32, 186), 
Taioli et al. (63, 187), Li et al. (105) and Zhu et al. (107), and 
Ritchie et al. (188) and Bailey et al. (65) may overlap. 
Therefore, only the largest of each set was included in Web 
tables 5, 6, 7, and 8 and in our meta-analyses. 

Meta-analyses of studies of 3801T/C, Ile462Val, and 
Thr461Asp were carried out. From the papers, we abstracted 
the odds ratios or relative risks for homozygous variants 
(3801C/C, Val/Val, or  Asp/Asp) and heterozygotes (3801T/C, 
Ile/Val, or  Thr/Asp) versus homozygous wild types (3801T/T, 
Ile/Ile, or  Thr/Thr). When reported, the adjusted effect 
estimate was included in the analysis in preference to the 
unadjusted one. If odds ratios were not reported, we com­
puted unadjusted odds ratios from the data presented. 
Analyses were conducted by using Stata statistical software, 
release 7.0 (189). Heterogeneity was assessed by the Q test, 
with a fixed-effects model used if p � 0.1 and a random­
effects model used if p < 0.1. The I2 statistic was also 
calculated as a measure of consistency between studies 
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(190). Except for the association between breast cancer and 
the 3801T/C polymorphism, the estimates of effect in the 
first published study were similar to those for the cumulative 
meta-analyses. 

Study characteristics 

Four studies took place in Japan, two in Taiwan, six in the 
United States, and one each in Canada, Brazil, France, 
Greece, and the United Kingdom. Thirteen studies analyzed 
the 3801T/C polymorphism (2,484 cases), 10 analyzed 
the Ile462Val polymorphism (3,535 cases), two analyzed 
the 3205T/C polymorphism (280 cases), and three 
analyzed the Thr461Asp polymorphism (2,245 cases). 

In one study, case DNA was derived from tumor speci­
mens (38); in the remainder, and for all control series, DNA 
came from blood samples. Of the US studies, two involved 
subjects of whom the majority (or all) were White, three 
included more than one ethnic group (analyzed separately in 
two studies), and, in one, ethnicity was not reported. One 
study included postmenopausal women only; all others 
either consisted of both pre- and postmenopausal women 
(n ¼ 6) or did not describe the subjects’ menopausal status 
(n ¼ 10). Eleven studies included fewer than 200 breast 
cancer cases. 

In 15 studies, cases were recruited from clinics or hospital 
series; in one study, cases were identified from a cancer 
registry; and one study was nested within the Nurses’ Health 
Study. Without information on all potentially eligible cases 
in the population, it is difficult to assess the generalizability 
of the results. At least four control series included ‘‘volun­
teers’’ from either an unspecified source or a convenient 
population such as medical workers—a potential source of 
bias. Seven studies presented estimates adjusted for poten­
tial confounding factors. 

In general, the studies considered the polymorphisms 
separately. Therefore, the effect of one polymorphism may 
have been overshadowed by the effects of others, whereas 
construction of haplotypes may have revealed effects that 
were not apparent by analyzing single polymorphisms. 
Studies of the Ile462Val polymorphism, with the exception 
of those by Bailey et al. (65), Krajinovic et al. (56), and 
Basham et al. (79), may have suffered from some minor 
misclassification due to the undetected presence of the 
Thr461Asp polymorphism. 

3801T/C (CYP1A1*2A, CYP1A1*2B) 

Most studies found no evidence of an association between 
the 3801T/C polymorphism and breast cancer risk (33, 38, 
45, 56, 65, 107, 127, 184, 185) (Web table 5). In Taiwan, 
women with the C/C genotype had a raised risk compared 
with other genotypes combined (32). African-American 
women with the C/C genotype also had an increased risk 
compared with those with the T/T genotype (63), but this 
study included only 25 cases. The 3801C variant was 
associated with reduced risk for Japanese and non-White 
Brazilian women (25, 66). However, in both studies, the 
cases were surgical series, and controls were not population 
based. 
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Our meta-analysis included eight studies for which data 
were available for all three genotypes separately (25, 32, 38, 
45, 56, 63, 65, 66). Breast cancer risk did not differ from 
unity for C/C versus T/T (random-effects relative risk 
(RR) ¼ 0.97, 95 percent CI: 0.52, 1.80; Q ¼ 15.26, p ¼
0.08) or for T/C versus T/T (random-effects RR ¼ 0.91, 
95 percent CI: 0.70, 1.19; Q ¼ 17.34, p ¼ 0.07). The I2 

statistics for these analyses were 41 percent and 42 percent, 
respectively, indicatingmoderate heterogeneity across studies. 

