
CAPO User Manual 53

APPENDIX

Contents

A1. Parameters for CAPO 54

A1.1. General 54

A1.2. The Parameter File 54

A1.3. Parameter Keys and Possible Values 54

A1.4. Parameters for Debugging Purpose 57

A1.5. Sample Parameter File 57

A2. Messages and Symbols in the Log File 59

A2.1. Classification of Loops 59

A2.2. Construction and Optimization of Parallel Regions 60

A2.3. Insertion of Directives in Routines 63

A2.4. Debug Information 65

A3. CAPO Graphical User Interface 68

A3.1. CAPTools Main Window 68

A3.2. Directives Browser Main Window 69

A3.3. Loop Filters and Sub-filters 70

A3.3.1. Loop Variable Filter Window 72

A3.4. WhyDirectives Window 73

A3.5. Routine Duplication Browser 78

A3.6. Parameter Setting Window 79

A3.7. User Loop Type Window 81

A3.8. Reduction Operator Dialog 81

A3.9. Updating Directives Dialog 82

A3.10. Variable Removal Confirmation Dialog 82

A3.11. Data Graph Window 83

A3.12. Hookups to CAPTools 84

A4. CAPO Command Interface 87

A4.1. Commands for the Command Interface 87

A4.2. Other CAPTools Commands Useful for CAPO 89

A4.3. An Example of "capo_run.cmd" 89

CAPO User Manual 54

A1. Parameters for CAPO

The following describes parameters available in Version 1.1.

A1.1. General

Parameters are referring to inputs that user can supply to control the behavior of directive generation in
CAPO. There are default settings for all the parameters (see Section A1.3). Parameters can be defined
from a file, environment variables, or the Setting box in the Directives Browser. Values from the
parameter file or environment variables supersede any defaults. Values from the parameter file
supersede environment variables. Changes from the Setting box (Section A3.6) in the Directives Browser
are applied at last. Parameter setting can also be done from the CAPO command interface. See Section
A4 for details.

A1.2. The Parameter File

The parameter filename can be defined via the environment variable CAPO_PAR. The default filename is
"capo-inp.par " in the current directory. An example of this file is given in Section A1.5.

Format of the parameter file:

'#' the sign starts a comment
'key value' the pair defines an entry

A1.3. Parameter Keys and Possible Values

ENV_VARIABLE KEY DEFAULT POSSIBLE VALUES
CAPO_PAR capo-inp.par
CAPO_LOG log-file on (off on stdout)
CAPO_LOGNAME log-file-name codeoutput.log
CAPO_LOGINFO log-info std (min std more debug)
CAPO_PLOOP loop-granularity 6 (0 1 2 ...)
CAPO_TYPE directive-type omp (omp sgi sgix no)
CAPO_REGION region-type default (loop bloop one join full)
CAPO_OPTIMIZE optimize-type o2 (off on o2 o3)
CAPO_USERLOOP user-loop-file user-loop.par
CAPO_DIRCLEAR directive-clear default-list (off on filename)
CAPO_TPRIV tpriv-directive on (off on)
CAPO_COMMENT comment-type f90 (f77 f90)
CAPO_USEPARTI use-parti-loop no (no yes)
CAPO_RDUPTYPE rdup-type region (loop region)
CAPO_UNKSIZE allow-unksize false (false true)
CAPO_PIO allow-pio no (no incall write noread

any)

A P P E N D I X : P A R A M E T E R S F O R C A P O

CAPO User Manual 55

Description of the parameters:

• “log-file ” type is one of

off Logging to file is off, only minimum messages are printed on screen
on Information are logged to the log-file
stdout Information are printed to stdout (screen)

• “log-file-name ” defines the name for a log file. If no name is defined, CAPO will use the
output filename from the code generation to form a log filename. Contents of the log file are
described in Section A2.

• “log-info ” type is one of

min Only minimum information are logged or printed
std Print standard set of log information
more Print more detailed log information, including region and loop numbers in the final

Fortran file
debug Print debugging information, probably more than you want, including region and

loop numbers in the final Fortran file
• The loop granularity is based only on the loop iterations at this point. Future extension to

include profile information can easily be added.

• Currently supported directive types are

omp Produce OpenMP directives (default)
sgi Produce SGI native directives
sgix Produce OpenMP directives with SGI extensions. Currently, only the 'NEST’

directive is supported
no Do not insert directives in code generation (useful for comparison).

• Different region types

loop consider only one loop for one region (no pipeline)
bloop consider one block + one loop for one region (no pipeline)
one consider one region (region not joined, no pipeline)
join consider joined region (outer loop nesting, no pipeline)
full consider full region (region joined and possible pipeline)

For SGI directives, only "loop" is allowed for the region type (region-type). The default region-
type is "loop" for SGI and "full" for OMP.

• Optimization type is intended for possible improvements to be applied, such as loop
granularity check, synchronization overhead reduction, and loop transformation. Currently an
attempt to reduce synchronization at end-of-loop is implemented. Other optimizations are less
defined and/or tested.

off Do not do any optimization
on Try to reduce synchronization at end-of-loop
o2 Use logical disprove (slow sometime) for affinity comparison
o3 Perform additional optimization (such as loop transformation) before loop analysis

and directive insertion.
• User-defined loop types are read from a file that can be defined via environment variable

CAPO_USERLOOPor "user-loop-file " entry in the parameter file. If a "userloop.par " file
exists in the current working directory, this file will be taken if the other two methods are not
used. The format of this file is:

A P P E N D I X : P A R A M E T E R S F O R C A P O

CAPO User Manual 56

starts comment
#RoutineName LoopNumber NewType
routine_name loop_count S|P|R|B[options]

Entries are specified line-by-line. “Routine_name ” is case insensitive. For a program without
the main-routine name defined, “MAIN” can be used to indicate the main routine.

"loop_count " is the loop number counted from the beginning of a given routine. A negative
"loop_count " indicates the loop (defined by -loop_count) will not be considered for
automatic loop transformation.

Currently the following new loop types are supported:

"S" for serial
"P" for parallel
"R" for reduction
"B" for break-type (e.g. so that a parallel region won't be formed around this loop).

The "R" type can optionally be attached with

"[OPR:VAR]" or "[OPR:VAR()]" list

to indicate the reduction operator and the reduction variable, no space in-between. The second
form indicates an array reduction.

• List of directives to be cleared can be read from a file or taken from the default list. The default
list contains the following:

"cdir$", /* Cray vector directive */
"cmic$", /* Cray autotasking directive */
"c$par", /* PCF (Parallel Computing Forum) directive */
"c$doacross", "c$&", /* SGI multiprocessing directive */
"c$ ", "c$\t",
"c$omp", /* OMP directive */
"c$sgi" /* SGI OMP extension */

The default setting is to use the above list. The 'clearing' action may be turned off by setting
CAPO_DIRCLEARto 'off '. Additional directives may be added to the default list by prefixing a
'+' in front of the filename for CAPO_DIRCLEAR.

A dirclear-list file contains simply a list of directives (keywords) to be considered. A keyword
should lead with one of ['C', '! ', '* ']. A '- ' sign can be added to the front of a keyword to indicate
the corresponding directive should not be cleared (i.e. keep its original form), otherwise, the
directive will be commented out (cleared).

