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Abstract  
 

This paper presents results of electromyographic-
based (EMG-based) speech recognition on a small 
vocabulary of 15 English words. The work was motivated 
in part by a desire to mitigate the effects of high acoustic 
noise on speech intelligibility in communication systems 
used by first responders. Both an off-line and a real-time 
system were constructed. Data were collected from a 
single male subject wearing a firefighter’s self-contained 
breathing apparatus. A single channel of EMG data was 
used, collected via surface sensors at a rate of 104 
samples/s. The signal processing core consisted of an 
activity detector, a feature extractor, and a neural 
network classifier. In the off-line phase, 150 examples of 
each word were collected from the subject. 
Generalization testing, conducted using bootstrapping, 
produced an overall average correct classification rate 
on the 15 words of 74%, with a 95% confidence interval 
of [71%, 77%]. Once the classifier was trained, the 
subject used the real-time system to communicate to a 
cellular phone and to control a robotic device. The real-
time system was tested with the subject exposed to an 
ambient noise level of approximately 95 decibels.   
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1. Introduction 

Speech intelligibility can be severely degraded by high 
levels of acoustic noise. Researchers have developed a 
variety of techniques to minimize the impact of noise, 
ranging from adaptive noise cancellation to throat 
microphones. Increasingly, researchers are experimenting 
with the measurement and analysis of bioelectric signals 
associated with speech in an effort to further minimize—
or even completely eliminate—the degrading effects of 
acoustic noise. Such techniques, either on their own or 
fused with other modalities, hold promise for improving 
human communication and human-computer interaction. 

The bioelectric technique used in the research reported 
here is electromyography, the study of muscle function 
through its electrical properties. Electrical activity 
emanating from muscles associated with speech can be 
detected by non-invasive surface sensors mounted in the 
region of the face and neck. Sensing of this type is not 
directly interfered with by acoustic noise (although 
indirect effects, such as the propensity of speakers to 
modify their vocal effort in the presence of noise [1, 2], 
require further study). 

First responders are an example of a class of users that 
stands to benefit from reliable communication in 
acoustically harsh environments. For example, sirens, 
engines, and saws all add noise to a typical firefighting 
scene, as does the breathing apparatus a firefighter wears. 
This work was motivated in part by a desire to see 
whether electromyographic-based (EMG-based) speech 
recognition could alleviate these effects. It is part of a 
broader effort at NASA investigating the physiology, 
signal processing, and applications of EMG-based speech 
recognition. 

Besides reducing the impact of environmental noise, 
EMG-based speech has the interesting property that it can 
be detected even when a subject emits little or no 
acoustical energy during speech, a fact first noted by the 



 

Danish researcher Faaborg-Andersen in 1957 [3]. That is, 
EMG activity is detectable when a subject speaks 
normally, whispers, moves the mouth without emitting 
sound, and even when making virtually no facial 
movement at all (but consciously activating speech 
muscles, akin to saying a phrase silently to oneself). 
While the EMG signal characteristics most definitely 
change during these different types of activity, the signal 
is detectable. Because of this potential for silent 
communication, we sometimes refer to EMG-based 
speech recognition as subvocal speech; the two terms are 
used interchangeably in this paper. 

In the study reported here, EMG data were collected 
from a single male subject wearing a self-contained 
breathing apparatus (SCBA) under laboratory conditions. 
Data samples consisting of isolated words chosen from a 
small English vocabulary were used to train a neural 
network classifier and to test the generalizability of the 
network. The trained network was then inserted into a 
real-time communication and control system while the 
subject was exposed to approximately 95 decibels of 
acoustic noise. Isolated phrases recognized from the 
EMG signal in real time were both communicated to a 
cellular phone and used to control a robotic platform (see 
Figure 1). 

 

   
Figure 1. Communication and control output modalities: 
cellular phone and robotic platform. The robotic platform is 
a Carnegie Mellon University Personal Exploration Rover 
(PER) [4]. 

The remainder of this paper is organized as follows: A 
brief background on the history and physiology of EMG 
is given. Other research efforts that have examined EMG-
based speech recognition are surveyed. The methods and 
results of this research are then presented, followed by 
conclusions and avenues for future work. 

