
CAPO User Manual 26

TUTORIALS

Source codes for all the tutorials described in this manual are included in the CAPO distribution and
can also be obtained from site http://www.nas.nasa.gov/Tools/CAPO/. Refer to “Examples.txt”
included in the examples directory for additional information.

Contents

Tutorial 1. A Simple Jacobi Code 27

Tutorial 2. NPB LU-hp Removing False Dependences 28

Tutorial 3. NPB MG User-Defined Loop Type 32

Tutorial 4. A CFD Application TEAMKE1 36

Tutorial 5. Mix of Message-Passing and OpenMP 44

CAPO User Manual 27

Tutorial 1. A Simple Jacobi Code

This tutorial demonstrates the very basic operations you would follow to generate an OpenMP code
without little user intervention. The code (jacobi.f) has an initialization loop and an iteration loop. The
iteration loop computes new solutions by averaging two neighboring points and checks the maximum
residual.

Steps of parallelization:

1. Perform the data dependence analysis. In CAPO, click Load F77 Source in the File
menu. Select jacobi.f and click Load. In the Analyser window, select the Full option and click
Analyse. This will just take a few seconds.

2. Save to database. In the File menu, click Save database. Enter a filename for the database or
take the default name (jacobi_full.dbs) and click Save. It is always a good idea to save the
results from different stages of the code analysis.

3. Browse directives. In the View menu, click Directives to perform the directives analysis.
The Directives browser will be popped up quickly. Select the All Routines scope and browse
through all loop filters. You will notice that the Jacobi code contains one Reduction loop (DO 30
I=1,N), two Chosen (parallel) loops (DO 10 I=1,N and DO 20 I=2,N-1), and one Falsely
Serial loop (DO 50 I=1,N containing an I/O statement).

4. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Enter a
filename (or take the default name, jacobi_omp.f) and click Save. If the directives analysis has
not been performed (via Step 3), it will automatically be performed before the parallel code is
generated. The log file, jacobi_omp.log, contains additional information for the parallelization
process.

To compile the OpenMP code on the SGI Origin2000, do

% f77 –o jacobi_omp –O3 –r8 –mp jacobi_omp.f

To execute the parallel code with 2 threads, do

% setenv OMP_NUM_THREADS 2
% ./jacobi_omp
Enter the values of N and TOL ...
1000 1.0e-6

The output looks like

...
49.99968169151887
1166848 9.9999888192314756E-07

You can compare the result with a single thread run or a serial version run. You will notice the program
does not scale well, primarily due to little work inside each distributed loop.

CAPO User Manual 28

Tutorial 2. NPB LU-hp Removing False Dependences

This tutorial demonstrates the basic user interaction with CAPO: removing false dependences to
improve the quality of data dependence and directives analyses. False dependences usually arise from
insufficient knowledge of certain parameters (such as from READ statements or calculated at runtime)
during CAPTools data dependence analysis. With the Directives browser, the user can inspect the
results and remove these false dependences if needed.

The example is one of the benchmarks from the NAS Parallel Benchmark (NPB) suite. The benchmark,
LU-hp, uses an SSOR algorithm to solve the Navier-Stokes equations in three dimensions. A hyper-
plane implementation of the SSOR algorithm is used in LU-hp. The code is split into many .f files. In
order to load the code to CAPO, we first create a list file “All.list” that contains names of all the .f files.

Steps of parallelization:

1. Load file and enter user knowledge. Click Load F77 Source in the File menu. Select
All.list and click the Load button. Select READ Knowledge from the Edit menu. In the READ
Knowledge window, select variable nx0 and click Positive Nontrivial, see Figure T2-1 on next
page. Apply the same steps to variables ny0 and nz0. These three variables define the number
of grid points in each dimension. Making them positive nontrivial (> 5 in the current case)
improves the quality of data dependence analysis.

2. Perform the data dependence analysis. After the user knowledge is entered, in the
Analyser window select the Full option and click Analyse. On an Indy R5000 workstation, the
analysis process takes about 18 minutes.

3. Save to database. In the File menu, click Save Database. Enter a filename for the database
(lu_hp_full.dbs) and click Save.

4. Browse directives. In the View menu, click Directives to perform the directives analysis.
The Directives browser will be popped up shortly. Select the All Routines scope and browse
through all loop filters. Pay attention to the serial loops (Totally, Covered and Falsely. For
meanings of these loop types, refer to Section 3.2 in Appendix).

5. Remove false dependences. In the Directives browser window, select the Totally Serial
loop filter and the All Routines scope. There are four loops listed under this category. Choose
the first loop: blts:1/1/35: do n=1,np,1 and click the Why button. The WhyDirectives
window as shown in Figure T2-2 will be popped up. As indicated in the window, the
serialization of this loop is caused by loop-carried data dependences from two variables: v and
tv. After inspecting the loop, the user realizes that this loop performs calculation for all points
on a given hyper-plane (i+j+k=constant). Each point on one hyper-plane could be calculated
independently, thus in parallel. However, indirect indexing was used to access data elements
on the plane and these indices were calculated dynamically and not available at the data
dependence analysis stage. Conservative decisions were made to keep these data dependences
during the analysis. So, the user can safely remove these false dependences to enforce a parallel
loop: using either the DepGraph window (in CAPTools) or the WhyDirectives window here
(simpler). With the second method, select variable v and tv in the three lists (True, Anti and
Output), click the Remove button and click the Apply button to confirm the action. Apply the
same procedure to the second loop: buts:1/1/35: do n=1,np,1.