• The THREADPRIVATEdirective will be generated by default. If the option is turned off via
CAPO_TPRIV(=off), CAPO will use an alternative method to treat private variables used in a
common block.

off Use an alternative method to handle private variables
on Try to produce THREADPRIVATEdirectives

• The comment type refers to the leading character to be used for directives. The 'C' character is
for the f77 type and the '! ' character is for the f90 type. Default is '! '.

• By default, if a loop is partitioned in a message-passing program, the loop will not be
considered for directives (CAPO_USEPARTI=no). This is equivalent to a two-level
parallelization. If a partitioned loop is intended for directives as well, CAPO_USEPARTIcan be
set to 'yes '. This would be a one-level parallelization with mixed type. The option is only

A P P E N D I X : P A R A M E T E R S F O R C A P O

CAPO User Manual 57

meaningful when CAPTools is first used to generate message-passing program and CAPO is
then applied to insert directives.

• Two types of routine duplication (RDUP) can be selected:

loop as the type for RDUP if a routine is used both inside and outside parallel loop(s).
region as the (default) type for RDUP if a routine is used inside a parallel loop and inside

parallel region but outside parallel loop.

The first option removes any nesting of parallel regions. The second option allows nested
parallel regions in such a form that a parallel region can be nested inside a parallel loop but not
inside a non-worksharing section of a parallel region.

• The environment variable CAPO_UNKSIZEcontrols how unknown-size private variable (USPV)
is treated. A unknown-size variable has its last dimension declared as "*" or "1" in a subroutine
and is in the routine argument list. By default, if an USPV is encountered, CAPO will take
effort to adjust the size of the unknown dimension. If the size cannot be adjusted, the
corresponding loop will be made serial. If CAPO_UNKSIZEis set to "true ", the loop with
USPV will not be made serial, instead, a warning will be printed so that the user can make
manual change later on.

• By default I/O statements are not allowed in the dynamic extent of parallel loops. However,
one can exploit certain degrees of parallel I/O with CAPO_PIO.

no no I/O statements in the dynamic extent of a loop (default).
incall no I/O in the current scope of a loop, but allowed inside subroutine calls.
write allow "WRITE(*,*) ", i.e. write to the standard output.
noread no READ, but allow any WRITE.
any allow any type of I/O statements.

A1.4. Parameters for Debugging Purpose

The following parameters are only available from the Setting box (Section A3.6) in the Directives
browser. By default, all these parameters are enabled. The Setting box can be used to disable them for
debugging purpose.

Generate-NOWAIT enable/disable the NOWAITdirective
Transform-Induction-Loop enable/disable induction loop treatment
Handle-Array-Reduction enable/disable array reduction
Remove-Old-Directives enable/disable removing old directives
Apply-UserLoop-Type enable/disable applying userloop types
Setup-Pipeline-Loop enable/disable pipeline loop

A1.5. Sample Parameter File

env: CAPO_PAR
Parameters for CAPTools-based Parallelizer with OpenMP (CAPO)
They apply to version 1.1

env: CAPO_LOG
defines if log-information is wanted
log-file on (off on stdout)
env: CAPO_LOGNAME

A P P E N D I X : P A R A M E T E R S F O R C A P O

CAPO User Manual 58

defines log-file name when log-file = on
log-file-name (default: codeoutput.log)

env: CAPO_LOGINFO
defines type of information to be logged
log-info std (min std more debug)

env: CAPO_PLOOP
defines granularity (min. no. of iters.) for parallel loops
loop-granularity 6 (0 1 2 ...)

env: CAPO_TYPE
defines type of directives to be produced
directive-type omp (omp sgi sgix no)

env: CAPO_REGION
defines type of parallel regions to be considered
region-type full (loop bloop one join full)

env: CAPO_OPTIMIZE
defines optimization type for parallel regions
optimize-type o2 (off on o2 o3)

env: CAPO_USERLOOP
defines the file name for user-defined loop types
user-loop-file (default: user-loop.par)

env: CAPO_DIRCLEAR
defines the file name for directives to be cleared
directive-clear Default (off on filename)

env: CAPO_TPRIV
switches on/off the generation of THREADPRIVATE
tpriv-directive on (off on)

env: CAPO_COMMENT
chooses a comment type for directives
comment-type f90 (f77 f90)

env: CAPO_USEPARTI
uses partitioned loops for directives
use-parti-loop no (no yes)

env: CAPO_RDUPTYPE
defines routine duplication type
rdup-type region (loop region)

env: CAPO_UNKSIZE
allows unknown-size variables
allow-unksize false (false true)

env: CAPO_PIO
allows parallel I/O
allow-pio no (no incall write noread any)

CAPO User Manual 59

A2. Messages and Symbols in the Log File

By default, the process of automatic insertion of directives is logged to the log-file "code-
output.log ". Information in this file may be examined after directives are added. There are three
main sections in the log file, as outlined in the following subsections. Depending on the log-info type as
described in Section A1, different levels of information details may be logged. In general, the log-info
type controls:

1) min only minimum amount of information, such as WARNING and INFO messages,

2) std information from min , plus summary for each routine and each region,

3) more information from std , plus more detailed results for each loop and each region,

4) debug information from more , plus additional debug information that are probably too
much for an ordinary user.

In the case of "more " and "debug ", additional labels (region# and loop#) are added as comments for
parallel loops in the generated parallel code. Regions and loops are labeled within a given routine,
sequentially.

A2.1. Classification of Loops

The first section lists the analysis of loops in all routines from the dependence information. For a given
routine a loop is labeled with its sequence number, the group number and the loop-nesting level. The
group number is defined as a sequence number for a loop-nest group at a given nesting level. Loops are
classified as parallel, serial, or possible pipeline. For a parallel loop, it is further tested for granularity
and is indicated if a parallel directive is to be added, provided the loop is not nested inside another
parallel loop. For a serial loop, the reason of serialization as well as the first variable that causes the
loop to be serialized is given. The causes of loop serialization include loop-carried dependences (true,
anti and output), I/O statement inside, and breaking out of the loop. A pipeline loop is a serial loop
with only loop-carried true dependences and determinable dependence vectors (see Section 2.4 for
definition). The basic information for loops is as the following:

Routine: ROUTINE_NAME
Loop # (loop_variable), group #, level #: parallel/serial

TYPE? Reason for serial...

"TYPE?" is one of types from the loop type list:

"REDU", "NPAR", "PAR", "IO", "LVAR", "SER", "ANTI", "PIPE",
"BRK", "UPIPE", "PAREG", "INDU", "INPLP", "RDINP", "GRAN", "PARTI"

As an example, part of the analysis for three routines in NPB-LU is given here (with log_info set to
MORE).