Ile462Val (CYP1A1*2B, CYP1A1*2C) 

A Japanese study found a significantly reduced risk for 
women with the Ile/Val genotype compared with the Ile/Ile 
genotype (RR ¼ 0.66, 95 percent CI: 0.44, 0.99) (25). 
However, meta-analysis found no association between 
breast cancer risk and the Val/Val (fixed-effects RR ¼
1.04, 95 percent CI: 0.63, 1.74; Q ¼ 4.59, p ¼ 0.33, I2 ¼ 13 
percent) (25, 32, 73, 79, 81) or Ile/Val (fixed-effects RR ¼
0.92, 95 percent CI: 0.76, 1.10; Q¼ 11.57, p ¼ 0.17, I2 ¼ 31 
percent) (25, 32, 56, 63, 65, 73, 79, 81) genotypes versus 
the Ile/Ile genotype. 

3205T/C (CYP1A1*3) 

There was no association between the 3205C variant and 
breast cancer in the two available studies (Web table 7). How­
ever, these studies each included small series (n ¼ 27 and 
n ¼ 59) of African-American breast cancer cases (63, 65). 

Thr461Asp (CYP1A1*4) 

In a Canadian study, carriers of the Asp variant had an 
increased breast cancer risk (adjusted RR ¼ 3.3, 95 percent 

I

CI: 1.1, 9.7) (56) (Web table 8). Results of the other studies, 
in White American women and African-American women, 
and in White women in England, were null. Meta-analysis 
found no association between disease risk and the Asp/Asp 
(fixed-effects RR ¼ 0.95, 95 percent CI: 0.20, 4.49; Q ¼
0.52, p ¼ 0.77, I2 ¼ 0 percent) or Thr/Asp (fixed-effects 
RR ¼ 1.12, 95 percent CI: 0.87, 1.43; Q ¼ 0.89, p ¼ 0.64, 
2 ¼ 0 percent) genotypes versus the Thr/Thr genotype (56, 
65, 79). 

Combinations of genotypes 

Taioli et al. (187) assessed the impact of combinations of 
3801T/C, Ile462Val, and 3205T/C genotypes on breast 
cancer risk. Compared with homozygotes for the 3801T, Ile, 
and 3205T alleles, only the 3801C/C genotype was associ­
ated with increased risk for African-American women 
(RR ¼ 5.8, 95 percent CI: 1.0, 36.0), but the effect estimate 
was imprecise. 

One study combined Ile462Val and Thr461Asp geno­
types and found no significant effect in any of the three 
combined genotype groups relative to the group with the 
Ile/Ile and Thr/Thr genotypes (79). Another study assessed 
disease risk for subjects with either the Val or Asp variant; 
no significant association was found in White women or 
African-American women (65). 
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Subgroup analyses 

Menopausal status, age at menarche, and estrogen and 
progesterone receptor status. In a Taiwanese study, the 
association of the 3801C/C genotype with raised disease 
risk was evident in postmenopausal, but not premenopausal, 
women, and further analysis suggested that the relation 
might be more pronounced for women experiencing early 
menarche (32). Other studies found no association between 
the 3801C variant and breast cancer when subjects were 
stratified by menopausal status (66, 185) or age at menarche 
(66). There was no evidence for an association with the 
Ile462Val polymorphism for either pre- or postmenopausal 
women (32, 65, 79, 185). In a Canadian study, the increased 
risk associated with the Thr461Asp polymorphism was 
evident for postmenopausal women only (56); however, 
a study in the United Kingdom found no difference in 
Thr461Asp genotypic risks by menopausal status (79). 
There were no significant associations between CYP1A1 
polymorphisms and estrogen or progesterone receptor status 
(25, 65, 127, 185). 

Age at diagnosis and clinical characteristics. Studies in­
vestigating CYP1A1 genotype and age at diagnosis of breast 
cancer have produced inconsistent results (25, 32, 38, 65, 81). 
The 3801C variant has been significantly associated with 
a higher frequency of lymph-node metastasis and the Val 
variant with a higher frequency of small tumors (<2 cm), 
while neither variant was associated with histology or 
histologic grade (25). Other studies found no association 
between the four polymorphisms and tumor size, stage, 
type, grade, or nodal status (65) or between 3801T/C or  
Ile462Val and tumor type or stage of disease (185). 

