TUTORIAL 1. A Simple Jacobi Code

TUTORIALS

Source codes for all the tutorials described in this manual are included in the CAPO distribution and can also be obtained from site http://www.nas.nasa.gov/Tools/CAPO/. Refer to “Examples.txt” included in the examples directory for additional information.

Contents

27Tutorial 1.
A Simple Jacobi Code

28Tutorial 2.
NPB LU-hp Removing False Dependences

32Tutorial 3.
NPB MG User-Defined Loop Type

36Tutorial 4.
A CFD Application TEAMKE1

44Tutorial 5.
Mix of Message-Passing and OpenMP

Tutorial 1. A Simple Jacobi Code

This tutorial demonstrates the very basic operations you would follow to generate an OpenMP code without little user intervention. The code (jacobi.f) has an initialization loop and an iteration loop. The iteration loop computes new solutions by averaging two neighboring points and checks the maximum residual.

Steps of parallelization:

1. Perform the data dependence analysis. In CAPO, click Load F77 Source in the File menu. Select jacobi.f and click Load. In the Analyser window, select the Full option and click Analyse. This will just take a few seconds.

2. Save to database. In the File menu, click Save database. Enter a filename for the database or take the default name (jacobi_full.dbs) and click Save. It is always a good idea to save the results from different stages of the code analysis.

3. Browse directives. In the View menu, click Directives to perform the directives analysis. The Directives browser will be popped up quickly. Select the All Routines scope and browse through all loop filters. You will notice that the Jacobi code contains one Reduction loop (DO 30 I=1,N), two Chosen (parallel) loops (DO 10 I=1,N and DO 20 I=2,N-1), and one Falsely Serial loop (DO 50 I=1,N containing an I/O statement).

4. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Enter a filename (or take the default name, jacobi_omp.f) and click Save. If the directives analysis has not been performed (via Step 3), it will automatically be performed before the parallel code is generated. The log file, jacobi_omp.log, contains additional information for the parallelization process.

To compile the OpenMP code on the SGI Origin2000, do

% f77 –o jacobi_omp –O3 –r8 –mp jacobi_omp.f

To execute the parallel code with 2 threads, do

% setenv OMP_NUM_THREADS 2

% ./jacobi_omp

Enter the values of N and TOL ...

1000 1.0e-6

The output looks like

...

49.99968169151887

 1166848 9.9999888192314756E-07

You can compare the result with a single thread run or a serial version run. You will notice the program does not scale well, primarily due to little work inside each distributed loop.

Tutorial 2. NPB LU-hp Removing False Dependences

This tutorial demonstrates the basic user interaction with CAPO: removing false dependences to improve the quality of data dependence and directives analyses. False dependences usually arise from insufficient knowledge of certain parameters (such as from READ statements or calculated at runtime) during CAPTools data dependence analysis. With the Directives browser, the user can inspect the results and remove these false dependences if needed.

The example is one of the benchmarks from the NAS Parallel Benchmark (NPB) suite. The benchmark, LU-hp, uses an SSOR algorithm to solve the Navier-Stokes equations in three dimensions. A hyper-plane implementation of the SSOR algorithm is used in LU-hp. The code is split into many .f files. In order to load the code to CAPO, we first create a list file “All.list” that contains names of all the .f files.

Steps of parallelization:

1. Load file and enter user knowledge. Click Load F77 Source in the File menu. Select All.list and click the Load button. Select READ Knowledge from the Edit menu. In the READ Knowledge window, select variable nx0 and click Positive Nontrivial, see Figure T2-1 on next page. Apply the same steps to variables ny0 and nz0. These three variables define the number of grid points in each dimension. Making them positive nontrivial (> 5 in the current case) improves the quality of data dependence analysis.

2. Perform the data dependence analysis. After the user knowledge is entered, in the Analyser window select the Full option and click Analyse. On an Indy R5000 workstation, the analysis process takes about 18 minutes.

3. Save to database. In the File menu, click Save Database. Enter a filename for the database (lu_hp_full.dbs) and click Save.

4. Browse directives. In the View menu, click Directives to perform the directives analysis. The Directives browser will be popped up shortly. Select the All Routines scope and browse through all loop filters. Pay attention to the serial loops (Totally, Covered and Falsely. For meanings of these loop types, refer to Section 3.2 in Appendix).

5. Remove false dependences. In the Directives browser window, select the Totally Serial loop filter and the All Routines scope. There are four loops listed under this category. Choose the first loop: blts:1/1/35: do n=1,np,1 and click the Why button. The WhyDirectives window as shown in Figure T2-2 will be popped up. As indicated in the window, the serialization of this loop is caused by loop-carried data dependences from two variables: v and tv. After inspecting the loop, the user realizes that this loop performs calculation for all points on a given hyper-plane (i+j+k=constant). Each point on one hyper-plane could be calculated independently, thus in parallel. However, indirect indexing was used to access data elements on the plane and these indices were calculated dynamically and not available at the data dependence analysis stage. Conservative decisions were made to keep these data dependences during the analysis. So, the user can safely remove these false dependences to enforce a parallel loop: using either the DepGraph window (in CAPTools) or the WhyDirectives window here (simpler). With the second method, select variable v and tv in the three lists (True, Anti and Output), click the Remove button and click the Apply button to confirm the action. Apply the same procedure to the second loop: buts:1/1/35: do n=1,np,1.