Routine: BUTS
Loop 1 (J), group 1, level 1: parallel, granularity - ok

PAR-> directives to be added for the loop <1,1>
Loop 2 (I), group 1, level 2: parallel, granularity - ok

INPLP? no directive, loop inside a parallel loop
Loop 3 (M), group 1, level 3: parallel, granularity - no
Loop 4 (J), group 2, level 1: serial

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 60

PIPE? true dependence, pipeline loop? dvector: V[0,0,-1,0]
Loop 5 (I), group 2, level 2: serial

PIPE? true dependence, pipeline loop? dvector: V[0,-1,0,0]
Loop 6 (M), group 2, level 3: parallel, granularity - no
Loop 7 (M), group 2, level 3: parallel, granularity - no
*** Total number of loops: 7, parallel: 5, serial: 2, directive: 1

Routine: JACU
Loop 1 (J), group 1, level 1: parallel, granularity - ok

PAR-> directives to be added for the loop <1,1>
Loop 2 (I), group 1, level 2: parallel, granularity - ok

INPLP? no directive, loop inside a parallel loop
*** Total number of loops: 2, parallel: 2, serial: 0, directive: 1

...
Routine: SSOR

Loop 1 (I), group 1, level 1: serial
ANTI? loop carried output or non-exact anti dependence: ELAPSED

Loop 2 (I), group 2, level 1: serial
ANTI? loop carried output or non-exact anti dependence: ELAPSED

Loop 3 (ISTEP), group 3, level 1: serial
BRK? break out of the loop or comm-call inside the loop

Loop 4 (K), group 3, level 2: parallel, granularity - ok
PAR-> directives to be added for the loop <2,1>

Loop 5 (J), group 3, level 3: parallel, granularity - ok
INPLP? no directive, loop inside a parallel loop

Loop 6 (I), group 3, level 4: parallel, granularity - ok
INPLP? no directive, loop inside a parallel loop

Loop 7 (M), group 3, level 5: parallel, granularity - no
Loop 8 (K), group 3, level 2: serial

SER? loop carried true dependence: ELAPSED
Loop 9 (K), group 3, level 2: serial

SER? loop carried true dependence: ELAPSED
Loop 10 (K), group 3, level 2: parallel, granularity - ok

PAR-> directives to be added for the loop <2,2>
Loop 11 (J), group 3, level 3: parallel, granularity - ok

INPLP? no directive, loop inside a parallel loop
Loop 12 (I), group 3, level 4: parallel, granularity - ok

INPLP? no directive, loop inside a parallel loop
Loop 13 (M), group 3, level 5: parallel, granularity - no
*** Total number of loops: 13, parallel: 8, serial: 5, directive: 2

>>>> Grand total: num_routines 25, num_loops 157
loops: parallel 145, serial 12, directive 30

The label for a parallel loop with directive to be added (PAR->) is given as <level,group > pairs. In
the case of a serial loop only one variable is listed for the cause of serialization. For a potential pipeline
loop, the dependence vector for the first related variable is given, as the case of V[0,0,-1,0] for loop
4 (J) in routine BUTS.

The user-defined loop types are applied after the loop classification. Therefore, it is user's responsibility
to ensure the correctness of user-supplied loop types.

A2.2. Construction and Optimization of Parallel Regions

This section contains first the summary from the pass-two analysis of all the routines in the outer-most
loop level to decide if directives need to be added in a routine. Routines are traversed on their call

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 61

sequences. A <yes > or <no> flag is marked for each analyzed routine to indicate the addition of
directives in the routine. A routine may need to be duplicated if it is called both inside and outside a
parallel loop and will contain directives in itself.

Routine: ROUTINE_NAME <yes/no/inploop/noploop>

<yes> routine is added with directives for parallel loops
<no> routine has no directives
<inploop> routine is called inside a parallel loop
<noploop> routine has no parallel loop, but may contain potential pipeline loops

A sample result from the analysis of NPB-LU looks like the following.

Routine: APPLU <yes>
Routine: READ_INPUT <no>
Routine: DOMAIN <no>
Routine: SETCOEFF <no>
Routine: SETBV <yes>
Routine: SETIV <yes>
Routine: ERHS <yes>
Routine: SSOR <yes>
Routine: TIMER_CLEAR <no>
Routine: JACLD <yes>
Routine: BLTS <yes>
Routine: JACU <yes>
Routine: BUTS <yes>
Routine: RHS <yes>
Routine: TIMER_START <no>
Routine: L2NORM <yes>
Routine: TIMER_STOP <no>
Routine: ELAPSED_TIME <no>
Routine: WTIME <no>
Routine: ERROR <yes>
Routine: EXACT <no>
Routine: PINTGR <yes>
Routine: VERIFY <no>
Routine: PRINT_RESULTS <no>
Routine: TIMER_READ <no>
>>> Total routines: 25, checked: 24, with directives: 13

in/outside ploop: 0, in/with ploop: 0, no ploop: 12
Total directive loops: 30, effective: 30, in ploop: 0

The last line of the statistics indicates how many loops can be put with directives, how many of them
are really added with directives, and how many of them are nested inside other loops with directives.

Next is to construct parallel regions based on the loop information. A parallel region includes at least
one parallel loop or pipeline loop with possible basic blocks in the beginning of the loop. No nested
parallel loops are considered at this point. Two neighboring regions can be joined together if no codes
other than comments or nops (such as continue) exist between the two regions. Individual regions
are labeled sequentially within a routine. For each region a number is included in () to indicate the end
(or last) region of a joined area of regions. For disjointed regions, the end region is the same as the
region itself. Additional information included for a region are: loops in the region and type of the
region. Regions are also summarized for a routine as “region-type-summary .”

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 62

Region-type:
one ploop containing exactly one parallel loop (no pipeline)
+prev-block one parallel loop plus any preceded basic blocks
sub ploop one or more parallel loops nested at different levels
pipeline potential pipeline
<default> region with joined neighbors

Region-type-summary:
DEFAULT routine contains normal parallel regions
PIPE routine is part of a pipeline region
UPIPE routine contains potential pipeline regions

Sample outputs from the analysis of NPB-LU:

Region-in-Routine: BUTS
region-type-summary: UPIPE
Parallel region 1 (2): loops [1-3]
Parallel region 2 (2): loops [4-7]
*** Total number of regions: 2, joined regions: 1

Region-in-Routine: JACU
region-type-summary: DEFAULT
Parallel region 1 (1): loops [1-2] one ploop
*** Total number of regions: 1, joined regions: 1

Region-in-Routine: SSOR
region-type-summary: DEFAULT
Parallel region 1 (1): loops [4-7] one ploop
Parallel region 2 (2): loops [10-13] one ploop
*** Total number of regions: 2, joined regions: 2

Once the initial regions are determined, routines are then checked for possible pipeline regions across
routines. If such a region is identified, the pipeline-loop limit is checked against all other parallel loops
in the same pipeline region for alignment. If a discrepancy is found, a message will be printed out as
either “not the same limit” or “low-high limit swapped.” In the first case, the suggested pipeline
operation may produce incorrect run-time result and further check of this generated code is needed. In
the second case CAPO automatically swaps the loop limit to ensure the consistence. If pipeline loops
are not desirable, set the environment variable CAPO_REGIONto “join .”

For LU, routines BUTSand JACU were identified to be part of a pipeline region in routine SSORand
information was generated as follows.