T U T O R I A L 2 . N P B L U - H P R E M O V I N G F A L S E D E P E N D E N C E S

CAPO User Manual 29

Figure T2-1: The READ Knowledge window for entering initial user knowledge.

In the Directives browser window, select loop filter Falsely Serial and sub-filter Privatization.
Two loops are listed in this category. Choose the first loop: jacld:1/1/160: do n=1,np,1
and click the Why button if the WhyDirectives window is not visible. A new set of variables is
shown in the window, Figure T2-3. By the same token as above, the user selects those variables
listed in the Output-dep list and applies Remove to delete the relevant loop-carried Output
dependences. The variables in the In/Out-dep list were not selected because they are indeed
used outside the current loop. If a variable is removed from the In/Out-dep list and kept in the
Output-dep list, the variable would be privatized, which is not what we want here. Use the same
procedure on the second loop: jacu:1/1/160: do n=1,np,1.

6. Save new database and re-perform the directives analysis. Once data dependences
are modified, it is wise to save the results to a new database. In the File menu, click Save
database. Enter a filename for the database (lu_full_prune.dbs) and click Save. To re-perform
the directives analysis with changes taking into account, click the Update Directives button in
the Directives main window and Update to confirm the action. After the update, you will
notice the four loops treated above are now listed in Chosen (parallel). CAPO automatically
recognizes five reduction loops, two of them being array reductions.

7. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Choose the
Single Filename setting, enter a filename (lu_hp_omp.f) and click Save. The log file,
lu_hp_omp.log, contains additional information and statistics for the parallelization process.

T U T O R I A L 2 . N P B L U - H P R E M O V I N G F A L S E D E P E N D E N C E S

CAPO User Manual 30

Figure T2-2: The WhyDirectives window for a Totally Serial loop. It can be used to remove false dependences for
the selected variables.

To compile the OpenMP code on the SGI Origin2000, do

% f77 –o lu_hp_omp –O3 –mp lu_hp_omp.f

To execute the parallel code with 4 threads, do

% setenv OMP_NUM_THREADS 4
% ./lu_hp_omp

The output (for a class-W problem on 195MHz O2K) looks like:

Programming Baseline for NPB - LU Benchmark

Size: 33x 33x 33
Iterations: 300
Time step 1
...

0.1161399311023E+02 0.1161399311023E+02 0.3074289103934E-13
Verification Successful

LU Benchmark Completed.
Class = W
Size = 33x 33x 33
Iterations = 300
Time in seconds = 52.74
Mop/s total = 342.43

T U T O R I A L 2 . N P B L U - H P R E M O V I N G F A L S E D E P E N D E N C E S

CAPO User Manual 31

Figure T2-3: The WhyDirectives window for a Falsely Serial loop. The loop-carried output dependences for
variables a,b,c,d are selected for removal.

The output from a single process execution looks like:

Programming Baseline for NPB - LU Benchmark

Size: 33x 33x 33
Iterations: 300
Time step 1
...

0.1161399311023E+02 0.1161399311023E+02 0.3227238810597E-13
Verification Successful

LU Benchmark Completed.
Class = W
Size = 33x 33x 33
Iterations = 300
Time in seconds = 155.97
Mop/s total = 115.80

We have a speedup of 2.96 on 4 CPUs for this particular problem. If the pipelined LU were used, the
performance would be better (speedup of 3.32 on 4 CPUs). A version of the LU benchmark using the
pipeline algorithm is included in directory LU. Parallelizing LU with CAPO is straightforward and
similar steps as for parallelizing the hyper-plane LU can be followed. The difference is that the user
does not even need to remove any false dependences when generating the OpenMP code (skip Steps 5
and 6). CAPO is able to automatically set up the parallel pipeline.

CAPO User Manual 32

Tutorial 3. NPB MG User-Defined Loop Type

This tutorial was included in Version 1.0 of CAPO to demonstrate how the user enforces loop type to
improve the performance. This kind of interaction is not very often and can be done either within or
outside CAPO. The outside interaction is often involved with direct change to the source code. In the
following we first show the steps of parallelization without any change and then illustrate two ways of
user manipulation to the source code.

The example is one of the benchmarks from the NAS Parallel Benchmark (NPB) suite. The benchmark,
MG, uses the V-cycle multigrid algorithm to obtain an approximate solution to a discrete Poisson
problem in three dimensions. The norm of the solution is calculated in each iteration to check for
convergence. As was done in Tutorial 2, all the .f files are first listed in a single file: All.list.

Parallelization of the original code.

1. Perform the data dependence analysis. Click Load F77 Source in the File menu. Select
All.list and click the Load button. In the Analyser window select the Full option and click
Analyse. On a 450 MHz Sun workstation, the analysis process takes about 20 minutes.

2. Save to database. In the File menu, click Save database. Enter a filename for the database
(mg_full.dbs) and click Save.