Survival 

In a British study of 1,793 incident or prevalent breast 
cancer cases, the Ile462Val polymorphism was not related to 
survival (191). The hazard ratio was reduced for Thr/Asp 
heterozygotes compared with Thr/Thr homozygotes, but 
not significantly (hazard ratio ¼ 0.67, 95 percent CI: 0.33, 
1.37) (191). 

Other diseases 

CYP1A1 has been explored in relation to several cancers, 
particularly those in which smoking is implicated. In pooled 
and meta-analyses, the 3801C and Val variants were 
associated with increased lung cancer risk in Whites, but 
not Asians (192–195). Neither the 3205C (196) nor the Asp 
(13, 197) variants were associated with lung cancer risk. 
Also investigated, with mainly either inconsistent or un­
confirmed results, have been tumors of the head and neck 
(29, 31, 40, 43, 48, 82, 198–215), large bowel (24, 53, 58, 
216–221), prostate (72, 222–224), female gynecologic sites 
(62, 76, 225–230), skin (231, 232), and kidney (84) and liver 
(28), as well as leukemias and lymphomas (36, 57, 78, 233– 
238). Results of studies of bladder (44), brain (239), and 
pancreatic (64, 108, 240–242) cancer have been null. 

Associations have been found between CYP1A1 and other 
diseases, including male infertility (243), systemic lupus 

erythematosus (244), type II porphyria cutanea tarda (245), 
psoriasis (39), ankylosing spondylitis (246), and rheumatoid 
arthritis (247). Findings from studies of endometriosis (46, 
248, 249) and Parkinson’s disease (54, 68, 250, 251) have 
been inconsistent, while those for asthma (252), athero­
sclerosis (253), cirrhosis (37), Crohn’s disease (254), age­
related macular degeneration (255), leukoplakia (20), early 
pregnancy loss (256), acne (41), and oral clefting (257) have 
been null. 

INTERACTIONS 

If CYP1A1 is involved in breast cancer, it may influence 
disease risk by interacting with exposure (or indicators of 
exposure) to PAHs or estrogen, for example, or with other 
genes involved in the metabolism of carcinogens, estrogens, 
or other hormones. Sample size is particularly important in 
this context. For instance, to detect a multiplicative in­
teraction, very large sample sizes are required for adequate 
power (258). Although the sample size needed to detect 
other types of interactions may be smaller (259), a priori it is 
not usually clear what model of interaction would be 
predicted. 

Gene-environment interactions 

Smoking. In five studies investigating genotype-smoking 
interactions (63, 65, 79, 81, 185), two found evidence of an 
interaction (81, 185). In Ambrosone et al.’s study (81), 
adjusted relative risks for Val carriers versus Ile/Ile homo­
zygotes among nonsmokers, light smokers (<29 pack-years 
of exposure), and heavy smokers (�29 pack-years) were 1.3 
(95 percent CI: 0.62, 2.70), 5.2 (95 percent CI: 1.16, 23.56), 
and 0.9 (95 percent CI: 0.24, 3.09), respectively, but no 
formal test of interaction was conducted. Ishibe et al. (185) 
found no interaction between pack-years of smoking and 
either 3801T/C or Ile462Val polymorphisms, but they 
observed effect modification for smoking status at diagnosis 
and age at which smoking started. Risk was significantly 
raised for current smokers carrying the 3801C variant versus 
3801T/T nonsmokers (p for interaction ¼ 0.06) and for 
women with either variant who started smoking before age 18 
years versus 3801T/T nonsmokers (p for interaction ¼ 0.04) 
and Ile/Ile nonsmokers (p for interaction ¼ 0.08). 

The numbers analyzed in the studies of genotype-smoking 
interactions were small, and interpretation is difficult be­
cause of differences in the way in which interactions were 
assessed (stratifying by smoking status (63, 81) or genotype 
(65), or using a single reference group of smoking status and 
genotype combined (185)) and in categorization of smoking 
status. For example, the interaction patterns observed by 
Ambrosone et al. (81) or Ishibe et al. (185) would not be 
detectable by using an ever/never smoking categorization, as 
has been used in other studies (63, 65). 