 

2. Background and Related Research 

2.1. Electromyography 
As has already been stated, electromyography is the 

study of muscle function via its electrical properties (i.e., 
the electrical signal emanating from the muscle during 
muscle activation). For those unfamiliar with the field, the 

book by Basmajian and De Luca is highly recommended 
[5]. Other good sources include the paper by De Luca [6], 
the book chapter by Gerdle et al. [7], and the book edited 
by Bronzino [8]. 

As detailed by Basmajian and De Luca [5], 
electromyography has a long and interesting history. In 
1848, the Frenchman DuBois-Reymond was the first to 
report the detection of electrical signals voluntarily 
elicited from human muscles. By placing his fingers in a 
saline solution and contracting his hand and forearm, he 
produced a measurable deflection in a galvanometer. His 
dedication to his work is beyond question—correctly 
surmising that the skin presented a high impedance to the 
flow of current, on at least two separate occasions he 
deliberately blistered his forearm, removed the skin, and 
exposed the open wound to the saline, thereby producing 
a substantially greater deflection in the galvanometer 
during muscle contraction. 

 Electromyography has continued to develop since the 
time of DuBois-Reymond. Substantial research interest 
was generated during the 1960s in the use of 
electromyography as a mechanism for the control of 
prostheses [9-11]. The arrival of inexpensive digital 
computing in the 1980s furthered development, with 
many research groups investigating digital techniques for 
control and communication, including groups focused on 
EMG-based speech recognition. These speech efforts are 
surveyed in the next section of this paper. 

The electrophysiology of muscles is complex, and only 
the briefest overview will be given here; see Gerdle et al. 
(and the references therein) for a more detailed 
description [7]. Muscle action originates in the central 
and peripheral nervous systems. Nerve impulses are 
carried from anterior horn cells of the spinal column to 
the end of the nerve via motor neurons. As the axon of 
the motor neuron approaches individual muscle fibers, it 
branches, meaning a single motor neuron innervates 
several muscle fibers, terminating at a neuro-muscular 
junction (also known as an endplate); see Figure 2. When 
a nerve impulse reaches the endplate, the neurotransmitter 
acetylcholine is released. This in turn causes sodium and 
potassium cation channels to open in the muscle fiber. 
Once an excitation threshold is achieved, an action 
potential propagates in both directions from the endplate 
to the muscle-tendon junction. This movement of cations 
establishes an electromagnetic field in the vicinity of the 
muscle fiber. The time-varying potential recorded by an 
electrode placed in the field is known as an 
electromyogram. Of course, such an electrode measures 
the superposition of several such fields arising from 
separate motor units. That, coupled with spatially varying 
tissue filtering effects, makes the EMG signal highly 
complex. 

 



 

 
Figure 2. Motor neuron innervation of muscle fibers. Note 
that adjacent fibers are not necessarily innervated by the 
same motor neuron. 

There are two principal sensing techniques used in 
electromyography: invasive indwelling sensing and non-
invasive surface sensing. This paper, and essentially all of 
the research we are aware of related to subvocal speech 
recognition, focuses on the use of surface sensors. Good 
references on the sensors used and issues arising with 
surface electromyography include [7] and [12]. 

 
2.2. EMG-based Speech Recognition 

In this section of the paper, we survey results on 
EMG-based speech recognition. There is also a rich body 
of literature on the use of EMG for control of prostheses 
and for gesture recognition that is not surveyed here ([13-
16] are but a few of the many examples).  

Chapters 19 and 20 of Basmajian and De Luca 
describe electromyography research done before 1985 
related to the muscles of the mouth, pharynx, larynx, face, 
and neck [5]. As it pertains to speech, the goal of research 
during that period seems to have been understanding 
muscle processes associated with phonation in normal 
subjects and subjects with disability. Investigations were 
carried out predominantly through fine-needle indwelling 
electrodes on animals and humans. Although no explicit 
references have been found prior to 1985 to attempts at 
EMG-based speech recognition, the concept almost surely 
occurred to researchers of the time—the state of digital 
computing (and non-invasive) sensing may have been the 
limiting factors.  