3. Browse directives. In the View menu, click Directives to perform the directives analysis.
The Directives browser will be popped up shortly. Choose scope All Routines and loop filter
Totally Serial and sub-filter True Recursion. Select loop: norm2u3:1/1/27: do i3=2,n3-1
and click the Why button. Figure T3-1 is what you will see afterwards. The loop nest (and two
others inside) contains an IF statement which prevents the loop being recognized as a
reduction loop over variable rnmu.1 In order to be a valid reduction statement for OpenMP, the
code needs to be modified (see Step 5). Without any change, this piece of code will be run in
sequential.

4. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Enter a
filename (mg_omp.f) and click Save. The log file, mg_omp.log, contains additional information
and statistics for the parallelization process.

To compile the OpenMP code on the SGI Origin2000, do

% f77 –o mg_omp –O3 –mp mg_omp.f

To execute the parallel code with 8 threads, do

% setenv OMP_NUM_THREADS 8
% ./mg_omp

The output (for a class-A problem on 250MHz O2K) looks like:

Programming Baseline for NPB - MG Benchmark
...

1 Due to the improvement in Version 1.1 of CAPO, the IF-type reduction is now automatically recognized. The
described serial loops will no longer exist. But the concept of user interaction from this Tutorial is still valid.

T U T O R I A L 3 . N P B M G U S E R - D E F I N E D L O O P T Y P E

CAPO User Manual 33

VERIFICATION SUCCESSFUL
L2 Norm is 0.243336530907E-05
Error is 0.692805188218E-16

MG Benchmark Completed.
Class = A
Size = 256x256x256
Iterations = 4
Time in seconds = 6.65
Mop/s total = 585.42

A single-CPU run of this code took 39.29 seconds. We have a speedup of 5.91 on 8 CPUs for this
particular problem.

Figure T3-1: The window shows a serial loop in norm2u3, MG.

Further improvement to the code can be made by parallelizing the loop in routine norm2u3 (the
highlighted area in Figure T3-1). The operations inside the loop nest can be expressed as reductions
with slight code modification. There are two ways to achieve the goal: modifying the serial code and re-
performing the dependence analysis (Steps 5-7) or user enforcing loop type in the tool without re-
analysis (Steps 8-9).

T U T O R I A L 3 . N P B M G U S E R - D E F I N E D L O O P T Y P E

CAPO User Manual 34

Modification of the serial code.

5. Modify the serial code. The step involves directly modifying the serial code (mg.f) with an
editor before the analysis. In routine norm2u3, change the IF statement

if (a.gt.rnmu) rnmu = a

to a form that can be expressed with reduction
rnmu = dmax1(rnmu, a)

Save the new version to mg2.f and create a new list file ‘All2.list’ to include mg2.f.

6. Perform the data dependence analysis. Click Load F77 Source in the File menu. Select
All2.list and click the Load button. In the Analyser window select the Full option and click
Analyse. Save the result to a database (mg2_full.dbs). Browse directives if you like (View →
Directives). You will notice the loop in routine norm2u3 is now recognized as reduction.

7. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Enter a
filename (mg2_omp.f) and click Save. The log file, mg2_omp.log, contains additional
information and statistics for the parallelization process.

Now you can compile and run the parallel code as described after Step 9.

User enforced loop type.

8. Define a new loop type. From the File menu, load in the database “mg_full.dbs” from the
previous analysis. Perform Step 3. In the WhyDirectives window, click the New Type button.
Right after the Reduction setting is selected the Reduction Operator dialog box is shown up
(see Figure T3-2). Select variable “rnmu” and intrinsic function “max”, and push Apply in the
Reduction Operator dialog and in the Loop Type dialog. A new entry “R[max:rnmu]” is
added to file “userloop.par” in the current working directoy. This is to inform CAPO to treat
variable “rnmu” as a reduction variable besides other variables (such as “s”). Now in CAPO
click Update Directives to re-perform the directives analysis, which will take into account the
user-defined loop types from file “userloop.par.”

9. Save and change OpenMP code. In the File menu, click Save OpenMP Directives Code.
Enter a filename (mg2_omp.f) and click Save. We need to do one last change in the generated
OpenMP code: Use an editor, change in routine norm2u3

if (a.gt.rnmu) THEN

rnmu=a

ENDIF

to an “OpenMP-compliant” form
rnmu = dmax1(rnmu, a)

T U T O R I A L 3 . N P B M G U S E R - D E F I N E D L O O P T Y P E

CAPO User Manual 35

Figure T3-2: The Reduction Operator dialog after the Reduction setting is selected.

From either method, we should produce the same new parallel code (mg2_omp.f). Use the same process
after Step 4 to compile and run the new code. The output from a run with 8 CPUs (for a class-A problem
on 250MHz O2K) looks like:

Programming Baseline for NPB - MG Benchmark
...
VERIFICATION SUCCESSFUL
L2 Norm is 0.243336530907E-05
Error is 0.694753363997E-16

MG Benchmark Completed.
Class = A
Size = 256x256x256
Iterations = 4
Time in seconds = 5.67
Mop/s total = 686.60

The new code took 39.12 seconds on 1 CPU and 5.67 seconds on 8 CPUs, a speedup of 6.90 and 14%
improvement over the first version.