[image: image1.png]- CAPTools: Knowledge of READ variables

6 Integer Vars are READ: values From Prafiles

inorn:read_input:150:read (UNIT-3, FIT=4)ipr, inorn 4|
ipr:read input:189: read (ONIT=3, ! ipr |, inorm

itmax: read_input:162: read (UNT dtmax =
10 read_input:174:read (UNIT-3, F w0, ny0, nz0
ny0:read_input:174:read (UNIT-3, FUT=*)rx), ny ,nz0

20 £ead_input 174 :cead (WNIT-3, FYT=")rd, ng0, nzl

Positive Nontrivial) _Positive)

s s
(|

Negative Nontrivial) _Negative)

Positive Nontrivial Default:

Negative Nontrivial Default:

User knowledge: nz0 .GT. 5

3 User Knowledge Items:

Disrniss) _Help.

15D
160
161
162
163
164
165
166
167
168
169
170
171
172
173

Tpr, tnomm

itnax

at

onega

tolrad(1), tolrsd(2), tolrsd(3), tolrsd(4), tolred(S)

by
176
177
178
179
180
181
182
183
184
185

else

L tmeed ta_default
dt=dt_default
onegazonega_default
tolred(1)=tolredl def
tolred (2)=tolredz def
tolred (3)=tolredd_def

tolrsd (4) =tolrsdd_def

Figure T2‑1: The READ Knowledge window for entering initial user knowledge.

In the Directives browser window, select loop filter Falsely Serial and sub-filter Privatization. Two loops are listed in this category. Choose the first loop: jacld:1/1/160: do n=1,np,1 and click the Why button if the WhyDirectives window is not visible. A new set of variables is shown in the window, Figure T2-3. By the same token as above, the user selects those variables listed in the Output-dep list and applies Remove to delete the relevant loop-carried Output dependences. The variables in the In/Out-dep list were not selected because they are indeed used outside the current loop. If a variable is removed from the In/Out-dep list and kept in the Output-dep list, the variable would be privatized, which is not what we want here. Use the same procedure on the second loop: jacu:1/1/160: do n=1,np,1.

6. Save new database and re-perform the directives analysis. Once data dependences are modified, it is wise to save the results to a new database. In the File menu, click Save database. Enter a filename for the database (lu_full_prune.dbs) and click Save. To re-perform the directives analysis with changes taking into account, click the Update Directives button in the Directives main window and Update to confirm the action. After the update, you will notice the four loops treated above are now listed in Chosen (parallel). CAPO automatically recognizes five reduction loops, two of them being array reductions.

7. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Choose the Single Filename setting, enter a filename (lu_hp_omp.f) and click Save. The log file, lu_hp_omp.log, contains additional information and statistics for the parallelization process.

[image: image2.png]CAPO: why Directives ?]
Loop: blts:1/1/35: do Reason: with True dependencies, i, with recursion
T Tl Gl New Type..) True-dep.variables Anti-dep. variables Output-dep. variables

Hints:

el |

true dependencies (Level=l)

2 variables with loop-carried
anti dependencies (Level=l)

1 variable with loop-carried
output dependencies (Level=l)

Select All) Select All) Select All)

Reset) Remove. Jtv, v, v, v

Disrniss) Help,

10/Exit statements: Contains parallel loops: Inside parallel loops:

L
L
L

[—L
[—L
[—L

Figure T2‑2: The WhyDirectives window for a Totally Serial loop. It can be used to remove false dependences for the selected variables.

To compile the OpenMP code on the SGI Origin2000, do

% f77 –o lu_hp_omp –O3 –mp lu_hp_omp.f

To execute the parallel code with 4 threads, do

% setenv OMP_NUM_THREADS 4

% ./lu_hp_omp

The output (for a class-W problem on 195MHz O2K) looks like:

 Programming Baseline for NPB - LU Benchmark

 Size: 33x 33x 33

 Iterations: 300

 Time step 1

 ...

0.1161399311023E+02 0.1161399311023E+02 0.3074289103934E-13

 Verification Successful

 LU Benchmark Completed.

 Class = W

 Size = 33x 33x 33

 Iterations = 300

 Time in seconds = 52.74

 Mop/s total = 342.43

[image: image3.png]CAPO: Why Directives 7

Loop: jacld:1/1/160: do n=1,mp,1 Reason: antifoutput dependencies, variable not privatizable
Type: Falssly Serial New Type,,) Anti-dep. variables Output-dep. variables - Infout-dep. variables
Hints: o e Al = B
= 3| E = 2 5]
4 variables with loop-carried | 4| a »a
output dependencies (evel-l) | a >d
and non-privatizable, due to
usage from outoide the loop
4 output-dep () variables
Select All) Select All) Select All)
Reset) Remove..)a, b, c, d

Disrniss) Help,

10/Exit statements: Contains parallel loops: Inside parallel loops:

L
L
L

[—L
[—L
[—L

Figure T2‑3: The WhyDirectives window for a Falsely Serial loop. The loop-carried output dependences for variables a,b,c,d are selected for removal.

The output from a single process execution looks like:

 Programming Baseline for NPB - LU Benchmark

 Size: 33x 33x 33

 Iterations: 300

 Time step 1

 ...