Region-in-Routine: BUTS
region-type-summary: PIPE
pipeloop: DO J=JEND,JST,-1 (BUTS)
thisloop: DO J=JEND,JST,-1 (BUTS)

same limit
Region-in-Routine: JACU

region-type-summary: PIPE
pipeloop: DO J=JEND,JST,-1 (BUTS)
thisloop: DO J=JST,JEND,1 (JACU)

low-high limit swapped!
Region-in-Routine: SSOR

region-type-summary: DEFAULT
Parallel region 1 (1): loops [4-7] one ploop

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 63

Parallel region 2 (2): loops [8-8] pipeline
Parallel region 3 (3): loops [9-9] pipeline
Parallel region 4 (4): loops [10-13] one ploop
*** Total number of regions: 4, joined regions: 4

>>>> Grand total: routines 25, regions 34, joined regions 26

Parallel regions are further optimized for removal of end-of-loop synchronization (use the 'NOWAIT'
construct). Although more conservative approach is taken, careful examination of NOWAITis still
needed. For example, one should pay attention to the WARNING messages on “EndLoop-Sync
required/re-enforced.” If any problem occurs, one can always switch the optimization off (setenv
CAPO_OPTIMIZE off).

For LU, this is the summary after region optimization:

>>>> Total number of syncs removed: 7, in 4 routines (13 checked)

A2.3. Insertion of Directives in Routines

There are four functions performed in this stage:

• clearing any old directives if CAPO_DIRCLEARis not off (Section A1.3),

• searching for threadprivate common blocks and inserting the THREADPRIVATEdirective if
CAPO_TPRIVis not off,

• duplicating routines if needed, and

• inserting region/loop-level directives.

Information resulted from these four actions are not fed back to the Directives Browser except for
presented as directives in the source code. Thus, once directives are inserted, the Directives Browser
should not be used to do further changes.

A threadprivate common block is the one that have all its variables used as private (including copyin)
for all the parallel regions in the whole program. It means even a single instance of a non-private usage
of a variable can prevent the common block from becoming threadprivate. In the debug mode, causes of
a common block being determined as threadprivate or shared can be examined (see Section A2.4 for
details). Normally messages are printed for identified threadprivate common blocks and routines that
contain them. An example is given here.

T_PRIV common blocks:
-/WORK_1D/-18: SP SET_CONSTANTS EXACT_RHS INITIALIZE ADI TXINVR X_SOLVE

NINVR Y_SOLVE PINVR Z_SOLVE LHSINIT TZETAR ADD VERIFY ERROR_NORM
COMPUTE_RHS RHS_NORM

-/WORK_LHS/-18: SP SET_CONSTANTS EXACT_RHS INITIALIZE ADI TXINVR X_SOLVE
NINVR Y_SOLVE PINVR Z_SOLVE LHSINIT TZETAR ADD VERIFY ERROR_NORM
COMPUTE_RHS RHS_NORM

>>> THREADPRIVATE directive added for 2 common blocks in 18 routines

Warnings may be printed for those common blocks that may potentially be threadprivate:

WARNING! SSOR... region 4, loop 8

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 64

/CJAC/ Type conflict: old SHARED, new PRIV - use SHARED

It indicates that in routine SSORall variables in common block /CJAC/ are used as private in region 4,
but the common block is shared in other places. One can trace further for where the common block is
shared in the debug mode.

Directives are added by annotating the call graph and using the parallel region information obtained in
A2.2. The call paths are printed as the insertion is progressing. Any routine is only visited one time.

Routine: APPLU
Routine: APPLU->SETCOEFF
Routine: APPLU
Routine: APPLU->SETBV
Routine: APPLU
Routine: APPLU->SETIV
Routine: APPLU
Routine: APPLU->ERHS
Routine: APPLU
Routine: APPLU->SSOR
Routine: APPLU->SSOR->RHS
Routine: APPLU->SSOR->RHS->TIMER_START
Routine: APPLU->SSOR->RHS->TIMER_START->ELAPSED_TIME
Routine: APPLU->SSOR->RHS->TIMER_START->ELAPSED_TIME->WTIME
Routine: APPLU->SSOR->RHS->TIMER_START->ELAPSED_TIME
Routine: APPLU->SSOR->RHS->TIMER_START
Routine: APPLU->SSOR->RHS
Routine: APPLU->SSOR->RHS->TIMER_STOP
Routine: APPLU->SSOR->RHS
Routine: APPLU->SSOR
Routine: APPLU->SSOR->L2NORM
INFO! Array reduction variable replaced with local critical in region 1 -

SUM() --> SUM_CAP1()
Routine: APPLU->SSOR
Routine: APPLU->SSOR->JACLD
Routine: APPLU->SSOR
Routine: APPLU->SSOR->BLTS
Routine: APPLU->SSOR
WARNING! Potential memory conflict for shared variable in region <2,1> -
ELAPSED
Routine: APPLU->SSOR->JACU
Routine: APPLU->SSOR
Routine: APPLU->SSOR->BUTS
Routine: APPLU->SSOR
WARNING! Potential memory conflict for shared variable in region <3,1> -
ELAPSED
Routine: APPLU
Routine: APPLU->ERROR
INFO! Array reduction variable replaced with local critical in region 1 -

ERRNM() --> ERRNM_CAP1()
Routine: APPLU
Routine: APPLU->PINTGR
Routine: APPLU
Routine: APPLU->VERIFY
Routine: APPLU

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 65

WARNINGs for “...variable used after a parallel region,” “potential memory conflict,” and INFOs on
the changes made to routine arguments should be examined carefully. These are just warnings, may or
may not cause any programming errors. The warnings are the cases where CAPO are uncertain of
decision making and user needs to inspect the generated code at the pointed places for verification. The
parallel region is labeled as <region_number, parallel_loop_number > pairs in the call path
right preceding the warning message.

Meanings of keywords in the WARNING message:

"variable" a variable used in the current routine scope
"common-variable" a variable used outside the current scope, e.g. through COMMON

blocks or SAVE statements in a subroutine
"Shared" variable shared in the current region
"Plocal" potential private variable in the current region
"Control" variable with multiple control paths, i.e. variable could be updated

either inside or outside the current region
"I/O statement" routine called inside a parallel region contains i/o

(OPEN,READ,WRITE,CLOSE) statements
"STOP statement" routine called inside a parallel region contains STOP/PAUSE

statements
"Potential memory conflict" for shared variable that can cause memory conflict in a parallel

region

If a private variable in a parallel region is updated via a COMMONblock in a subroutine, CAPO tries to
privatize such a variable by adding it to the subroutine's argument list and renaming the original
variable in the COMMONblock of the subroutine. CAPO will generate the following INFO messages in
this process:

New argument () added to CALL OTHER_ROUTINE():# in ROUTINE_NAME
New symbol () added to the argument list of ROUTINE_NAME
Common block /cblk/ duplicated for ROUTINE_NAME

CAPO performs a code transformation automatically for a reduction variable that is an array element.
The corresponding message is like:

Array reduction variable replaced with scalar in region # -
OLD_ARRAY_ELEMENT --> NEW_SCALAR_VARIABLE

A2.4. Debug Information

More information will be logged if CAPO_LOGINFOis set to “debug .” These are useful for debugging
CAPO. Some of the information are included here for reference only.

• UserLoop information for user-defined loop types

Userloop: Defined loop # in routine ROUTINENAME - newtype

“newtype ” is one of (S, P, R, B) as mentioned in Section A1.3.

• List of old directives to be cleared

• Summary of loop type with list of all dependence vector deltas for pipeline loops

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 66

• Three tests during region formation

Mem-Conflict check for region #R, loops #L-#L...
Conflict variables: <var,var...>

Shared-Array check for region #R, loops #L-#L...Assigned <Symbol>
IO-Statement check for region #R, loops #L-#L...