CAPO User Manual 36

Tutorial 4. A CFD Application TEAMKE1

The sample code, teamke1, in this tutorial has been taken from one of the CAPTools’ tutorials with a
slight modification. This is a realistic application. It includes structures that may be encountered in
many scientific applications. The example illustrates an incremental approach to achieve good
performance with assistant from CAPO and other tools like SpeedShop (available on the Origin 2000
machine). These tools are used to pinpoint problematic code sections quickly so that the user can apply
necessary changes.

Parallelization of the original code: teamke1.f

1. Perform the data dependence analysis. Start CAPO, click Load F77 Source in the File
menu. Select teamke1.f and click the Load button. In the Analyser window select the Full
option and click Analyse. The analysis process takes only a few minutes.

2. Save to database. In the File menu, click Save Database. Enter a filename for the database
(teamke1_full.dbs) and click Save.

3. Perform the directives analysis. In the View menu, click Directives to perform the
directives analysis. The Directives browser will be popped up shortly. Choose the All Routines
scope and browse through different loop filters. You will notice there are a quite number of
Totally Serial loops (see Figure T4-1), which will limit the performance of this code. At this
point, we only look into more details of the loop nest in routine CALCP1. The rest of the loops
will be discussed in Step 5 and after.

Choose the loop “CALCP1:1/1/35: DO 100 I=2,NI,1” and click Why. The WhyDirectives
window indicates the loop was serialized due to loop-carried dependences for variable SU. The
DepGraph (activated from the right-mouse button Loop Menu over the selected loop) shows
level-1 and level-2 dependences from statement 50 to 52 to 55 (see Figure T4-1). In particular
the 52 → 55 dependence prevents even a pipeline being formed within the loop nests. In fact,
we realize the add operation for variable SU in statements 52 and 55 is commutative, thus, the
execution order of the two statements can be switched and the 52 → 55 dependence can be
removed.

In the DepGraph window, click the 52 → 55 dependence edge with the right-mouse button and
load the “Why Dependence?” window (see Figure T4-2). Apply the Remove This Dependence
button and confirm the action. Save to a new database if you like. Click Update Directives to
re-perform the directives analysis and a pipeline is automatically recognized in routine
CALCP1.

Loop types are summarized here:

25 Totally Serial loops
10 Reduction loops
1 Pipeline loop in routine CALCP1
45 Chosen (parallel) loops

4. Produce OpenMP code. Without additional change, in the File menu, click Save OpenMP
Directives Code. Enter a filename (teamke1_omp.f) and click Save.

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 37

Figure T4-1: The Directives Browser window displaying Totally Serial loops in teamke1. The Loop Menu is used
to activate the DepGraph (shown as inset) for the selected loop.

Figure T4-2: The DepGraph Dependence Menu after clicking on a dependence edge.

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 38

To compile the OpenMP code on the SGI Origin2000, do

% f77 –o teamke1_omp –O2 –mp teamke1_omp.f

or use the supplied Makefile

% make VERNO=1

To execute the parallel code with 4 threads, do

% setenv OMP_NUM_THREADS 4
% ./teamke1_omp < inp.dat > teamke1_omp.out.4

Use the SpeedShop tool available on the Origin 2000 to profile the code. For 1 CPU:

% setenv OMP_NUM_THREADS 1
% ssrun -pcsamp ./teamke1_omp < inp.dat > teamke1_omp.out.1

A sampling file named as "teamke1_omp.pcsamp.m(pid)" will be created. Here "(pid)" is a proper
process id. Use the "prof" command to create the profile output:

% prof teamke1_omp teamke1_omp.pcsamp.m(pid) > teamke1_omp.prof.1

Follow the same procedure to obtain
profile on 4 CPUs. The profile outputs
for the key routines on 1 and 4 CPUs
are compared in Table T4-1. "ratio" is
1-CPU time over 4-CPU time, or the
speedup on 4 CPUs. The error of ratio is
calculated from the statistical sampling
error reported in the profile data. As we
can see, except for two routines
(calcp1 and props), the major
routines do not scale. The poor
performance correlates with the Totally
Serial loops indicated in Figure T4-1.
These loops were executed sequentially.
In order to improve the performance,
we need to investigate and find a way
to parallelize these loops.

Table T4-1: Comparison of profile results for the first parallel
version of teamke1. Time is given in seconds.

Function 1CPU 4CPUs ratio error

LISOLV 16.18 16.89 0.958 0.033

CALCTE 9.53 9.06 1.052 0.049

CALCV 8.95 7.86 1.139 0.056

CALCU 8.58 7.58 1.132 0.056

CALCED 8.10 7.71 1.051 0.053

CALCT 7.10 6.47 1.097 0.060

calcp1 4.78 1.59 3.006 0.275

CALCP2 4.11 4.03 1.020 0.071

props 0.48 0.16 3.000 0.866

init 0.25 0.15 1.667 0.544

PRINT 0.06 0.20 0.300 0.140

Total 80.83 74.21 1.089 0.018

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 39

Version 2 – Code modification without change to the basic algorithm:

5. Inspect code sections. Restart CAPO and load back teamke1_full.dbs (Load Database in
the File menu). In the View menu, click Directives to perform the directives analysis. In the
Directives browser window, choose scope All Routines, loop filter Totally Serial and loop
"CALCTE:2/12/42: DO 100 J=2,NJ". Click the Why button and the WhyDirectives
window as shown in Figure T4-2 will be displayed. There are six variables with loop-carried
true dependences, five of which have a determinable dependence vector length as indicated by
"[1]". This is an indication of a potential pipeline loop if changes can be made to variable UN
and two other variables VE and SMPW presented in the Output-dep. variable list.