0.1161399311023E+02 0.1161399311023E+02 0.3227238810597E-13

 Verification Successful

 LU Benchmark Completed.

 Class = W

 Size = 33x 33x 33

 Iterations = 300

 Time in seconds = 155.97

 Mop/s total = 115.80

We have a speedup of 2.96 on 4 CPUs for this particular problem. If the pipelined LU were used, the performance would be better (speedup of 3.32 on 4 CPUs). A version of the LU benchmark using the pipeline algorithm is included in directory LU. Parallelizing LU with CAPO is straightforward and similar steps as for parallelizing the hyper-plane LU can be followed. The difference is that the user does not even need to remove any false dependences when generating the OpenMP code (skip Steps 5 and 6). CAPO is able to automatically set up the parallel pipeline.

Tutorial 3. NPB MG User-Defined Loop Type

This tutorial was included in Version 1.0 of CAPO to demonstrate how the user enforces loop type to improve the performance. This kind of interaction is not very often and can be done either within or outside CAPO. The outside interaction is often involved with direct change to the source code. In the following we first show the steps of parallelization without any change and then illustrate two ways of user manipulation to the source code.

The example is one of the benchmarks from the NAS Parallel Benchmark (NPB) suite. The benchmark, MG, uses the V-cycle multigrid algorithm to obtain an approximate solution to a discrete Poisson problem in three dimensions. The norm of the solution is calculated in each iteration to check for convergence. As was done in Tutorial 2, all the .f files are first listed in a single file: All.list.

Parallelization of the original code.

1. Perform the data dependence analysis. Click Load F77 Source in the File menu. Select All.list and click the Load button. In the Analyser window select the Full option and click Analyse. On a 450 MHz Sun workstation, the analysis process takes about 20 minutes.

2. Save to database. In the File menu, click Save database. Enter a filename for the database (mg_full.dbs) and click Save.

3. Browse directives. In the View menu, click Directives to perform the directives analysis. The Directives browser will be popped up shortly. Choose scope All Routines and loop filter Totally Serial and sub-filter True Recursion. Select loop: norm2u3:1/1/27: do i3=2,n3-1 and click the Why button. Figure T3-1 is what you will see afterwards. The loop nest (and two others inside) contains an IF statement which prevents the loop being recognized as a reduction loop over variable rnmu.
 In order to be a valid reduction statement for OpenMP, the code needs to be modified (see Step 5). Without any change, this piece of code will be run in sequential.

4. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Enter a filename (mg_omp.f) and click Save. The log file, mg_omp.log, contains additional information and statistics for the parallelization process.

To compile the OpenMP code on the SGI Origin2000, do

% f77 –o mg_omp –O3 –mp mg_omp.f

To execute the parallel code with 8 threads, do

% setenv OMP_NUM_THREADS 8

% ./mg_omp

The output (for a class-A problem on 250MHz O2K) looks like:

 Programming Baseline for NPB - MG Benchmark

 ...

 VERIFICATION SUCCESSFUL

 L2 Norm is 0.243336530907E-05

 Error is 0.692805188218E-16

 MG Benchmark Completed.

 Class = A

 Size = 256x256x256

 Iterations = 4

 Time in seconds = 6.65

 Mop/s total = 585.42

A single-CPU run of this code took 39.29 seconds. We have a speedup of 5.91 on 8 CPUs for this particular problem.

[image: image4.png]= CAPO: Directives Browser
Scope: 24 Routines 13 Totally serial loops (with True dependencies):
Gl Douithes nomEad /12T do 13- 0301
o : nomn2u3:2/2/28: do 122,021, 1
Loop Ll S ub nomn2u3:3/3/28: do 1-2,n1-1,1
Totally Serial Al

print_results:1/1/21: do j=13,1,-1
Covered serial | [True Recursion

setup:2/2/89: do kelt-1,1,-1
Falsely Serial | 1/0 or Exit setup:6/1/118: do j-1e-1,1, -1
roduct O —— VRANLO:1/1/25: do i=L,n, 1
eductions ORI 2rand:1/1/33: do i3=2,03,1
Pipeline User Defined arand:2/2/35: do i2=2,e2,1
Chosen 2rand:4/1/59: do i3-2,n3-1,1
Not Chosen =
= CAPO: Why Directives ?
Show Parallel 1/0: [Yes| No | Routine
Loop: nom2u3:1/1/27: do i3=2,n3-1,1 Reason: with True dependencies, ie. with rec
Chnardioutinede sy T Tl Gl New Type..) True-dep.variables Anti-dep. variabl
© Treeger 1
7 Togical tineron Hints: .
18 comnon /tiners,/ tineron s
19 integer Tnorn2 varisbles with loop-carrie
20 paraneter (T_nom2-0) B ot it s
b D e meron) true dependencies (Level-1)
22 Call tiner_start(T_norn2) 1 varisble with loop-carried

23 ENpIE

B - output dependencies (Level=l)
25
26
select All select All
Reset S
10/Exit statements: Contains parallel loops: Inside parallg

act (s /Eloat (n))
if (timeron) THEN
call tiner_stop (T_norn2)
EIF
return

Figure T3‑1: The window shows a serial loop in norm2u3, MG.

Further improvement to the code can be made by parallelizing the loop in routine norm2u3 (the highlighted area in Figure T3-1). The operations inside the loop nest can be expressed as reductions with slight code modification. There are two ways to achieve the goal: modifying the serial code and re-performing the dependence analysis (Steps 5-7) or user enforcing loop type in the tool without re-analysis (Steps 8-9).