The first efforts at performing EMG-based speech 
recognition seem to have occurred independently and in 
parallel in Japan and the United States around 1985–86. 
In Japan, Sugie et al. used three channels of silver silver-
chloride (Ag-AgCl) surface sensors with a sampling rate 
of 1250 samples/channel/s [17]. A threshold-and-
counting scheme was used to produce a three-bit number 

every 10 ms. These numbers were then fed into a finite 
automaton for vowel discrimination. Three subjects were 
asked to repeat 50 Japanese monosyllables. The overall 
correct classification rate was reported as 64%. It is 
interesting to note that the researchers developed a pilot 
real-time system as part of this effort. 

Simultaneously in the United States, Morse [18] and 
Morse and O’Brien [19] used four channels of stainless 
steel surface electrodes (with a light coating of electrode 
gel) and a sampling rate of 5120 samples/channel/s. 
Analog filtering was used to restrict the bandwidth of the 
EMG signal to the 100–1000 Hz range. An average 
magnitude technique was used to reduce the signal 
dimensionality to 20 points/channel/s. Two subjects were 
studied with several different word sets, one of which was 
the English words “zero” to “nine.” Subjects were asked 
to repeat each word twenty times. A maximum likelihood 
technique was used for classification. For the ten-digit 
word set, a correct classification rate exceeding 60% was 
observed. In later work in 1991, Morse et al. applied a 
neural network to a similar data set and achieved roughly 
the same correct classification rate of 60% [20]. Other 
papers from this group include [21] and [22]. 

In 2001, the Canadian researchers Chan et al. reported 
EMG-based speech recognition results that were 
motivated by the need to communicate in acoustically 
harsh environments (in this case the cockpit of a fighter 
aircraft) [23]. Five channels of surface Ag-AgCl sensors 
were used with each channel bandlimited to 100–500 Hz 
and sampled at a rate of 1000 samples/channel/s. A 
variety of transforms (including a wavelet transform) and 
principle component analysis (PCA) were used to reduce 
the data to thirty features per word on a ten-word 
vocabulary (the ten English digits). Classification was 
performed using linear discriminant analysis (LDA). On 
an experiment in which words were randomly presented 
to two subjects, recognition rates as high as 93% were 
achieved. In later work, a hidden Markov model (HMM) 
was used as the classification engine and achieved results 
similar to the LDA technique [23]. In 2002, Chan et al. 
used evidence theory to combine results from a 
conventional automatic speech recognition system and an 
EMG-based one, dramatically maintaining a high overall 
correct classification rate in the presence of ambient 
acoustic noise [24].  

At the NASA Ames Research Center, members of the 
Neuro-Engineering Laboratory have done work on 
subvocal speech recognition. In 2003, Jorgensen et al. 
collected six words from three subjects using surface Ag-
AgCl sensors and a single EMG channel [25]. Data were 
collected at the rate of 2000 samples/channel/s. A variety 
of techniques were tested for feature extraction, including 
short-time Fourier transforms, linear predictive coding, 
and several different wavelet transforms. Classification 
was performed using a neural network and an average 



 

correct recognition rate of 92% was achieved. In later 
work, Jorgensen and Binsted applied a similar signal 
processing architecture to seventeen vowel phonemes and 
twenty-three consonant phonemes collected from two 
subjects [26]. Average correct recognition exceeded 33% 
for the entire vocabulary (and exceeded 50% when 
certain alveolars were removed). 

In 2003, NTT DoCoMo researchers Manabe et al. used 
a novel surface sensor mounting configuration for EMG-
based speech recognition [27]. Three channels of sensors 
were mounted on the subject’s hand, then the hand was 
held to the face during speech. Analog filtering restricted 
the EMG signal to the range 20–450 Hz with a sampling 
rate of 1000 samples/channel/s. Recognition was 
performed using a three-layer neural network, where the 
inputs to the network were the root-mean-squared (RMS) 
EMG values during pronunciation of a vowel. Over three 
subjects, each using a vocabulary of five Japanese 
vowels, the average correct classification rate exceeded 
90%. In later work, Manabe and Zhang made use of 
HMMs to classify the ten Japanese digits collected from 
ten subjects; accuracies as high as 64% were achieved 
[28]. 

In 2004, Kumar et al. used three EMG channels for 
speech recognition [29]. Channels were sampled at 250 
samples/channel/s, with RMS EMG values used as 
feature inputs to a neural network classifier. Using three 
subjects and five English vowels, an average recognition 
rate of up to 88% was achieved. 