Figure T4-3: The WhyDirectives window for a Totally Serial loop in teamke1.

6. Change scalar assignments. Checking the code section in loop nests I and J, we realize
that the dependences on scalar variables UN and VE were caused by the reuse of the assigned
values from the previous J or I iteration in an IF statement. The dependences can be removed
if we recalculate both variables at each J or I iteration.

Start a text editor and load in teamke1.f. In subroutine CALCTE modify the assignment for UN
from

IF(J.NE.NJ)UN=0.5*(U(I,J)+U(I-1,J)+FY(J)*(U(I,J+1)+U(I-1,J+1)-
> U(I,J)-U(I-1,J)))

to
IF(J.NE.NJ)THEN
UN=0.5*(U(I,J)+U(I-1,J)+FY(J)*(U(I,J+1)+U(I-1,J+1)-

> U(I,J)-U(I-1,J)))
ELSE
UN=0.5*(U(I,J-1)+U(I-1,J-1)+FY(J-1)*(U(I,J)+U(I-1,J)-

> U(I,J-1)-U(I-1,J-1)))
ENDIF

and for VE from
IF(I.NE.NI)VE=0.5*(V(I,J)+V(I,J-1)+FX(I)*(V(I+1,J)+V(I+1,J-1)-

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 40

> V(I,J)-V(I,J-1)))
to

IF(I.NE.NI)THEN
VE=0.5*(V(I,J)+V(I,J-1)+FX(I)*(V(I+1,J)+V(I+1,J-1)-

> V(I,J)-V(I,J-1)))
ELSE
VE=0.5*(V(I-1,J)+V(I-1,J-1)+FX(I-1)*(V(I,J)+V(I,J-1)-

> V(I-1,J)-V(I-1,J-1)))
ENDIF

Apply a similar modification to variables in three other routines. The changes are summarized:
Routine Loop Variable Description
CALCP2 DO 100 J=2,NJ SUS, SUW Recalculate at each
CALCTE DO 100 J=2,NJ VE, UN iteration
CALCU DO 100 J=2,NJ GAMN, DVDXN
CALCV DO 100 J=2,NJM1 GAME

7. Expand 1-D array to 2-D. Variable SMPW is a 1-D working array throughout the program. In
order to set up a pipeline of the J loop with the outer I loop, this array needs to be expanded to
two dimensional. As an example, in routine CALCTE, change the declaration of SMPW from 1-D
to 2-D, i.e. SMPW(NX) → SMPW(NX,NY). Then modify the following code section from

CP=AMAX1(0.0,(SMPW(J)+CW))
SMPW(J)=-CW-CS
SMPW(J-1)=SMPW(J-1)+CS

to
CP=AMAX1(0.0,(SMPW(I-1,J)+CW))
SMPW(I,J)=-CW-CS
SMPW(I,J-1)=SMPW(I,J-1)+CS

The initialization of SMPW is done in subroutine (entry) INIT. In this routine modify the
declaration from SMPW(NX) to SMPW(NX,NY) and the assignment from SMPW(J)=0.0 to
SMPW(I,J)=0.0.

Similar changes are made in several other places. The modifications on SMPW are summarized
here:

Routine Loop Description
CALCED DO 100 J=2,NJ Expand SMPW from 1-D to 2-D
CALCT DO 100 J=2,NJ Change declaration in the whole program
CALCTE DO 100 J=2,NJ
CALCU DO 100 J=2,NJ
CALCV DO 100 J=2,NJM1
INIT DO 951 J=1,NJ

All the modifications do not alter the basic algorithm, so the same run-time results should be
expected. Save the modified code to a new file: teamke2.f.

8. Perform code analysis. Restart CAPO and load teamke2.f. Perform the Full data
dependence analysis and save to teamke2_full.dbs. Start the Directives browser from the View
menu and the Directives menu item. With the All Routines scope browse through different
loop filters. You will notice that the number of Totally Serial loops has been reduced from 25 to
13 with increase in the number of pipeline loops. Loop types are summarized here:

13 Totally Serial loops (mainly in routine LISOLV)
10 Reduction loops
7 Pipeline loops
45 Chosen (parallel) loops

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 41

9. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code and save to
file teamke2_omp.f.

Compile and run the parallel code as before. The SpeedShop profile results for the new parallel code are
summarized in Table T4-2. As one can see, the parallel performance of Version 2 has been improved in
almost all routines except in routine LISOLV. LISOLV still executes serially and affects overall
performance. The single CPU execution time increased slightly in comparison with the original version.
This is because the recalculation of scalar variables in the new code costs slightly more time.

Table T4-2: Comparison of profile results for the second parallel version. Time is given in seconds.