I/O or Reduction in routine <RoutineName>

• List of symbols and types in each region

TYPE
Private Local (privatizable) variable
Reduction Scalar reduction variable
ArrayReduction Array reduction variable
Shared Shared variable
LastPrivate Usage in and after the region
FirstPrivate Usage in and before the region
CopyInOut Shared but no or no proof of loop-variable dependence
ThreadPrivate Used in a threadprivate common block
UnknownType Type not defined yet

CONTROL
No-Control Symbol not in a control dependence
Control-Dep Symbol in a control dependence

SCOPE
In-Scope Symbol defined in the current routine
Not-in-Scope Symbol not defined in the current routine (defined via

common block or save statement)
Not-in-Use Symbol passed into a subroutine but not used in the

subroutine

DTYPE:DEPTH (printed in [.:.])
IO -1, Routine Input/Output
NT 0, Non-exact True
NA 1, Non-exact Anti
NO 2, Non-exact Output
ET 3, Exact True
EA 4, Exact Anti
EO 5, Exact Output
CT 6, Control
UN 7, Unknown type
Depth = 0 for loop-independent dependence

• List of routine call types, indicating the usage of a routine inside/outside parallel
regions/loops. Five bits are used:

bit1 [0x01] called outside parallel region
bit2 [0x02] called inside paregion but outside parallel loop
bit3 [0x04] called inside parallel loop
bit4 [0x08] called outside parallel loop (= bit1 | bit2)
bit5 [0x10] called inside parallel region

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 67

• Information on updating duplicated routines

Replace call to DROUTINE with CAP_DROUTINE in ROUTINE
Removed ROUTINE from the calledby list of DROUTINE
Added ROUTINE to the calledby list of CAP_DROUTINE

• List of symbols and affine expressions for testing loop limits (such as in the removal of end-of-
loop synchronizations)

HOME (LOOP-VAR-EXPR, #hits) Low <EXPR> High <EXPR> [A1:INDX,A2:INDX..]
(LOOP-VAR-EXPR, #hits) Low <EXPR> High <EXPR> [B1:INDX,B2:INDX..]

OTHER (NONLOOP-EXPR, #hits) [C1:INDX,C2:INDX..]
(NONLOOP-EXPR, #hits) [D1:INDX,D2:INDX..]

Here <EXPR> is a symbolic expression, A,B,C,D are array names, INDX is the relevant array
index. The lists are for both source and sink.

• Summary of fields associated with the ploopinfo data struct, mainly for development purpose.

Loop Lvar D/L Type G WP IP Nest Flag
Routine: ROUTINE_NAME

var ?/? TYPE? ? ? ? n/cn [321]

'Loop' the loop number in a routine
'Lvar' the loop variable name
'D' the nesting level of the outermost DO loop containing this loop
'L' the nesting level of the loop
'Type' one of type strings given in Section A2.1
'G' the loop granularity flag (internal info only)
'WP' '1' containing parallel loop, '0' without parallel loop
'IP' '1' inside parallel loop, '0' not inside parallel loop
'n' this loop nest flag (containing nested parallel loop)
'cn' child loop nest flag (part of nested parallel loops)
'Flag' three bits for internal usage only

• Symbols and their types in common blocks (for testing threadprivate). Meanings of symbol
types:

[U] Unset
[P] Private
[R] Reduction
[A] ArrayReduction
[S] Shared (RW)
[s] Shared (Readonly)
[L] LastPrivate
[F] FirstPrivate
[C] CopyInOut

• Methods used in determining the declaration size of unknown-size variables

[NOT]IDENTICAL SIZE, method 1 (caller declaration) used
MAX(e1,...), MIN(e1,...), method 2|3 (access range in routine) used
NO method - variable NOT safe - <var>

CAPO User Manual 68

A3. CAPO Graphical User Interface

CAPO is currently integrated into CAPTools as a component to generate OpenMP directives. For
CAPO-enabled CAPTools, additional items have been added to the File, View and Edit menus of the
CAPTools main window to access the CAPO graphical user interface (GUI).

The CAPO GUI is also referred to as the Directives Browser. It provides an easy way for user to access
information generated during the directives analysis and insertion. The browser consists of several
information windows and dialog boxes as given in the following sections. It also provides hookups to
the CAPTools GUI tools, such as DepGraph browser, Variable Definition browser, etc., so that one can
easily navigate and interact with the parallelization process.

A3.1. CAPTools Main Window

This is the main GUI window the user will see after CAPO/CAPTools is started. The CAPO GUI (the
Directives Browser) is started from the View (Directives) menu after a source file or a database file is
loaded from the File menu. A summary of CAPO hookups to CAPTools is given in Section A3.12.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 69

A3.2. Directives Browser Main Window

The main window of the Directives browser is activated by View–>Directives… from the CAPTools
main window (see Sections A3.1 and A3.12) after a source or database is loaded in. It presents
information from the first two phases of the directives analysis (before directives are added). It is
organized around loop types and is an entry point for other browser windows, such as WhyDirectives
and RoutineDuplication. Once directives are generated (via Save OpenMP Directives Code), the
Directives browser should not be used to do further changes.

Scope [setting]: selects one routine or all routines for loop listing.

Routines [list]: a list of routines that can be selected for loop listing.

Loops [list]: a list of loops under the selected routine/loop filters. To activate the WhyDirectives
window through the Why… button, a loop needs to be selected.

Loop Filter [list]: provides a way to focus on a particular type of loops, mainly serial or parallel, as
described in details in Section A3.3.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 70

Sub [list]: sub-loop filter to be combined with the loop filter to provide finer control of loop selection.

More Filter [button]: activates the Loop Variable Filter window to perform even finer loop selection
(Section A3.3.1).

Show Parallel I/O [setting]: controls the way that a loop with I/O statements inside is displayed. By
default (Yes), loops with potential parallel I/O are classified as parallel although parallel I/O with
directives is not supported at this point.

RoutDup [button]: activates the RoutineDuplication window (Section A3.5).

Why [button]: activates the WhyDirectives window (Section A3.4) after a loop is selected.

Update Directives [button]: activates the Update dialog box (Section A3.9) to re-perform the directives
analysis, usually after settings are changed.

Setting [button]: activates the Setting window (Section A3.6) to reset parameters for CAPO. The
window may also be launched from Edit–>Directives Setting… in the CAPTools main window.

Current Routine [textpane]: displays the source of a selected routine or a routine in which a selected
loop is located. The selected loop nest is highlighted.

A3.3. Loop Filters and Sub-filters

Definitions of basic loop types:

Serial loop — a loop with loop-carried TRUE dependence from data flow, ANTI/OUTPUT
dependence from non-privatizable variables, I/O statements, and/or exit statements.

Parallel loop — a loop without loop-carried TRUE dependence from data flow, ANTI/OUTPUT
dependence from non-privatizable variables, I/O statements, and exit statements. Such a loop
can be executed in parallel.

Reduction loop — a loop, other than one or more reduction operations, that can be executed in
parallel.

Pipeline loop — a loop that contains loop-carried TRUE dependences with determinable, non-
negative dependence vectors (see definition in Section 2.4). The loop can potentially be used to
set up a parallel pipeline with an outer loop.