Modification of the serial code.
5. Modify the serial code. The step involves directly modifying the serial code (mg.f) with an editor before the analysis. In routine norm2u3, change the IF statement

if (a.gt.rnmu) rnmu = a

to a form that can be expressed with reduction

rnmu = dmax1(rnmu, a)

Save the new version to mg2.f and create a new list file ‘All2.list’ to include mg2.f.

6. Perform the data dependence analysis. Click Load F77 Source in the File menu. Select All2.list and click the Load button. In the Analyser window select the Full option and click Analyse. Save the result to a database (mg2_full.dbs). Browse directives if you like (View (Directives). You will notice the loop in routine norm2u3 is now recognized as reduction.

7. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Enter a filename (mg2_omp.f) and click Save. The log file, mg2_omp.log, contains additional information and statistics for the parallelization process.

Now you can compile and run the parallel code as described after Step 9.

User enforced loop type.
8. Define a new loop type. From the File menu, load in the database “mg_full.dbs” from the previous analysis. Perform Step 3. In the WhyDirectives window, click the New Type button. Right after the Reduction setting is selected the Reduction Operator dialog box is shown up (see Figure T3-2). Select variable “rnmu” and intrinsic function “max”, and push Apply in the Reduction Operator dialog and in the Loop Type dialog. A new entry “R[max:rnmu]” is added to file “userloop.par” in the current working directoy. This is to inform CAPO to treat variable “rnmu” as a reduction variable besides other variables (such as “s”). Now in CAPO click Update Directives to re-perform the directives analysis, which will take into account the user-defined loop types from file “userloop.par.”

9. Save and change OpenMP code. In the File menu, click Save OpenMP Directives Code. Enter a filename (mg2_omp.f) and click Save. We need to do one last change in the generated OpenMP code: Use an editor, change in routine norm2u3
if (a.gt.rnmu) THEN

 rnmu=a

ENDIF

to an “OpenMP-compliant” form

rnmu = dmax1(rnmu, a)

[image: image5.png]CAPO: Reduction Operator

Variables: Operator/Intril
—|d |
: F =
s T * MIN

EQY. IEOR

SelectAll | Reset) MAX:rrom

Apply) Dismiss) Help.

Figure T3‑2: The Reduction Operator dialog after the Reduction setting is selected.

From either method, we should produce the same new parallel code (mg2_omp.f). Use the same process after Step 4 to compile and run the new code. The output from a run with 8 CPUs (for a class-A problem on 250MHz O2K) looks like:

 Programming Baseline for NPB - MG Benchmark

 ...

 VERIFICATION SUCCESSFUL

 L2 Norm is 0.243336530907E-05

 Error is 0.694753363997E-16

 MG Benchmark Completed.

 Class = A

 Size = 256x256x256

 Iterations = 4

 Time in seconds = 5.67

 Mop/s total = 686.60

The new code took 39.12 seconds on 1 CPU and 5.67 seconds on 8 CPUs, a speedup of 6.90 and 14% improvement over the first version.

Tutorial 4. A CFD Application TEAMKE1

The sample code, teamke1, in this tutorial has been taken from one of the CAPTools’ tutorials with a slight modification. This is a realistic application. It includes structures that may be encountered in many scientific applications. The example illustrates an incremental approach to achieve good performance with assistant from CAPO and other tools like SpeedShop (available on the Origin 2000 machine). These tools are used to pinpoint problematic code sections quickly so that the user can apply necessary changes.

Parallelization of the original code: teamke1.f
1. Perform the data dependence analysis. Start CAPO, click Load F77 Source in the File menu. Select teamke1.f and click the Load button. In the Analyser window select the Full option and click Analyse. The analysis process takes only a few minutes.

2. Save to database. In the File menu, click Save Database. Enter a filename for the database (teamke1_full.dbs) and click Save.

3. Perform the directives analysis. In the View menu, click Directives to perform the directives analysis. The Directives browser will be popped up shortly. Choose the All Routines scope and browse through different loop filters. You will notice there are a quite number of Totally Serial loops (see Figure T4-1), which will limit the performance of this code. At this point, we only look into more details of the loop nest in routine CALCP1. The rest of the loops will be discussed in Step 5 and after.

Choose the loop “CALCP1:1/1/35: DO 100 I=2,NI,1” and click Why. The WhyDirectives window indicates the loop was serialized due to loop-carried dependences for variable SU. The DepGraph (activated from the right-mouse button Loop Menu over the selected loop) shows level-1 and level-2 dependences from statement 50 to 52 to 55 (see Figure T4-1). In particular the 52 (55 dependence prevents even a pipeline being formed within the loop nests. In fact, we realize the add operation for variable SU in statements 52 and 55 is commutative, thus, the execution order of the two statements can be switched and the 52 (55 dependence can be removed.

In the DepGraph window, click the 52 (55 dependence edge with the right-mouse button and load the “Why Dependence?” window (see Figure T4-2). Apply the Remove This Dependence button and confirm the action. Save to a new database if you like. Click Update Directives to re-perform the directives analysis and a pipeline is automatically recognized in routine CALCP1.