Function 1CPU 4CPUs ratio error

LISOLV 16.14 18.00 0. 897 0.031

calcte 9.89 3.19 3.100 0.200

calcv 9.28 2.92 3.178 0.213

calcu 8.82 2.83 3.117 0.213

calced 8.76 2.87 3.052 0.208

calct 7.79 2.39 3.259 0.241

calcp1 5.04 1.75 2.880 0.253

calcp2 4.06 1.11 3.658 0.392

props 0.53 0.20 2.650 0.695

init 0.28 0.13 2.154 0.723

PRINT 0.14 0.26 0.538 0.178

Total 83.77 46.67 1.795 0.033

Version 3 – Change of algorithm in LISOLV:

10. Inspect code sections. Restart CAPO and load back teamke2_full.dbs (Load Database in
the File menu). In the View menu, click Directives to perform the directives analysis. In the
Directives browser window, choose scope All Routines, loop filter Totally Serial and loop
"LISOLV:2/2/18: DO 100 I=ISTART,NIM1". Click the right mouse button to activate the
Loop Menu. In the menu choose Dep Graph and the DepGraph window will show data
dependences that serialize the loop (see Figure T4-4 and the inset): variable PHI at level 2 (loop
I) and 3 (loop J) and variable A,C at level 3 (loop J). In loop I, variable PHI is used to calculate
A and C and gets updated at each I iteration.

11. Modify the algorithm. We can use a more explicit algorithm in the I loop: Variables A and C
are calculated for all the values of I before variable PHI is updated. The I loop then becomes
parallel. The impact of such a change is mainly on the convergence speed of the underline
algorithm. One may have to balance convergence rate and parallelization. In this case
parallelization seems to be more important since it improves overall code performance.

The modifications to the code involve expanding the dimensionality of A and C from 1-D to 2-D
and splitting the I loop into two parts: the first part calculates A and C from PHI and the second

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 42

part updates PHI. The modified code section is shown in Figure T4-4. Apply the same change to
loop "DO 1000 J=JSTART, NJM1".

Save the final code to teamke3.f

Figure T4-4: The Directive Browser window for Totally Serial loops in teamke2. The highlighted code section in
routine LISOLV is to be modified to a more explicit form.

Figure T4-5: The modified code section after loop I is split into two parts.

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 43

12. Perform code analysis. Restart CAPO and load teamke3.f. Perform the Full data
dependence analysis and save to teamke3_full.dbs. Start the Directives browser from the View
menu and the Directives menu item. With the All Routines scope browse through different
loop filters. You will notice that the number of Totally Serial loops has been reduced from 13 to
6 and these loops are in routines GEOM and GRID. Loop types are summarized here:

6 Totally Serial loops
10 Reduction loops
7 Pipeline loops
49 Chosen (parallel) loops

13. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code and save to
file teamke3_omp.f.

Compile and run the parallel code as before. The SpeedShop profile results for the final parallel code are
summarized in Table T4-3. As one can see, the parallel performance of Version 3 has been improved
over Version 2 and a reasonable speedup has been obtained. The single CPU execution time of routine
LISOLV increased about 40% in comparison with the previous version but the parallel execution time
decreased by a factor of 2.4 for 4 CPUs.

Table T4-3: Comparison of profile results for the third parallel version. Time is given in seconds.

Function 1CPU 4CPUs ratio error

lisolv 22.71 7.47 3.040 0.128

calcte 9.74 2.95 3.302 0.219

calcv 9.11 2.78 3.277 0.225

calced 8.89 2.55 3.486 0.248

calcu 8.74 2.64 3.311 0.232

calct 7.83 2.34 3.346 0.249

calcp1 4.87 1.80 2.706 0.236

calcp2 4.01 1.07 3.748 0.408

props 0.52 0.24 2.167 0.535

init 0.27 0.12 2.250 0.781

PRINT 0.05 0.37 0.135 0.064

Total 89.92 36.23 2.482 0.049

CAPO User Manual 44

Tutorial 5. Mix of Message-Passing and OpenMP

This tutorial demonstrates one way to generate a hybrid parallel code with CAPTools/CAPO. The
parallelization is done at two levels: message-passing (MP) at one level and OpenMP at another. The
example relies on the thread-safe feature introduced in MPI-2 and the success of execution depends on
the implementation of a thread-safe MPI-2 library. We need to emphasize that the hybrid parallelization
here is not the best way to achieve good performance for the currently selected code. We mainly like to
illustrate that it is possible to produce a hybrid parallel code with the tools.

The example is one of the benchmarks from the NAS Parallel Benchmark (NPB) suite. The benchmark,
BT, uses an implicit scheme to solve the Navier-Stokes equations in three dimensions. Within one time
iteration the solver sweeps through each dimension successively. Each step has strong data
dependences in the swept direction, but is completely parallel in the other two directions. The multi-
level parallelization is achieved by first distributing the data in the J dimension for message passing
and then applying directives on loops working on the K dimension. Small modification to the generated
parallel code by hand is needed in order to work around an incompletion due to that the hybrid code
generation is not really supported by the current tools.

The sequential version of the source code is in directory BT-mix. In order to load the code to CAPO, we
list all the .f files in one file: All.list.

Parallelization with message-passing at the first level:

1. Load source and enter user knowledge. Click Load F77 Source in the File menu. Select
All.list and click the Load button. Select READ Knowledge from the Edit menu. In the READ
Knowledge window, select variable nx and click Positive Nontrivial, see Figure T5-1 on next
page. Apply the same steps to variables ny and nz. These three variables define the number of
grid points in each dimension. Making them positive nontrivial improves the quality of data
dependence analysis in Step 2.