 
2.3. Communication in Acoustically Harsh 

Environments 
People have long had an interest in communicating in 

acoustically noisy environments. Military needs have 
driven research and development in this area for many 
decades. Much research was done before and during the 
Second World War on techniques to allow pilot voice 
communication in airplanes, resulting in the development 
of devices such as throat microphones (e.g., the T-30 
throat microphone, manufactured by Shure Inc. under a 
1941 contract). Interest in these devices continues to this 
day, particularly when used as part of a multi-modality 
speech recognition system [30-32]. Military research in 
the area continues, with the United States Defense 
Advanced Research Projects Agency (DARPA) 
sponsoring research in sensors and techniques appropriate 
for communicating in noisy environments [33, 34]. 

Unfortunately, in many cases first responders have yet 
to benefit from these advanced techniques. For many fire 
departments, voice communication is still done by 
shouting through the mask of the SCBA into a shoulder-
mounted or hand-carried radio. Some alternatives have 
been developed and targeted at first responders (e.g., 
bone conduction microphones [35] and in-mask boom 

microphones) but have yet to receive wide deployment. 
Our study suggests that bioelectric techniques also hold 
promise for this community, whether on their own or 
fused with other modalities. Minimizing the impact of 
acoustic noise and the potential for covert communication 
would make bioelectrics appeal to different segments of 
the community. It is important to remember, however, 
that the first responder community is one that values 
dependable and robust equipment and that is almost 
always forced to be extremely cost conscious. 

 

3. Methods 

In this section we detail the equipment and techniques 
used during data collection. The signal processing 
techniques are described followed by a brief overview of 
the hardware and software architecture. 

 
3.1. Equipment and Data Collection 

Training data were collected from a single 33-year-old 
male subject, qualified in the use of SCBA equipment. 
The subject was seated and remained stationary during 
data collection. The subject wore a standard-issue 
firefighting turnout jacket, a fire-retardant hood, and a 
SCBA unit (Survivair Panther with Twenty-Twenty Plus 
mask; Survivair; Santa Ana, CA) as shown in Figure 3. 
The SCBA was pressurized per normal SCBA usage. The 
subject was instructed to breathe normally during data 
collection sessions (i.e., as he would while wearing an 
SCBA). Collection sessions were paused as necessary to 
replace empty air tanks. 

 

 
Figure 3. Photo showing data collection station and SCBA 
equipment. 

One differentially amplified channel of EMG data was 
collected under quiet laboratory conditions. Surface Ag-
AgCl sensors (Soft-E H69P; Kendall-LTP; Chicopee, 
MA) were positioned on the subject’s neck as shown in 



 

Figure 4. A third Ag-AgCl sensor, used as a ground, was 
attached either behind the subject’s right ear or on the 
subject’s wrist. The subject’s skin was prepared by 
wiping it with an alcohol pad (70% isopropyl alcohol pad 
#818080; Abco, Inc.; Nashville, TN) in an effort to 
reduce skin impedance by removing surface oils and dead 
skin cells. Sensor leads were connected to a headbox 
which was in turn connected to a programmable amplifier 
(SynAmps Model 5083; Neuroscan; El Paso, TX). The 
amplification gain was set at 1000. The signal was 
bandlimited to the range 10–2000 Hz and sampled at 104 
samples/s with 16-bit precision. A 60 Hz digital notch 
filter was used to reduce main power frequency 
interference. 

 

 
Figure 4. Photo showing EMG sensor placement. The 
subject has peeled his hood back to reveal the sensors. A 
third sensor, placed behind the subject’s right ear (or 
alternatively placed on the wrist) was used as a ground. 

The rationale for using such a high sampling rate for 
surface electromyography deserves mention. Given the 
logistical difficulty associated with collecting data from 
subjects, the ease with which data can be digitally 
downsampled after collection, and the desire to minimize 
aliasing effects, the decision was made to use a high 
sampling rate. The price of so doing was increased data 
storage and increased computational demands on the real-
time implementation. In effect, storage and computation 
increases were traded in favor of greater flexibility in off-
line analyses. In a recent article, Durkin and Callaghan 
examine sampling rate issues associated with surface 
electromyography [36]. 