Polychlorinated biphenyls (PCBs). PCBs have been 
linked to breast cancer risk because of their estrogenic (260) 
and tumor-promoting (261) properties. In the Nurses’ Health 
Study, a modest interaction between the Ile462Val poly­
morphism and plasma PCBs was found for postmenopausal, 
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but not premenopausal, breast cancer (262). Among post­
menopausal subjects, the adjusted relative risk for Val 
carriers in the upper tertile of plasma PCB levels, compared 
with Ile/Ile homozygotes in the lowest PCB tertile, was 2.78 
(95 percent CI: 0.99, 7.82, p for interaction ¼ 0.05). There 
was no interaction between PCBs and 3801T/C (262). In 
a subset of a study in western New York (81), Val carriers with 
an above-median PCB body burden had an increased risk 
compared with Ile/Ile homozygotes with a below-median 
PCB burden (adjusted RR ¼ 2.9, 95 percent CI: 1.18, 7.45; 
p for interaction ¼ 0.13) (263). 

Alcohol. Basham et al. (79) reported no interactions 
between Ile462Val or Thr461Asp polymorphisms and 
alcohol consumption. However, results were not shown. 

Gene-gene interactions 

CYP1A1 and glutathione S-transferase (GST) gene activ­
ities may be interrelated. The GST genes belong to the Ah 
gene battery, since GST is one of six enzymes regulated by 
the aryl hydrocarbon receptor (1). In human B-cell lines, ab­
sence of GSTM1was associated with induction of high levels 
of CYP1A1 messenger RNA by 2,3,7,8-tetrachlorodibenzo-
p-dioxin, and presence of GSTM1 was associated with 
induction of low levels (264). Four breast cancer studies 
found no evidence of a CYP1A1-GSTM1 interaction (56, 65, 
66, 81), although CYP1A1-GSTM1 genotype combinations 
have been associated with age at presentation (38). In two 
relatively small studies assessing CYP1A1-GSTT1 genotype 
combinations, risk estimates were not significant, and tests 
for interaction were not reported (65, 66). Another study 
(45) found no significant differences in combined CYP1A1 
3801T/C, GSTM1, and GSTT1 genotype frequencies be­
tween breast cancer patients and controls. 

( )TTTA

CYP17, CYP19, and catechol-O-methyltransferase 
(COMT) are involved in steroid hormone metabolism 
(265, 266). One study found an increased breast cancer risk 
associated with the presence of two ‘‘high-risk’’ genotypes, 
defined as homozygosity for the CYP1A1 3801C, CYP17 A2, 
or COMT low-activity alleles (RR ¼ 3.5, 95 percent CI: 
1.06, 12.04), but no test for interaction was conducted (186). 
In another study, 3801T/ T homozygotes carrying the CYP19 

7(�3bp) allele had increased risk of estrogen-receptor-
positive breast cancer (adjusted RR ¼ 3.00, 95 percent CI: 
1.56, 5.74) compared with women carrying the 3801C 
variant but not the CYP19 (TTTA)7(�3bp) allele (127). 

LABORATORY TESTS 

CYP1A1 3801T/C, Ile462Val, 3205T/C, and 
Thr461Asp polymorphisms are detected by using polymer­
ase chain reaction followed by digestion with MspI for 
3801T/C (17, 38, 65); NcoI (65, 81, 185), HincII (32), or 
BsrD1 (65) for Ile462Val; MspI for 3205T/C (16); and BsaI 
for Thr461Asp (65). The polymorphisms 3801T/C and 
3205T/C can be detected simultaneously from one poly­
merase chain reaction product by using MspI and SphI (65). 
For accurate genotyping of Ile462Val, the presence of Val 
(and absence of Asp) can be verified by BsrD1 digestion (13). 
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Success rates for DNA extraction and genotype assign­
ment, and reproducibility, are important indicators of 
analytic validity of genotyping (267), but few breast cancer 
studies reported this information. Taioli et al. (187) and 
Ishibe et al. (185) successfully assigned 3801T/Cgenotype 
to 99.7 percent and 99.8 percent, respectively, of subjects 
providing samples, and Ile462Val genotype to 95.9 percent 
and 96.6 percent, respectively; however, Ambrosone et al. 
(81) obtained interpretable polymerase chain reaction assays 
for only 69 percent of subjects consenting to phlebotomy. 

POPULATION TESTING 

Current evidence does not suggest that there would be 
value in testing for the CYP1A1 genotype in isolation to 
predict breast cancer risk. In addition, the evidence on joint 
effects of CYP1A1 variants and variants of other genes is 
very limited. The possibility of raised risk associated with 
some genotypes in combination with tobacco exposure 
should be addressed via standard public health advice on 
smoking cessation. 