Distributed loop — one of Parallel loop, Reduction loop or Pipeline loop.

How a loop or a statement is labeled:

Loop: Statement:

routine
name

loop
number

nesting
level

line
number

routine
name

line
number

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 71

Loop Filter: Totally Serial —
serial loop with loop-carried TRUE dependence, containing no
distributed loop and not nested inside other distributed loop. The
code section in the loop will be executed sequentially.

Sub-filter: True Recursion — no I/O or exit statements
I/O or Exit — with I/O and/or exit statements
No Granularity — one or no iteration
User Defined — user-defined serial loop

Loop Filter: Covered Serial —
serial loop with loop-carried TRUE dependence, containing
distributed loop or nested inside other distributed loop. The code
section in the loop will partially or completely be executed in parallel.

Sub-filter: True Recursion — no I/O or exit statements
I/O or Exit — with I/O and/or exit statements
Inside Parallel — inside other parallel loops
User Defined — user-defined serial loop

Loop Filter: Falsely Serial —
serial loop without loop-carried TRUE dependence, but containing
ANTI/OUTPUT dependence from non-privatizable variables. Loop
may contain distributed loops for parallel execution.

Sub-filter: Privatization — due to non-privatizable variables
I/O Statement — with I/O statements but no nested

parallel loops
No Granularity — no granularity and no nested parallel

loops
User Defined — user-defined serial loop

Loop Filter: Reductions —
loop with one or more reduction operations which can be executed as
parallel reductions.

Loop Filter: Pipeline —
A pipeline loop as part of a parallel pipeline working with an outer
loop.

Sub-filter: All — all loops with reductions/pipeline
User Defined — user-defined reduction loop

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 72

Loop Filter: Chosen (Parallel) —
parallel loop chosen for distribution with directives. The code section
in the loop will be executed in parallel.

Sub-filter: Normal — regular parallel loop
CopyIn/Out — with copyin/copyout variables
Ordered — with ordered code section
User Defined — user-defined parallel loop

Loop Filter: Not Chosen (Parallel) —
parallel loop not chosen due to other parallel loop(s) already been
chosen. The loop is either inside other distributed loop or contains
distributed loops.

Sub-filter: Inside Parallel — inside other parallel loops
I/O Statement — with I/O statements
No Granularity — parallel but no granularity
User Defined — user-defined parallel loop

A3.3.1. Loop Variable Filter Window

The Loop Variable Filter Window controls even finer selection of loops in conjunction with the main
loop filter and sub filter. The filter applies to variables used in loop heads.

Choice [setting]: controls the filtering effect.

Inclusion — show loops when variables appear
Exclusion — show loops when variables do not appear

Filter [setting]: disables or enables the loop variable filter.

Variable(s) [textfield]: contains a list of the currently filtered variables.

Routine [label]: indicates the currently selected
routine.

Variable List [list]: contains a list of variables
used in the loop heads of the current routine.

Scope [setting]: controls the scope of variables.

Loop Variable — variables from loop
iteration

Loop Limit — variables from loop
high-low limit

Either — either of the above
two cases

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 73

Add [button]: adds the selected variables in the Variable List to the filtered variable list.

Reset [button]: resets variable selection.

Apply [button]: applies the current filter to the display.

A3.4. WhyDirectives Window

The WhyDirectives window is displayed for a selected loop after the Why… button is clicked in the
Directives main window. It presents detailed information for the selected loop, in particular, reasons
and hints on why the loop was classified as serial or parallel. The window can be used to remove false
dependences identified by the user and to redefine the loop type. Depending on the current loop type,
the three variable lists may show different types of variables and the two loop lists may present
different information. The displayed window is for a loop of the Covered Serial type.

The following items are common for All Loop Types.

Loop [textfield]: currently selected loop with routine name and loop labels (see the end of Section A3.3).

Type [textfield]: loop type as described in Section A3.3.

Reason [textfield]: one sentence summarizing why the loop was classified to its type.

Hints [textarea]: more detailed summary of the usage of the relevant variables in the loop and whether
the loop contains I/O statements, exit statements, etc.

New Type [button]: activates the New Loop Type dialog box (Section A3.7).

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 74

Select All [button]: selects all variables in the corresponding variable list.

Reset [button]: deselects all variables in the variable lists.

Remove [button]: activates the Variable Removal dialog box (Section A3.10) for the selected variables.

IO/Exit statements [list]: list of I/O and exit statements in the selected loop nest.

The following list is common for Totally Serial and Covered Serial.

True-dep. variables [list]: list of variables causing loop-carried TRUE dependences, removable. An "[x]"
followed a variable indicates the dependence vector length for this variable.

The following lists are common for Totally Serial, Covered Serial and Falsely Serial.

Anti-dep. variables [list]: list of variables causing loop-carried ANTI dependences and the variables
cannot be privatized, removable.

Output-dep. variables [list]: list of variables causing loop-carried OUTPUT dependences and the
variables cannot be privatized, removable.

Contains parallel loops [list]: list of parallel loops that are nested inside the current loop.

Inside parallel loops [list]: list of parallel loops that contain the current loop.

The above window is for a Falsely Serial loop.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 75

The following list is for Falsely Serial.

In/out-dep. variables [list]: list of variables that have TRUE data dependences from the outside the
loop, removable. A “<” sign in front of a variable indicates loop entry dependence on this variable, while
a “>” sign indicates loop exit dependence on this variable.

The following lists are common for Reductions, Pipeline, Chosen, and Not Chosen.

Private variables [list]: list of privatizable variables in the loop nest, not removable.

Shared variables [list]: list of shared variables in the loop nest, not removable.

Nested parallel loops [list]: list of secondary parallel loops that are nested inside the current loop.

Inside parallel loops [list]: list of parallel loops that contain the current loop (except for Pipeline).

The following list is only for Reduction Loop.

Reduction variables [list]: list of variables for reductions in the loop nest, not removable. Reduction
variables are preceded with labels indicating reduction operators or intrinsic functions. A “()” after a
variable indicates an array reduction.

The above window is for a Reduction loop with reduction array variable “sum() .” A reduction operator
or intrinsic is one of those defined in Section A3.8 or IMAX/IMIN (MAX/MIN expressed with an IF
statement block).

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 76

The following lists are only for Pipeline Loop.

Inside parent loops [list]: list of loops that are nested above the current pipeline loop to form pipelines.
Appropriate synchronization directives and statements will be inserted at the code generation. A parent
loop is usually a serial loop without I/O and exit statement inside.

Other variables [list]: list of variables other than private and shared, such as CopyIn/CopyOut
variables, not removeable.

The above window is for a Pipeline loop with the parent loop highlighted.

The following lists are only for Chosen Parallel Loop.

Copyin/out variables [list]: list of variables that will be declared as CopyIn (FIRSTPRIVATE, marked
by “<”) and/or CopyOut (LASTPRIVATE, marked by “>”) due to potential conflict in updating the
same memory location and the variable(s) having usage outside the loop. It might arise, for example,
from an induction variable that is assigned before the loop and used after the loop. It could also indicate
a programming bug.