Data were stored to disk using Acquire software 
(Acquire version 4.3; Neuroscan; El Paso, TX). Fifteen 
isolated words were collected 150 times each, for a total 
of 2250 word samples. The words, shown in Table 1 and 
assigned class codes, were chosen from a list compiled by 
firefighters at the Moffett Field Fire Department as 
representative of the tactical vocabulary they use while 
performing their work. As Table 1 shows, some of the 

vocabulary elements are in fact two-word phrases. We 
will nonetheless use the term “word” for consistency with 
other published accounts. 

 

Table 1. Fifteen-word vocabulary. Class codes are used 
during the presentation of results. 

Words 
Evacuate 

(C1) 
Mayday 

(C2) 
Man-trap 

(C3) 
Fire Clear

(C4) 

Fire Safe 
(C5) 

Room 
(C6) 

Status 
(C7) 

North 
(C8) 

South 
(C9) 

East 
(C10) 

West 
(C11) 

Zero 
(C12) 

One 
(C13) 

Two 
(C14) 

Three 
(C15) 

 

 
The subject was prompted via software to say the 

vocabulary words in a fully randomized order (see 
Figure 5). Randomization was used to minimize learning 
and anticipatory effects. The subject had a visible amount 
of time in which to say a word, with a pause between 
words of 2.5 seconds. Since firefighters have no obvious 
use for covert communication, the subject was instructed 
to speak at a normal conversational level (as opposed to 
whispering or emitting no acoustical energy, a mode of 
operation that might be more suited to certain police and 
military units). Data were collected during four separate 
sessions over a three-week span. The subject was 
photographed during the first recording session to 
establish where the sensors were located on the neck. In 
subsequent sessions, an assistant placed the sensors in the 
same location with the aid of the photograph. 

 

 
Figure 5. Screen shot of software used to prompt subjects 
during data collection. A slider indicates the time span 
available to the subject to say the displayed word. The 
EMG trace is visible to the subject during recording. The 
text at the bottom gives the subject status information (i.e., 
this subject is collecting word example 21 of 450 total for 
this particular session).  



 

3.2. Signal Processing 
Subvocal speech recognition is a type of pattern 

recognition, one in which a captured training set allows 
for the use of supervised learning techniques. That is, 
suppose we have obtained a training set 

{ }1 1( , ), , ( , )K KT x y x y= …  consisting of K  labeled 

samples, where the D
ix ∈  are the samples and the 

i My ∈Z  are the corresponding class labels. For the work 
reported here, 2250,K =  15,M =  and, as will be 
discussed, 41.5 10D = × . We seek the function *

Tf  that 
maps samples to class labels and that maximizes the 
correct classification rate over the entire joint distribution 
of samples and class labels. Indeed, this is essentially the 
goal of all the various pattern recognition techniques—
neural networks, hidden Markov models, support vector 
machines, or anything else. 

The signal processing activity has two distinct phases. 
In the first, a training set is used to produce a classifier. In 
the second, the trained classifier is presented with 
previously unseen samples, either for the purpose of 
testing the classifier or for producing some end effect. 
The first three stages are common to both phases: 

1. signal acquisition 
2. activity detection 
3. feature extraction 

The signal acquisition process was described in the 
previous section of this paper. The other two common 
blocks—activity detection and feature extraction—are 
described next. 

Activity detection refers to the process of segmenting 
an isolated word out of the continuous EMG stream 
(other names used in the literature include utterance 
detection and end-point detection). In this work, only a 
single EMG channel needed to be monitored for activity. 
The technique used was a simple one and involved 
partitioning the EMG data stream into 20 ms packets, 
then labeling each as either signal or noise. The signal-
versus-noise determination was made by comparing the 
RMS value of the packet to a noise threshold dynamically 
set at the beginning of a recording session (by assuming 
the first 10 seconds of data were noise, then holding the 
threshold fixed for the remainder of the session). A 
second level of logic then examined the resulting bit 
sequence to make sure that spurious 0s (i.e., noise) were 
not inserted into contiguous activity blocks and that the 
blocks had a certain enforced minimum time separation. 
The final logic level ensured that an activity block was 
placed in the center of a 1.5 second window, buffered on 
either side as necessary by the surrounding EMG activity. 
At the set sampling rate of 10 kHz, this resulted in a fixed 
block of 41.5 10×  samples being sent downstream for 
feature extraction. The fixed block size made feature 