Loop types are summarized here:

25
Totally Serial loops

10
Reduction loops

1
Pipeline loop in routine CALCP1
45
Chosen (parallel) loops

4. Produce OpenMP code. Without additional change, in the File menu, click Save OpenMP Directives Code. Enter a filename (teamke1_omp.f) and click Save.

[image: image6.png]CAPO: Directives Browser o

26 Routines: 27 Totally serial loops ng parallel loops):

All Routines

- CALCED:1/1/42: DO 100 -
CALCED:2/2/43: D0 100 Loop Menu
e CALCP1:1/1/35: DO 100 Routine Calls,
Totally Serial CALCP1:2/2/36: DO 100 Feuiiie Cells
Covered Serial | True Recursion CALCP2:1/1/27: DO 100 v »
Falsely Serial | 1/0 or Exit ENGER:A/RYED: 10 (D
roduct O ———. CALCT:1/1/48: D0 100
eductions 0 Granularity GO/, BB A Partitioner.
Pipeline User Defined CALOTE:1/1/41: DO 100 Transformations
Chosen CALCTE:2/2/42: DO 100
TG More Filter. 1 CALCU:1/1/40: D0 100 NOEL 1 call Graph, 1,
- Dep Graph. —
Show Parallel 1/0: [Ves No| RoutineDup..) Why..) _Update Directives..) Setti
Current Routine: oALCP1 Bty g Loops (EEEo)
Args/Commons,
3T CONNON /COEE /AP (NS, WY) , AN (N,), &S (N, NY) , AE (NE, NY), AV (N, NT), SUQNE, NY) , SP (WK, WY) =
32 COMMON /OTHRL/NTTER, MAXTT, URFVIS, URFDEN, TMON, TMON, IPREF, JPREF, SORMAX, FLOVIN, aionTh Yar Definition.
B oo
Global vars,
31 .G +++ ASSEMELY OF COEFFICIENTS
35 Do 100 I=2,NI,1
3 D0 100 1-2,0,1 €
37 ic ++r anERS €
38 AREAV=RSTCY (1) Directives,
39 AREAS=SXCV (I) *RV(J-1)
40 ib +++ CALOULATE COEFFICIENTS List r
41 DENV=DEN(I-1, J) +FX(I-1)* (DEN (I, J) -DEN(I-1, 1))
42 DENS=DEN(I, J-1) +FY (J-1) * (DEN (I, J) -DEN (I, J-1))
43 AW(I, J) =DENW+AREAV+DU (I-1, T)
44 AE(I-1,7)=AVW(I, J)

45 BS (1, 7) DENS*AREAS*DV (1, J-1)

46 AN(T, 3-1)<AS(1,7)

41 CALCULATE SOURCES

48 C=DENV*U (-1, J) *AREAW
CS-DENS+V (L, J_1) *ARERS

SP (T, 3)=0.0
100 conTTWE
CONTINUE i

Figure T4‑1: The Directives Browser window displaying Totally Serial loops in teamke1. The Loop Menu is used to activate the DepGraph (shown as inset) for the selected loop.

[image: image7.png]why Dependence?

Partitioner.
Transformations I3

call Graph.
Dep Graph.

Loops
Args/Commons.
var Definition,
Global vars,
Masks,

Comms.
Directives.

Figure T4‑2: The DepGraph Dependence Menu after clicking on a dependence edge.

To compile the OpenMP code on the SGI Origin2000, do

% f77 –o teamke1_omp –O2 –mp teamke1_omp.f

or use the supplied Makefile

% make VERNO=1

To execute the parallel code with 4 threads, do

% setenv OMP_NUM_THREADS 4

% ./teamke1_omp < inp.dat > teamke1_omp.out.4

Use the SpeedShop tool available on the Origin 2000 to profile the code. For 1 CPU:

% setenv OMP_NUM_THREADS 1

% ssrun -pcsamp ./teamke1_omp < inp.dat > teamke1_omp.out.1

A sampling file named as "teamke1_omp.pcsamp.m(pid)" will be created. Here "(pid)" is a proper process id. Use the "prof" command to create the profile output:

% prof teamke1_omp teamke1_omp.pcsamp.m(pid) > teamke1_omp.prof.1

Table T4‑1: Comparison of profile results for the first parallel version of teamke1. Time is given in seconds.

	Function
	1CPU
	4CPUs
	ratio
	error

	 LISOLV
	16.18
	16.89
	0.958
	0.033

	 CALCTE
	9.53
	9.06
	1.052
	0.049

	 CALCV
	8.95
	7.86
	1.139
	0.056

	 CALCU
	8.58
	7.58
	1.132
	0.056

	 CALCED
	8.10
	7.71
	1.051
	0.053

	 CALCT
	7.10
	6.47
	1.097
	0.060

	 calcp1
	4.78
	1.59
	3.006
	0.275

	 CALCP2
	4.11
	4.03
	1.020
	0.071

	 props
	0.48
	0.16
	3.000
	0.866

	 init

	0.25
	0.15
	1.667
	0.544

	 PRINT
	0.06
	0.20
	0.300
	0.140

	 Total
	80.83
	74.21
	1.089
	0.018

Follow the same procedure to obtain profile on 4 CPUs. The profile outputs for the key routines on 1 and 4 CPUs are compared in Table T4-1. "ratio" is 1-CPU time over 4-CPU time, or the speedup on 4 CPUs. The error of ratio is calculated from the statistical sampling error reported in the profile data. As we can see, except for two routines (calcp1 and props), the major routines do not scale. The poor performance correlates with the Totally Serial loops indicated in Figure T4-1. These loops were executed sequentially. In order to improve the performance, we need to investigate and find a way to parallelize these loops.