Controlled variables [list]: list of variables that will be placed inside an “ORDERED” code section. These
variables are usually inside IF conditional statements and the corresponding assignments need to be
executed in a designated order as is in sequential.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 77

The above windows is for Chosen parallel loop with Copyin/out variables.

The above window is for Chosen parallel loop with Controlled variables.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 78

A3.5. Routine Duplication Browser

The RoutineDuplication window is used for browsing routines that are to be or were duplicated to
avoid usage conflict of directives. The window is activated from the RoutDup… button in the
Directives browser main window.

Orig. Routines [list]: list of original routines to be duplicated.

Dup. Routines [list]: list of duplicated routines. Before code generation, this list will be empty. After
code generation, the list is filled with new routines that have one-to-one correspondence to the original
routines. The matched (original, duplicated) routine pairs are selected concurrently.

Number of Duplicated Routines [numeric]: as it says.

Calls Inside Parallel Loop [list]: list of call statements (to a selected original routine) that are inside
parallel loop(s).

Calls Outside Parallel Loop [list]: list of call statements (to a selected duplicated routine) that are
outside any parallel loop.

Inside Loop [textfield]: the loop that contains the selected call statement to an original routine.

Inside Call in Routine [textpane]: the source for the corresponding loop for Inside Loop. The textpane
is also used for displaying source code for the selected original routine.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 79

Outside Call in Routine [textpane]: the source around the selected call statement from the Call Outside
Parallel Loop list. The textpane is also used for displaying source code for the selected duplicated
routine.

A3.6. Parameter Setting Window

A default setup for the Parameter Setting window is displayed on the left. It is launched from either the
Setting… button in the Directives main window or the Edit → Directives Setting… in CAPTools main
window. The window is used to reset parameters for CAPO to control the directives analysis and
generation. The available parameters and their values are described in Section A1.

CAPO Version: the current version
number of CAPO.

Date Built: date on which the
current version of CAPO was built.

Update [button]: re-performs direc-
tives analysis with the current
parameters.

Apply [button]: applies the current
parameter setting without perfor-
ming the directives analysis.

Loop Granularity [numeric]: the
minimum number of iterations in a
loop for the consideration as a
distributed loop. If the number is 0
or if the number of iterations
cannot be evaluated, there will be
no check on the granularity for the
loop.

For detailed information on settings and checks, see Section A1.3 and Section A2. The following briefly
describes each setting and check box in the window.

Log Information [setting]:
Minimum — minimum log information, such as warning and info messages,
Standard — “Minimum” information plus statistics for loops and regions,
More — “Standard” information plus more detailed loop and region

information,
Debug — “More” information plus much more for debugging purpose.

For both More and Debug, loop and region labels are inserted in the generated
source code.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 80

Directive Type [setting]:
OpenMP — generate OpenMP directives (default),
SGI — generate SGI native directives,
SGIxtension— generate OpenMP directives with SGI extensions,
No Directive— create source file without directives.

Region Type [setting]:
One Loop — only one loop for one region,
Pblk + One Loop — one pre-block plus one loop for one region,
One Region — regions are not joined,
Joined Region — regions are joined, no pipeline consideration,
Full Region — consider joined region and possible pipeline (default).

Optimization [setting]:
Off — do not do any optimization,
On — try to reduce synchronization at end-of-loop,
O2 — use logical disprove (slow sometime) for affinity comparison,
O3 — enable additional optimization (such as automatic loop transformation)

before directive insertion.

Routine Duplication [setting]:
Loop Usage — routine duplicated if it is used both inside and outside parallel

Loops (no nested parallel region),
Region Usage — routine duplicated if it is used inside a parallel loop and inside

parallel region but outside parallel loop (allow nested parallel region).

Others [checkbox]:
Process THREADPRIVATE enable/disable the THREADPRIVATEdirective
Generate NOWAIT enable/disable the NOWAITdirective
Transform Induction Loop enable/disable induction loop treatment
Handle Array Reduction enable/disable array reduction
Remove Old Directives enable/disable removing old directives
Apply UserLoop Type enable/disable applying userloop types
Setup Pipeline Loop enable/disable pipeline loop
Use f77 Comment Style use f77 (not checked) or f90 (checked) comment style
Allow Unknown-Size Array enable/disable the use unknown-size array in PRIVATE
Use Partitioned Loop enable/disable partitioned loop for directives

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 81

A3.7. User Loop Type Window

The loop type window is used to redefine a loop type manually. It is displayed for a selected loop by
clicking on the New Type button in the WhyDirectives window.

Loop [textfield]: print of the selected loop.

Current Type [textfield]: the current loop type.

Update [button]: saves the newly defined loop type to
the userloop.par file and re-performs the directives
analysis with the new setting.

Apply [button]: saves the newly defined loop type to
the userloop.par file but does not re-perform the
directives analysis.

New Type [setting]: one of the selectable types.

Parallel – a parallel loop
Serial – a serial loop
Reduction – a parallel loop with reduction. The Reduction setting may activate an additional

dialog box: Reduction Operator (See Section A3.8).
Break – a serial loop excluded from any parallel region
Original – the type originally set by CAPO.

An un-selectable type indicates a type that cannot be converted to from the current type.

A3.8. Reduction Operator Dialog

This is a dialog box to select an option (or options) for user-defined reduction loop type. The option
specifies reduction operators/intrinsics and variables as part of the entry in the userloop.par file. See
Section A1.3 for the description of the userloop.par file.

The dialog box is activated only if the Reduction
setting in the LoopType window is selected and
there exist potential reducible variables detected in
the loop by CAPO.

Loop [textfield]: print of the selected loop.

Variables [list]: list of variables that can potentially
be selected as reduction variables, selectable.

Operator/Intrinsic [setting]: one of the defined
reduction operators or intrinsic functions.

Select All [button]: selects all the variables in the
variable list.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 82

Reset [setting]: resets any previous selection. The textfield on the right lists the selected Operator/
Intrinsic and variables.

Apply [button]: creates an [operator/intrinsic:variables] combination and add to the option list for the
currently selected loop. The option and user-loop type are only stored to the userloop.par file when the
Apply or Update button in the LoopType window is pressed.

A3.9. Updating Directives Dialog

This is a dialog box for confirming the analysis of directives with new settings. It is popped up after the
Update button in the Directives browser main window is pushed.

Update [button]: performs the directives analysis,
including loop and region level analysis, without
generating directives. The dialog will be disabled after
the OpenMP directives code is generated.

A3.10. Variable Removal Confirmation Dialog

The dialog is used for confirming the removal of dependences for selected variables and types. The
variables and types are determined in the WhyDirectives window and the dialog box is activated by
pushing the Remove button. This box provides a shortcut to the DepGraph for quickly deleting false
dependences.

Selected Vars [textfield]: list of selected
variables from the WhyDirectives window
(Section A3.4). A variable listed multiple times
indicates it is selected from multiple variable
lists in the WhyDirectives window.

Apply [button]: applies the removal action.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 83

A3.11. Data Graph Window

The Data Graph window is used to create graphs for development purpose. It may have little use to a
typical user, but is included for reference. The window is activated from View→Data Graph in the
CAPTools main window. If the “Data Graph” menu item is not present, try to start CAPO with the [-
capodg] option.

Scope [setting]: defines the scope of the routine list.

Graph Type [setting]: chooses from one of the predefined graph types.

