

Flame Brush Dynamics in an Harmonically Oscillating, Turbulent Jet Flame

Sai Kumar Thumuluru, Karthik Periagaram, Tim Lieuwen

School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA USA 30332

BACKGROUND- Acoustically Forced Flames

- Majority of studies focus on global cause/effect mechanisms.
- Very few studies detailing effect on fundamental turbulent flame parameters.

Huge Variation in Flame Length over Cycle During Large Amplitude Excitation

DISCUSSION OBJECTIVES

- Discuss influence of harmonic forcing upon "nominal" turbulent flame characteristics
 - Focus of this study is flame brush
 - Lawn & Schefer, Proc. Comb. Inst, 2004
 - Sathiah & Lipatnikov (C&F- 2005)

EXPERIMENTAL FACILITY

- Axisymmetric Bunsen flame
 - Pilot stabilized
- Diagnostics:
 - Mie scattering
 - Hot wire anemometry

EXPERIMENTAL FACILITY

- Swirl stabilized burner with centerbody.
- Diagnostic techniques:
 - OH PLIF
 - 2 microphone technique for nozzle exit velocity

IMAGE ANALYSIS

- Phase Locked Imaging
 - 8 phases of an acoustic cycle
- Digitized Flame Edge Images.
- Progress variable contours : c

Sample log tast and range log ta

IMAGE ANALYSIS

- Phase Locked Imaging
 - 8 phases of an acoustic cycle
- Digitized Flame Edge
 Images.

- Progress variable contours : \overline{c}
- Flame brush thickness $(\bar{c} = 0.3 \& \bar{c} = 0.7)$

Progress variable contours

RESULTS AND DISCUSSIONS

Unforced Bunsen flame

Monotonic growth of flame brush thickness.

RESULTS AND DISCUSSIONS

- Acoustically forced Bunsen flame
 - Oscillating flame length
 - Convecting ring vortices

Results - Acoustically forced Bunsen flame

- Two behaviors exhibited by flame brush:
 - Slow growth relative to unforced case
 - Rapid growth across convecting vortex

RESULTS AND DISCUSSIONS

 $Re = 10,200, u'/u_o = 0.2$

- 0.25 **STEPS** 0.2 0.15 S_t/D 0.1 00 45° 0.05 90° 135° Unforced 0.5 1.5 0 1 2 2.5 3 s/D
- Very slow growth relative to unforced case
- Step like increases across vortical structures

RESULTS AND DISCUSSIONS (Swirl Flame)

Re = 21,000 (Unforced)

Progress variable contours

Instantaneous OH PLIF images

Gradual growth in flame brush thickness

RESULTS AND DISCUSSIONS (Swirl Flame)

Re = 21,000 (Unforced)

- *Re* =21,000, f= 130 Hz, u'/u_o = 0.6
- Gradual growth in flame brush thickness

 Modulations in flame length.

RESULTS AND DISCUSSIONS (Swirl Flame)

270°

45 mm

315°

Re = 21,000, f= 130 Hz, u'/u_o = 0.6

 Flame brush growth suppressed/inhibited in forced case

 Modulations in flame length.

CLOSING REMARKS

- Flame brush growth suppressed substantially in presence of harmonic forcing
- ✓ Flame brush grows in step-wise fashion across vortices
- Discussion, ideas on what is controlling the observed behavior?
 - Flame brush evolution known to be substantially altered in flow with pressure gradients, mean strain