extraction easier at the price of including some noise 
samples with the word. Figure 6 shows an example of the 
activity detector operating on an EMG signal. While 
substantially more sophisticated activity detection 
techniques can be found in the literature (e.g., [37-42]) 
and are candidates for inclusion in future work, the 
technique described proved sufficient for both the off-line 
and real-time systems. 
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Figure 6. Activity detector operating on EMG data. The 
1.5 second activity region is contained between the 
dashed lines. This particular region is the subject saying 
“Mayday.” 

Feature extraction is the process of reducing the 
dimensionality of the data to in some way facilitate 
subsequent classification. In this project, the 41.5 10×  
dimensional activity block was reduced to a feature vector 
of dimension 20 by a process of full-wave rectification, 
wavelet transformation, and low-pass filtering of the 
resulting level-1 approximation band. The particular 
wavelet transform chosen was Kingsbury’s dual-tree 
complex wavelet transform, selected because of its shift-
invariant properties [43]. Many wavelet transforms suffer 
from the property that minor shifts in the input signal can 
cause significant redistribution of energy in the various 
subbands. Kingsbury’s transform alleviates this, thereby 
reducing sensitivity to the exact positioning of the signal 
within the activity window. We and others have also used 
HMMs in the past to ease temporal alignment issues [23, 
25]. Figures 7 and 8 show the output of the feature 
extractor on some word samples. The left portion of each 
figure shows the EMG activity regions. The right portion 
plots the feature dimensions on the abscissa and their 
magnitudes on the ordinate. 
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Figure 7. Feature examples for the word “Man-trap.” 
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Figure 8. Feature examples for the word “Evacuate.” 

After activity detection and feature extraction, features 
from the training set are used to train a neural network 
classifier. The neural network chosen was a conjugate 
gradient network [44]. The network was configured with 
20 input nodes, one hidden layer of 41 nodes, 15 output 
nodes, and was run with 400 training epochs (or until the 
performance goal was met, meaning training had 
converged). All of these values, including the number of 
dimensions in the feature vector, were arrived at by an ad 
hoc process of optimization. While we believe these 
values to produce a good overall classifier for this 
particular data set, future work will look to make the 
parameter tuning process more automatic. As will be 
discussed in more depth in the Results section, 70% of the 
collected samples were used for training. The remaining 
30% were set aside for generalization testing. 

 
3.3. Hardware and Software Architecture 

A major goal of this preliminary study was to assess 
the feasibility of using EMG-based speech recognition for 

first responders. Focus was placed on recognition results 
and assessing the impact of SCBA equipment; no effort 
was made to miniaturize equipment. At the time of 
writing, the system is not portable and not hardened for 
field use. 

As has already been mentioned, Neuroscan’s Acquire 
software was used for collecting the training set data. The 
data were stored in binary format. Metadata associated 
with a particular session (e.g., session date, subject name, 
word ordering, etc.) were stored in an XML file. 

Off-line training and analysis was performed using 
Matlab (Matlab version 7.1.0.246; The Mathworks, Inc.; 
Natick, MA). The training and analysis code makes 
extensive use of Matlab’s object-oriented capabilities, 
particularly in organizing the results of a recording 
session. 

A prototype real-time system was also developed as 
part of this work. The intention was to demonstrate the 
potential capabilities of subvocal speech recognition in an 
acoustically harsh environment. Figure 9 gives an 
overview of the real-time system architecture. Java 
classes (Java version 1.5.0; Sun Microsystems, Inc.; Santa 
Clara, CA) were developed and called from Matlab to 
facilitate communication between the amplifier and a PC 
used for computation. Java was also used to communicate 
recognized words to servers. The real-time system used 
the same activity detection and feature extraction Matlab 
code as the off-line system.  

 

 
Figure 9. Overview of real-time system architecture. 