Intrinsics [setting]: excludes or includes intrinsic functions in the routine list and in the graph.

Routines [list]: list of routines (name of the file containing a routine).

Order [setting]: defines the way routines are listed (Alphabetic, Strict, Reversed Strict).

Blocks [list]: list of basic program blocks in the selected routine.

Create [button]: creates a graph for the selected routine and/or block (currently xvcg is used to display
the graph).

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 84

A3.12. Hookups to CAPTools

For CAPO-enabled CAPTools, additional items are added to the File (Save OpenMP Directives Code),
View (Directives) and Edit (Directives Setting) menus in the CAPTools main window (Section A3.1).
The menu items that are relevant to directives generation are summarized here.

Before source is loaded After source is loaded After communication is generated

The File menu:

Load F77 Source [entry]: loads Fortran 77 source
(.f or .list file).

Load Database [entry]: loads a previously saved
database (.dbs file).

Save Database [entry]: saves the current analysis
result to a database. As of CAPO Version 1.1, the
directives analysis result is not yet saved to the
database. But the inserted directives are saved.

The Save Database dialog box.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 85

Save OpenMP Directives Code
[entry]: performs the directives
analysis if it has not been done
and generates OpenMP direc-
tives. The code can be saved to
multiple files or to a single file.

The Save OpenMP Directives Code dialog box.

The View menu:
Directives [entry]:
activates the Directives
browser, which performs
the directives analysis (if
not yet done) and presents
information on directives.

The Edit menu:
Directives Setting [entry]:
activates the Setting
dialog box as given in
Section A3.6. It can be
used to set up parameters
for CAPO before the the
directives analysis is
performed.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 86

The following popup menus are hookups to various tools from selected lists or items in a GUI window,
usually activated with a right-mouse-button click.

Command Menu [popup]: for a selected statement.

Loop Menu [popup]: for a selected loop.

Routine Menu [popup]: for a selected routine.

Variable Menu [popup]: for a selected variable.

CAPO User Manual 87

A4. CAPO Command Interface

The command interface for CAPO is available in Version 1.1 and works closely with the CAPTools
command interface. It provides a way to access the functionality of GUI components without starting
the GUI. It serves as a means to record actions (to a log file) as a result of any user GUI activities so that
these actions can be played back later. The commands in the command interface are usually recorded to
a log file or a command file with

capo –logfile capo_run.cmd

and played back with

capo [-batch] capo_run.cmd .

The second line with the [-batch] option can be used to start a CAPO session in a batch mode.

The command interface for CAPO is different from the command-line version of CAPO, which takes
simply the database as input and creates the Fortran output:

capo –capoc [-options] database.dbs output.f .

This stand-alone version is mostly for testing purpose. The command interface is the preferred method.

A4.1. Commands for the Command Interface

CAPO commands start with the keyword “capo ” to distinguish them from CAPTools commands.

Main commands:

load <file.dbs>
- Load database file

capo version 1
- Define CAPO command version

capo removedep <routine> <variable> <loop_number> <dtype> <fc> [<drout>]
- Remove loop-related data dependences

* routine - routine name
* variable - relevant variable in the routine
* loop_number - loop to be considered
* dtype - dependence type: 1 for loop-carried TRUE dependences

2 for TRUE dependences from outside loop
3 for loop-carried ANTI dependences
4 for loop-carried OUTPUT dependences

* fc - 1 father list, 2 child list, 0 both lists
* [drout] – optional field to define routine in which the variable is actually declared (if it

is different from <routine >)

capo update [0/1]
- Perform directives analysis with the new setting

'0' for initial analysis, '1' for new update

capo passtwo

A P P E N D I X : C A P O C O M M A N D I N T E R F A C E

CAPO User Manual 88

- Re-perform the pass-two analysis

capo generate [<file.f>]
- Generate OpenMP directives. <file.f> is used to define the logfile name, i.e. <file.log >.

If <file.f > is not given, “capo-info.log ” is assumed for the logfile name.

save source <file.f> 3 0
- Save source code to <file.f>

'3' indicates a single file

("load " and "save " are two CAPTools commands. See A-4.2 for details.)

Parameter setting commands:

capo set log-file on/off/stdout
- Turn on/off information logging, default is on

capo set log-file-name <filename>
- Define log filename, default is "capo-info.log"

capo set log-info minl/std/more/debug
- Select log information type, default is std

capo set loop-granularity <value>
- Set loop granularity threshold, default value = 6

capo set directive-type omp/sgi/sgix/no
- Select directive type, default is omp

capo set optimize-type off/o1/o2/o3
- Set the optimization type, default is o2

capo set user-loop-file <filename>
- Define user loop file, default is "userloop.par"

capo set directive-clear off/on/<filename>
- Turn on/off old directive clearing, default is on

A <filename> is used to define a new set of directives

capo set comment-type f77/f90
- Set the comment type for directive, default is f90

capo set use-parti-loop yes/no
- Allow the partitioned loop for directive, default is no

capo set rdup-type loop/region
- Select the routine duplication type, default is region

capo set allow-pio no/incall/write/noread/any
- Allow parallel I/O type, default is no

Setting commands for debugging purpose:

capo set mflag <mflag_value>
- Define the module flag

<mflag_value> can be <number>/<m1:m2..> with [+-] sign

capo set region-type default/loop/bloop/one/join/full
- Set a region type, default is full

capo set tpriv-directive on/off
- Turn on/off the generation of THREADPRIVATE, default is on

A P P E N D I X : C A P O C O M M A N D I N T E R F A C E

CAPO User Manual 89

capo set allow-unksize true/false
- Allow the use of unknown-size private variables, default is false

capo set have-pipeloop true/false
- Generate pipeline loop, default is true

capo set have-induc true/false
- Treat parallel induction loop, default is true

capo set have-arreduc true/false
- Treat array reduction, default is true

capo set have-nowait true/false
- Generate the NOWAITdirective, default is true

capo set apply-userloop yes/no
- Apply user defined loop types, default is yes

capo set apply-dirclear yes/no
- Apply old directive clearing, default is yes

A4.2. Other CAPTools Commands Useful for CAPO

version 2
- Define CAPTools command version

load <file.f/file.list/file.dbs>
- Load source/database file

save database <file.dbs>
- Save to database

save source <dir/suffix/file.f> <1/2/3> 0
- Save source with type 1, 2 or 3

Type 1: Save to original files, <dir> is required for directory name
Type 2: Save to original files with <suffix> , <dir/suffix> required
Type 3: Save to a single file with file name <file.f>

set exact on
set scaler on
set knowledge on
set disproofs on
set interprocedural on
set logic on

- Settings for the analysis power

add read knowledge applu:76:((nx-5 .GT. 0))
- Define read user knowledge

analyse
- Perform dependence analysis

A4.3. An Example of "capo_run.cmd"

version 2
load applu_full.dbs
capo version 1
capo set log-file-name applu_omp.log
capo update 0

A P P E N D I X : C A P O C O M M A N D I N T E R F A C E

CAPO User Manual 90

capo removedep setb v u 1 4 0
capo removedep setb v u 3 4 0
capo removedep setb v u 5 4 0
capo update 1
capo generate
save source applu_omp.f 3 0

To use the command file, do "capo -batch capo_run.cmd".