Version 2 – Code modification without change to the basic algorithm:

5. Inspect code sections. Restart CAPO and load back teamke1_full.dbs (Load Database in the File menu). In the View menu, click Directives to perform the directives analysis. In the Directives browser window, choose scope All Routines, loop filter Totally Serial and loop "CALCTE:2/12/42: DO 100 J=2,NJ". Click the Why button and the WhyDirectives window as shown in Figure T4-2 will be displayed. There are six variables with loop-carried true dependences, five of which have a determinable dependence vector length as indicated by "[1]". This is an indication of a potential pipeline loop if changes can be made to variable UN and two other variables VE and SMPW presented in the Output-dep. variable list.
[image: image8.png]CAPO: Why Directives 7

Loop: CALOTE:2/2/42: D0 100 3=2,N3,1

Reaso

: with True dependenciss, ie. with recursion

Type: Totally Serial

New Type.

Hints:

True—dep. variables

anti-dep. variables Output-dep. variables

4 o 4| su 4 e
) £ w
| 6 variables vith loop-carried T| sev (11 T| 2s 7| swv
true dependencies (Level-Z) su (1]
T| 3 variables vith loop-carried se (1]
anti dependencies (Level-Z) s (1]
3 variables vith loop-carried
output dependencies (Level=2)
Select All) Select All) Select All)
Reset) b

10/Exit statements:

Contains parallel loops:

Disrmiss) Help,

Inside parallel loops:

T
Ll

]
l

Figure T4‑3: The WhyDirectives window for a Totally Serial loop in teamke1.

6. Change scalar assignments. Checking the code section in loop nests I and J, we realize that the dependences on scalar variables UN and VE were caused by the reuse of the assigned values from the previous J or I iteration in an IF statement. The dependences can be removed if we recalculate both variables at each J or I iteration.
Start a text editor and load in teamke1.f. In subroutine CALCTE modify the assignment for UN from

 IF(J.NE.NJ)UN=0.5*(U(I,J)+U(I-1,J)+FY(J)*(U(I,J+1)+U(I-1,J+1)-

 > U(I,J)-U(I-1,J)))

to

 IF(J.NE.NJ)THEN

 UN=0.5*(U(I,J)+U(I-1,J)+FY(J)*(U(I,J+1)+U(I-1,J+1)-

 > U(I,J)-U(I-1,J)))

 ELSE

 UN=0.5*(U(I,J-1)+U(I-1,J-1)+FY(J-1)*(U(I,J)+U(I-1,J)-

 > U(I,J-1)-U(I-1,J-1)))

 ENDIF

and for VE from

 IF(I.NE.NI)VE=0.5*(V(I,J)+V(I,J-1)+FX(I)*(V(I+1,J)+V(I+1,J-1)-

 > V(I,J)-V(I,J-1)))

to

 IF(I.NE.NI)THEN

 VE=0.5*(V(I,J)+V(I,J-1)+FX(I)*(V(I+1,J)+V(I+1,J-1)-

 > V(I,J)-V(I,J-1)))

 ELSE

 VE=0.5*(V(I-1,J)+V(I-1,J-1)+FX(I-1)*(V(I,J)+V(I,J-1)-

 > V(I-1,J)-V(I-1,J-1)))

 ENDIF

Apply a similar modification to variables in three other routines. The changes are summarized:

Routine
Loop

Variable

Description

CALCP2
DO 100 J=2,NJ
SUS, SUW

Recalculate at each
CALCTE
DO 100 J=2,NJ
VE, UN

iteration
CALCU
DO 100 J=2,NJ
GAMN, DVDXN

CALCV
DO 100 J=2,NJM1
GAME

7. Expand 1-D array to 2-D. Variable SMPW is a 1-D working array throughout the program. In order to set up a pipeline of the J loop with the outer I loop, this array needs to be expanded to two dimensional. As an example, in routine CALCTE, change the declaration of SMPW from 1-D to 2-D, i.e. SMPW(NX) (SMPW(NX,NY). Then modify the following code section from
CP=AMAX1(0.0,(SMPW(J)+CW))

SMPW(J)=-CW-CS

SMPW(J-1)=SMPW(J-1)+CS

to

CP=AMAX1(0.0,(SMPW(I-1,J)+CW))

SMPW(I,J)=-CW-CS

SMPW(I,J-1)=SMPW(I,J-1)+CS

The initialization of SMPW is done in subroutine (entry) INIT. In this routine modify the declaration from SMPW(NX) to SMPW(NX,NY) and the assignment from SMPW(J)=0.0 to SMPW(I,J)=0.0.

Similar changes are made in several other places. The modifications on SMPW are summarized here:

Routine
Loop

Description

CALCED
DO 100 J=2,NJ
Expand SMPW from 1-D to 2-D
CALCT
DO 100 J=2,NJ
Change declaration in the whole program
CALCTE
DO 100 J=2,NJ

CALCU
DO 100 J=2,NJ

CALCV
DO 100 J=2,NJM1

INIT
DO 951 J=1,NJ

All the modifications do not alter the basic algorithm, so the same run-time results should be expected. Save the modified code to a new file: teamke2.f.