2. Perform the data dependence analysis. After the user knowledge is entered, in the
Analyser window select the Full option and click Analyse. On a Sun Ultra-4 workstation, the
analysis process took 12 minutes.

3. Save to database. In the File menu, click Save Database. Enter a filename for the database
(bt_full.dbs) and click Save.

4. Partition data. Launch the Partitioner from the CAPTools main window. Choose routine
"add", array "u" and index "3" (see Figure T5-2) and click Generate Partition. This step creates a
data distribution for array "u" on the 3rd index (the J dimension) and CAPTools also partitions
automatically the relevant arrays throughout the program. Figure T5-3 shows the partitioning
window after the process is finished. You will notice that array "lhsb" was left untouched. The
next thing to do is to select this array, index 4 and perform another partitioning.

5. Save to database. Use the Save Database menu to save the partitioned data to bt_part_j.dbs.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 45

Figure T5-1: The READ Knowledge window for entering user knowledge and the Analyser window.

Figure T5-2: The Partitioner window for array partitioning: routine add, array u, index 3.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 46

Figure T5-3: Apply array partitioning on the second array: lhsb, index 4.

6. Remove unwanted partitions. If you use the result produced from Step 4 to generate
message-passing code, you would notice that CAPTools place quite a few communication calls
inside routine COMPUTE_RHS, which exchange boundary values of some of the working arrays
(such as qs, rho_i…) for the partitioned dimension. These boundary values, in fact, can be
calculated in the routine instead of being communicated from neighbors to improve the
performance. This kind of improvement can be achieved within CAPTools by removing
partitions on the relevant arrays (although it is not very obvious and intuitive). In the
Partitioner window, select routine "compute_rhs". Select "qs" in the Partitioned Array list
and click the Delete Partition button. Apply the same procedure to arrays: rho_i, square, us,
vs, and ws. Figure T5-4 is what you will see after this process from which partitions on six
arrays have been removed.

Click the Accept All Partitions button.

7. Generate masks and communications. Start the Code Generator from the CAPTools
main window. Choose 2 for Min Slabs Per Processor, which indicates at least 2 slabs in the
partitioned direction to be used for the execution and reduces number of communications calls
placed. Select Gather/Scatter for Communication Type. Click Generate Masks to start the
mask generation and Calc & Gen Comms to generate communications. See Figure T5-5.

At this point you could produce a pure message-passing program if you wish (the Generate &
Save Final Code button). But we move onto next step.

8. Save to database. Use the Save Database menu to save the communication data to
bt_comm_j.dbs.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 47

Figure T5-4: The Partitioner window after partitions on six arrays were deleted.

Figure T5-5: The Code Generator window for the final generation of message-passing code.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 48

Insertion of OpenMP directives at the second level:

9. Browse directives. In the View menu, click Directives to perform the directives analysis.
The Directives browser will be popped up shortly. Select the All Routines scope and browse
through all loop filters. Pay attention to the serial loops (Totally, Covered and Falsely).

10. Re-enforce new loop types. In the Directives browser window, select the All Routines
scope, the Falsely Serial loop filter and I/O Statement sub filter (Figure T5-6). There are two K
loops listed under this category. Choose the first loop: y_solve:8/1/302: do k=1,grid..
and click the Why button. The WhyDirectives window (see Figure T5-7) indicates that there
are four MP (Message-Passing) calls (as part of the parallel pipelines) inside the K loop, which
serialize the K loop. If nothing is done here, the inside I loop will be chosen for the second level
parallelization with directives, which will not give a good performance.

Figure T5-6: The Directives Browser window for the Falsely Serial and I/O Statement type.

In order to improve the performance, we can enforce a parallel type for the two K loops with an
assumption that the MP calls are thread-safe. This is possible within the context of MPI-2. To
define a new loop type, click the New Type button in the WhyDirectives window (Figure T5-
7). Select new type Parallel and push Apply. A new entry is now added to file userloop.par.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 49

Select the second K loop: y_solve:13/1/353: do k=1,grid.. and click the New Type
button. Again in the LoopType window choose new type Parallel and push Update. CAPO will
save the new entry to file userloop.par and re-perform the directives analysis with the new
loop types.

Figure T5-7: The WhyDirectives window for the selected loop and the LoopType window for defining a new loop
type.

11. Insert OpenMP directives. In the File menu, click Save OpenMP Directives Code. Enter a
filename (bt_cap_j_omp.f) and click Save. By now you will have the first version of a hybrid BT
code. The log file, bt_cap_j_omp.log, contains additional information and statistics for the
parallelization process. You will see warnings on "I/O or MP statements inside parallel region".
This is what we need to fix next.

Modification to the generated hybrid code:

12. Replace MP calls with thread-safe version. As mentioned before, the current tool does
not really support the generation of hybrid codes, but is merely used to assist such a process.
The message-passing (MP) calls (CAP_SEND, CAP_RECEIVE…) placed inside the generated
code by the tool are assumed to be used in a single-threaded environment. The supporting
library, CAPLIB, is designed to run under a single-threaded environment as well. So in order to
have the hybrid code working properly, we need to modify the message-passing calls inside
parallel regions so that they can work safely under a multi-threaded environment. To achieve
the goal, we will create a subset of the routines in CAPLIB to support multi-threading. These
routines contain an additional field "TAG" in the argument for use with a specific thread. A
sample implementation of the thread-safe MP routines used in this tutorial is included in file
caplib_thread.F.