There is no question that the difficult part of this 
research effort involved EMG word recognition. Once 
recognized, using the words for communication and 
control was relatively trivial. Two such paths were 
constructed, purely to provide concrete examples of real-
time subvocal speech recognition. One involved sending 
recognized words to Smartphones running Windows 
Mobile 2003 Second Edition over GPRS wireless links. A 
small amount of custom client code, written using 



 

Microsoft’s .NET Compact Framework, was loaded onto 
the Smartphones. Recognized words would be displayed 
on the phone’s screen and pre-recorded audio clips would 
be played on the device. The second output path was 
focused on control of a device, in this case a Personal 
Exploration Rover (PER) built by Carnegie Mellon 
University Robotics [4]. Communication was done via an 
802.11b wireless link and made use of the Java API 
supplied by the PER designers. 

 

4. Results 

This section examines results obtained both in off-line 
analysis and with the real-time system. 

 
4.1. Recognition Rate Results 

Table 2 gives the confusion matrix that resulted from 
off-line analysis. Each entry is an average classification 
percentage, computed using bootstrapping [45]. Although 
extremely expensive computationally, the resulting 
statistics are stable. Collected samples of each word were 
randomly assigned to either a training set or a 
generalization set, with 70% of the samples going into the 
training set. A neural network was then trained, using 
only elements from the training set, and tested on the 
generalization elements. The result was a 15 15×  
confusion matrix. The entire process was then repeated 
500 times, beginning with a new random assignment of 
samples to training and generalization sets. The elements 
shown in Table 2 are the average values across the 500 
confusion matrices. 

The same bootstrapping technique was used to 
compute the overall average correct classification rate and 
95% confidence interval. They are 74% and [71%, 77%], 
respectively. 

 
4.2. Real-time Results 

Once trained, the neural network was inserted into the 
real-time system for purposes of testing. The network was 
used by the same subject for whom it was trained. Before 
being inserted into the real-time system, the network was 
checked against its generalization set to ensure that it was 
not an outlier in terms of recognition rate. 

At the time of writing, no quantitative results are 
available for the real-time system. Qualitative results are 
shared instead. Recognition rates for the real-time system 
seemed consistent with the off-line analysis but remain to 
be determined. 

The real-time system was tested in the presence of 
approximately 95 decibels of acoustic noise. Recall that 
initial data collection sessions were done under quiet 
conditions. Testing was done in the same laboratory in 
which data had been collected (i.e., not in a controlled 
chamber). Noise was generated using speakers and 
consisted of sounds common to firefighting environments 
such as engine noise, saws, and sirens. The environment 
was sufficiently loud that acoustic communication 
between individuals in the room was possible only by 
shouting. Acoustic communication with the subject was 
essentially impossible, given the additional muffling of 
his mask. 

 
 

Table 2. Confusion matrix showing average classification percentages (refer to Table 1 for class codes). Only non-zero 
percentages are shown. Diagonal elements are shaded for convenience. Due to rounding, rows may not sum to 100. 

 Classification Result 
Truth C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 
C1 95  1    1 1 1   1    
C2  86 1   1 2   1 3  4  1 
C3  1 90 5 2          2 
C4   4 68 13   9  1  2  1 1 
C5 1  1 16 72   1    1   6 
C6  3    75 2 1 1  2 1 13 2 1 
C7 1     1 64 1 15 2 12  3 1  
C8 1  1 12 1  1 58 4 6  9 2 4 1 
C9 1    1  18 4 61 4 3 4 2 2  
C10  2  1   3 5 6 74 6 3    
C11 1 4    3 17 1 4 5 64  1   
C12  1  3 1   7 2 1  71  13  
C13  4    10 2 2 2  1 1 74 4  
C14      3 1 1 2  1 13 4 75  
C15 1  2 3 7   1    1 1  84 
Total 7 7 6 7 7 6 7 6 7 6 6 7 7 7 6 

 



 

To demonstrate real-time communication, the subject 
would first place a normal cell phone call to an observer 
stationed just outside the laboratory. With the high 
ambient noise, the observer would verify that the 
subject’s speech was unintelligible. The subject would 
then use the EMG real-time system and place a call to the 
observer’s Smartphone. The observer could then observe 
and hear words from the subject’s trained vocabulary on 
the Smartphone. The ambient noise had no discernible 
effect on recognition rates, although this was true only 
after some conditioning of the subject. The subject’s 
initial reaction when faced with the acoustic noise was to 
shout. Shouting changed the EMG characteristics 
sufficiently to noticeably degrade recognition. Future 
work will look to have the recognition system compensate 
for this Lombard-like EMG effect. 