8. Perform code analysis. Restart CAPO and load teamke2.f. Perform the Full data dependence analysis and save to teamke2_full.dbs. Start the Directives browser from the View menu and the Directives menu item. With the All Routines scope browse through different loop filters. You will notice that the number of Totally Serial loops has been reduced from 25 to 13 with increase in the number of pipeline loops. Loop types are summarized here:

13
Totally Serial loops (mainly in routine LISOLV)

10
Reduction loops

7
Pipeline loops

45
Chosen (parallel) loops

9. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code and save to file teamke2_omp.f.

Compile and run the parallel code as before. The SpeedShop profile results for the new parallel code are summarized in Table T4-2. As one can see, the parallel performance of Version 2 has been improved in almost all routines except in routine LISOLV. LISOLV still executes serially and affects overall performance. The single CPU execution time increased slightly in comparison with the original version. This is because the recalculation of scalar variables in the new code costs slightly more time.

Table T4‑2: Comparison of profile results for the second parallel version. Time is given in seconds.

	Function
	1CPU
	4CPUs
	ratio
	error

	 LISOLV
	16.14
	18.00
	0. 897
	0.031

	 calcte
	9.89
	3.19
	3.100
	0.200

	 calcv
	9.28
	2.92
	3.178
	0.213

	 calcu
	8.82
	2.83
	3.117
	0.213

	 calced
	8.76
	2.87
	3.052
	0.208

	 calct
	7.79
	2.39
	3.259
	0.241

	 calcp1
	5.04
	1.75
	2.880
	0.253

	 calcp2
	4.06
	1.11
	3.658
	0.392

	 props
	0.53
	0.20
	2.650
	0.695

	 init

	0.28
	0.13
	2.154
	0.723

	 PRINT
	0.14
	0.26
	0.538
	0.178

	 Total
	83.77
	46.67
	1.795
	0.033

Version 3 – Change of algorithm in LISOLV:

10. Inspect code sections. Restart CAPO and load back teamke2_full.dbs (Load Database in the File menu). In the View menu, click Directives to perform the directives analysis. In the Directives browser window, choose scope All Routines, loop filter Totally Serial and loop "LISOLV:2/2/18: DO 100 I=ISTART,NIM1". Click the right mouse button to activate the Loop Menu. In the menu choose Dep Graph and the DepGraph window will show data dependences that serialize the loop (see Figure T4-4 and the inset): variable PHI at level 2 (loop I) and 3 (loop J) and variable A,C at level 3 (loop J). In loop I, variable PHI is used to calculate A and C and gets updated at each I iteration.
11. Modify the algorithm. We can use a more explicit algorithm in the I loop: Variables A and C are calculated for all the values of I before variable PHI is updated. The I loop then becomes parallel. The impact of such a change is mainly on the convergence speed of the underline algorithm. One may have to balance convergence rate and parallelization. In this case parallelization seems to be more important since it improves overall code performance.
The modifications to the code involve expanding the dimensionality of A and C from 1-D to 2-D and splitting the I loop into two parts: the first part calculates A and C from PHI and the second part updates PHI. The modified code section is shown in Figure T4-4. Apply the same change to loop "DO 1000 J=JSTART, NJM1".

Save the final code to teamke3.f

[image: image9.png]CAPO: Directives Browser [0

Scope: 26 Routines: 13 Totally serial loops (i.e. not within or containing parallel loops):
llRotine GEOM:11/1/72: Do 750 3-2,N3,1
— GEOM:12/1/75: DD 800 1-2,N9ML,1
DI GRTD:2/1/77: DO 104
Totally Serial [all e
Covered serial | True Recursion GRTD:6/1/90: DO 108
Falsely Serial | 1/0 or Exit CEm:CYA/EL: 0 (D
T ST LISOLY:1/1/15: DO 2000 TT-1,MsW,1
eductions ran e LISOLV:2/2/18: DO 100 I-TSTART,NIMI, 1
Pipeline User Defined LISOLV:3/3/21: DO 101 J=JSTART, Nanl, 1
Chosen LISOLV:4/3/32: DO 102 J-ISTART, NJu1, 1
TG LISOLY:5/2/38: DO 1000 J-ISTART, NJu1, 1
Show Parallel 170: | Yes No | RoutineDup. Why..) _Update Directives..) Setting
Current Routine: LISOLY User Loapt Dismiss Help.
™ TON AT (NE) , B1 (W), OL (W), DL (V%) , A2 (WK, W), A& (W,), A (N, W), A (N, W), A8 (N,), SUN,)
by T
1z
13
ft
15 D0 2000 I7-1, NSV, 1
16 A(ISTL
i CoMENCE §7-E SVEER)

e

AL(ISTH1)=0. 0
© --- COMMENCE S-N SWEER
D0 1000 J=JSTART, Nam1, 1

Figure T4‑4: The Directive Browser window for Totally Serial loops in teamke2. The highlighted code section in routine LISOLV is to be modified to a more explicit form.