So we want to make a final touch to the generated code: replace several message-passing calls
with the thread-safe version. Edit file bt_cap_j_omp.f with a text editor:

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 50

1) In subroutine Y_SOLVE, include the following two lines in the declaration

integer omp_get_thread_num, myid
external omp_get_thread_num

2) In subroutine Y_SOLVE, the third parallel region, change

!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,j,k)
to

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,myid)

and add the following lines before "do k=1,grid_points(3)-2,1"

myid = omp_get_thread_num()
!$OMP DO

Now add a message tag to the four MP statements in the K loop by replacing

CALL CAP_RECEIVE(...)
with

CALL CAP_RECEIVE_TAG(...,2000+myid)
and

CALL CAP_SEND(...)
with

CALL CAP_SEND_TAG(...,2000+myid)

The tagged SEND and RECEIVE calls are from caplib_thread.F and the tag "2000+myid" is
added to ensure the point-to-point communication between two threads with the same thread
number. The offset "2000" in the tag is to avoid potential conflict with message tags internally
used by CAPLIB, but the choice of the value is a bit of arbitrary.

Lastly, change

!$OMP END PARALLEL DO
to

!$OMP END DO NOWAIT
!$OMP END PARALLEL

3) Apply the same changes as in 2) to the fifth parallel region in subroutine Y_SOLVE and save
the modification.

Compile and run the hybrid code.

In order to compile and run the hybrid code successfully, the following additions or installations are
required:

1) The CAPLIB library from the CAPTools distribution. CAPLIB can be downloaded from
http://captools.gre.ac.uk/.

2) A thread-safe extension to some of the routines in CAPLIB, which are supplied here in
caplib_thread.F for MPI. One of the main things in the file is a dummy MPI_INIT()
routine which just passes the call to MPI_INIT_THREAD(). The CAP_*_TAG routines are also
in this file.

3) A thread-safe implementation of MPI-2 library that supports MPI_INIT_THREAD in level
MPI_THREAD_MULTIPLE. Such an implementation is available from SGI's MIPSpro 7.3
compilers and MPT 1.4 toolkit.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 51

We will use the supplied Makefile to compile the hybrid code on the SGI Origin2000. Modify the
content of Makefile, in particular the value for CAPLIB. Then do

% make

which will create an executable "bt_cap_j_omp.1". To execute the parallel code with 3 MPI processes
and 3 threads per MPI process, do

% setenv OMP_NUM_THREADS 3
% mpirun -np 3 ./bt_cap_j_omp.1 -top pipe3

The output (for a class-W problem on 195MHz O2K) looks like:

Thread support on Rank 0 = 3, number of threads = 3
Thread support on Rank 1 = 3, number of threads = 3
Thread support on Rank 2 = 3, number of threads = 3
PID HOSTNAME MPI_PROCNAME UNIX_PID BIN_NAME
1 turing turing 35973 bt_cap_j_omp.1
2 turing turing 35974 bt_cap_j_omp.1
3 turing turing 35979 bt_cap_j_omp.1

Programming Baseline for NPB - BT Benchmark

Size: 24x 24x 24
Iterations: 200 dt: 0.000800
Time step 1
...

5 0.1018045837718E+02 0.1018045837718E+02 0.4575047075825E-12
Verification Successful

BT Benchmark Completed.
Class = W
Size = 24x 24x 24
Iterations = 200
Time in seconds = 11.66
Mop/s total = 662.12

The execution time from a single process run is 84.69 seconds, so we have a speedup of 7.3 on 9 CPUs.
You can run the code with different combinations of MPI processes and OpenMP threads, for example,
to run with 2 MPI processes and 8 threads per MPI (2x8 = 16 CPUs):

% setenv OMP_NUM_THREADS 8
% mpirun -np 2 ./bt_cap_j_omp.1 -top pipe2

Table T5-1 on next page contains a collection of results from runs on two SGI Origin2000s: 195 (CPU
type 195 MHz, 32Kb L1 and 4Mb L2 cache) and 300 (CPU type 300 MHz, 32Kb L1 and 8Mb L2 cache).
NP stands for number of MPI processes and NT is the number of threads per MPI process. For a given
number of CPUs, the hybrid code has a better performance when NP is close to NT. However, you also
notice that "8x2" performs better than "4x4" or to say MPI is more preferable in this case.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 52

Table T5-1: Execution time (in seconds) and Mop/s (million floating point operations per second) of the hybrid BT
code, obtained for the Class W (24x24x24) and with 1, 9 or 16 CPUs.

195 MHz Origin2000, 1 or 9 CPUs

NPxNT 1x9 3x3 9x1 1x1

Time 14.26 11.66 12.26 84.69

Mop/s 541.46 662.12 629.47 91.14

300 MHz Origin2000, 16 CPUs

NPxNT 1x16 2x8 4x4 8x2 16x1

Time 8.21 6.38 5.76 5.38 6.88

Mop/s 940.61 1210.05 1339.76 1433.53 1122.38