The other real-time use of the system, also done in the 
face of environment noise, was controlling a robotic 
device. The subject’s vocabulary was mapped to robot 
actions (e.g., move forward 50 cm, move backward 50 
cm, immediate stop, etc.). The subject would then attempt 
to move the robot in a controlled fashion around the top 
of an approximately 1-by-2 meter table. The $8K cost of 
the PER provided an incentive to keep the robot on the 
table.  

 

5. Discussion 

The overall average correct classification rate of 74% 
is similar to other EMG-based speech recognition reports 
using vocabularies of similar size (as surveyed in 
Section 2.2). The rate is an order of magnitude greater 
than the a priori rate of 6.7%. Those more familiar with 
conventional speech recognition systems may find the 
rate low, but it is important to note that this is a raw 
recognition rate. No higher-level processing, such as 
using context or forcing user repetition, has been done. 
Such efforts will only serve to increase the correct 
classification rate of a production system. For example, 
swallowing is well known to produce significant EMG 
activity in the region of the neck. The current real-time 
implementation recognizes swallowing (and coughing) as 
activity and then makes a forced vocabulary choice, 
reducing the real-time recognition rate. 

An obvious limitation of the study was the recruitment 
of only a single subject. This was due in part to the 
difficulty of finding subjects trained in the use of SCBA 
equipment and able to devote enough time to data 
collection. Although our previous work with non-SCBA 
EMG speech recognition suggests the results reported 
here will generalize to other subjects, this remains to be 
demonstrated for SCBA use. 

Importantly, we observed no noticeable impact on the 
EMG signal from positive-pressure breathing via the 
SCBA. In other work we have done, as yet unpublished, 

we have similarly noticed no impact while breathing off 
open-circuit SCUBA equipment (in a dry laboratory 
setting). 

The issue of sensor placement sensitivity was not 
addressed in this study. An initial sensor placement was 
made by experimenting with different locations and 
finding one that particularly suited the subject (gauged by 
a strong EMG response during phonation). Subsequent 
sessions used the same sensor location, to within the 
accuracy afforded by a digital photograph of the initial 
location.  

This work made use of only a single channel of EMG 
data. Sensors were mounted on the neck, in part because 
the SCBA mask would have posed challenges for facial 
muscle sensing. In contrast to earlier EMG work, it was 
of interest to establish what performance could be 
achieved with only a single EMG channel. Fewer 
channels imply fewer sensors in a deployed system, 
thereby reducing system complexity and increasing the 
probability of acceptance by first responders. 

 

6. Conclusions and Future Work 

Our study provides preliminary evidence that a small 
tactical vocabulary can be communicated via EMG 
recognition alone, while wearing SCBA equipment and in 
an acoustically harsh environment, with an average 
correct classification rate of at least 74%. 

We believe EMG-based speech recognition, even in 
isolated-word form, holds promise as a communication 
modality for first responders and others. However, before 
a prototype system could be field tested, many significant 
obstacles would have to be overcome: 

1. A comfortable and realistic method would have to 
be found for reliably fitting a user with sensors. 
The sensors would need to interoperate with other 
equipment the user required (e.g., a breathing 
mask). The sensors would have to remain in place 
during severe physical exertion and be resistant 
(or immune) to perspiration. 

2. Equipment would need to be miniaturized and 
hardened for field use. 

3. The signal processing core would need to deal 
with swallowing and coughing, Lombard-like 
effects of changing EMG characteristics in the 
presence of acoustical noise, and movement 
artifacts (e.g., twisting of the neck). 

4. Computational requirements would need to be 
made consistent with those typically found in 
wearable environments. 

There are several avenues for future work. For the 
system we have developed, improved activity detection 
would be beneficial. The real-time system performance 



 

needs to be quantified. We have begun preliminary work 
on adaptively canceling the EMG noise before feature 
extraction and believe this line of work will increase the 
recognition rate. We are interested in potential 
applications of subvocal speech recognition to people 
with disabilities. Finally, there is substantial research yet 
to be done to produce a real-time EMG-based continuous 
speech recognition system. 
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