CONCLUSIONS AND RECOMMENDATIONS FOR 
RESEARCH 

The CYP1A1 3801C variant is more common than the Val 
variant. Both variants occur more frequently in Asian than in 
White populations. The 3205C variant has been observed in 
African Americans only, and little data are available on the 
geographic or ethnic distribution of the Thr461Asp poly­
morphism. The 3205T/C and Thr461Asp polymorphisms 
should be investigated in African, Asian, and Hispanic 
populations. The functional significance of all four poly­
morphisms is unclear, which could be due to the small sample 
sizes of most studies. Further investigation is warranted. 

No consistent associations between breast cancer and 
CYP1A1 polymorphisms were found. While meta-analyses 
have greater power and precision for detecting gene-disease 
associations, our meta-analyses were limited by different 
genotype categorizations between studies. For the purposes 
of future meta-analyses, authors should provide results for 
all genotypes separately. 

The 3801T/C and Ile462Val polymorphisms may mod­
ify the smoking-disease association, although the evidence is 
limited and inconsistent. A similar ‘‘inverse dose effect’’ has 
been observed in studies of CYP1A1, smoking, and lung 
cancer (60, 184, 268), and it has been suggested that the 
genetic variant might confer increased sensitivity to lower 
levels of exposure (269). Additional investigation is needed. 
The Val variant may interact with PCB levels to affect breast 
cancer risk, but confirmation is necessary. There was no 
evidence that GSTM1 or GSTT1 and CYP1A1 genotypes have 
a joint effect on disease risk. Studies suggesting interactions 
with CYP17, CYP19, and COMT should be replicated. 
Interpreting the studies of interaction was difficult because 
of the different approaches used; adopting a more unified 
approach (e.g., Botto and Khoury (270)) in future studies 
would aid interpretation and synthesis of evidence. 
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Studies are needed to explore joint effects on breast cancer 
risk of the CYP1A1 genotype and 1) sources of PAH exposure 
other than tobacco, 2) markers of exposure to endogenous 
estrogens, 3) exposure to exogenous estrogens, 4) other 
lifestyle factors that influence hormone levels, 5) other genes 
encoding enzymes involved in PAHmetabolism, and 6) other 
genes involved in hormonal biosynthesis. To detect gene­
environment or gene-gene interactions, future studies must 
be large, and pooled analyses should be considered. 
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APPENDIX 

Internet Sites 

Data on cancer incidence, survival, and mortality 

International Agency for Research on Cancer—Cancer 
Mondial: http://www-dep.iarc.fr/ 

Surveillance, Epidemiology, and End Results Program: 
http://www.seer.cancer.gov/publicdata/ 

National Programme of Cancer Registries (NPCR): 
http://www.cdc.gov/cancer/npcr 

Information on cancer 

Cancer Research UK: http://www.cancerresearchuk.org 
American Association of Cancer Research: http:// 

www.aacr.org/ 
National Cancer Institute: http://cancer.gov/cancerinfo/ 
International Union against Cancer: http://www.uicc.ch/ 
American Cancer Society: http://www.cancer.org/ 

docroot/home/index.asp 

Genetic information 

Human Genome Epidemiology Network (HuGENet): 
http://www.cdc.gov/genomics/hugenet/default.htm 

Centers for Disease Control and Prevention Office of 
Genomics and Disease Prevention–medical literature 
search: http://www.cdc.gov/genomics/info/medlit.htm 

Public Health Genetics Unit: http://www.phgu.org.uk/ 
index.php 

Human Gene Mutation Database: http://archive.uwcm. 
ac.uk/uwcm/mg/hgmd0.html 

OMIM (Online Mendelian Inheritance in Man): http:// 
www.ncbi.nlm.nih.gov/Omim/ 

GenAtlas: http://www.dsi.univ-paris5.fr/genatlas/ 
GeneCards: http://www.cgal.icnet.uk/genecards/ 
The National Center for Biotechnology Information: 

http://www.ncbi.nlm.nih.gov/ 
Human cytochrome P-450 allele nomenclature: http:// 

www.imm.ki.se/CYPalleles/ 
MRC Rosalind Franklin Centre for Genomics Research 

(includes links to other sites via The Genome Web): http:// 
www.hgmp.mrc.ac.uk/ 

Links to other sites: http://cedar.genetics.soton.ac.uk/ 
public_html/links.html 