[image: image10.png]10
1
12
13
14
15
16
17
18
15
20
21
22
23
24
25
2
27
28
29
a0
3
32
3
34
ES
36
37

102
100

DIMENSION PHI (NX, NY), A(NK, NY), B (NX), C(NK, NY), D (NE)
DIMENSION AL (NE), B (N), G1 (NE), DL (NE), AP (NE;, NY) , AE (NI, NY),

COMMENCE ¥-E SVEEP

D0 101 I=ISTART, N1l 1
A(T, I5TH1)=0. 0
G (I, JSTIeL) =PHI (I, JSTieL)

COMMENCE S-N TRAVERSE
D0 101 3=ISTART, N1, 1
ASSEMELE TOMA COEFFICIENTS
(T, 3)=AN(L, 3)
B(3)=hs (1, 3)
(T, 7)=AE (I, 7) *BHI (L+1, 7) +AW (L, 7) *BHI (I-1, 1) +SU(L, 1)
D(3)=p (1, 3)
CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
TERM=1. /(D(3)-B(3) *A(L, 3-1))
B(T, 3)=A(I, J) *TER
G(T, 33= (6 (L, 3) +B (3) *0 (L, 3-1)) *TERM

CONTINUE
OBTAIN NEV PHIGS
D0 100 1=ISTART, NIl 1

D0 102 33-ISTARTNIML, 1
J-NJ+ISTRRT-17

PHI(, 3)=A(I, J) *PHI (L, 3+1) +6 (L, 3)

CONTINUE

Figure T4‑5: The modified code section after loop I is split into two parts.

12. Perform code analysis. Restart CAPO and load teamke3.f. Perform the Full data dependence analysis and save to teamke3_full.dbs. Start the Directives browser from the View menu and the Directives menu item. With the All Routines scope browse through different loop filters. You will notice that the number of Totally Serial loops has been reduced from 13 to 6 and these loops are in routines GEOM and GRID. Loop types are summarized here:

6
Totally Serial loops

10
Reduction loops

7
Pipeline loops

49
Chosen (parallel) loops

13. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code and save to file teamke3_omp.f.

Compile and run the parallel code as before. The SpeedShop profile results for the final parallel code are summarized in Table T4-3. As one can see, the parallel performance of Version 3 has been improved over Version 2 and a reasonable speedup has been obtained. The single CPU execution time of routine LISOLV increased about 40% in comparison with the previous version but the parallel execution time decreased by a factor of 2.4 for 4 CPUs.

Table T4‑3: Comparison of profile results for the third parallel version. Time is given in seconds.

	Function
	1CPU
	4CPUs
	ratio
	error

	 lisolv
	22.71
	7.47
	3.040
	0.128

	 calcte
	9.74
	2.95
	3.302
	0.219

	 calcv
	9.11
	2.78
	3.277
	0.225

	 calced
	8.89
	2.55
	3.486
	0.248

	 calcu
	8.74
	2.64
	3.311
	0.232

	 calct
	7.83
	2.34
	3.346
	0.249

	 calcp1
	4.87
	1.80
	2.706
	0.236

	 calcp2
	4.01
	1.07
	3.748
	0.408

	 props
	0.52
	0.24
	2.167
	0.535

	 init

	0.27
	0.12
	2.250
	0.781

	 PRINT
	0.05
	0.37
	0.135
	0.064

	 Total
	89.92
	36.23
	2.482
	0.049

Tutorial 5. Mix of Message-Passing and OpenMP

This tutorial demonstrates one way to generate a hybrid parallel code with CAPTools/CAPO. The parallelization is done at two levels: message-passing (MP) at one level and OpenMP at another. The example relies on the thread-safe feature introduced in MPI-2 and the success of execution depends on the implementation of a thread-safe MPI-2 library. We need to emphasize that the hybrid parallelization here is not the best way to achieve good performance for the currently selected code. We mainly like to illustrate that it is possible to produce a hybrid parallel code with the tools.

The example is one of the benchmarks from the NAS Parallel Benchmark (NPB) suite. The benchmark, BT, uses an implicit scheme to solve the Navier-Stokes equations in three dimensions. Within one time iteration the solver sweeps through each dimension successively. Each step has strong data dependences in the swept direction, but is completely parallel in the other two directions. The multi-level parallelization is achieved by first distributing the data in the J dimension for message passing and then applying directives on loops working on the K dimension. Small modification to the generated parallel code by hand is needed in order to work around an incompletion due to that the hybrid code generation is not really supported by the current tools.

The sequential version of the source code is in directory BT-mix. In order to load the code to CAPO, we list all the .f files in one file: All.list.

Parallelization with message-passing at the first level:

1. Load source and enter user knowledge. Click Load F77 Source in the File menu. Select All.list and click the Load button. Select READ Knowledge from the Edit menu. In the READ Knowledge window, select variable nx and click Positive Nontrivial, see Figure T5-1 on next page. Apply the same steps to variables ny and nz. These three variables define the number of grid points in each dimension. Making them positive nontrivial improves the quality of data dependence analysis in Step 2.

2. Perform the data dependence analysis. After the user knowledge is entered, in the Analyser window select the Full option and click Analyse. On a Sun Ultra-4 workstation, the analysis process took 12 minutes.

3. Save to database. In the File menu, click Save Database. Enter a filename for the database (bt_full.dbs) and click Save.

4. Partition data. Launch the Partitioner from the CAPTools main window. Choose routine "add", array "u" and index "3" (see Figure T5-2) and click Generate Partition. This step creates a data distribution for array "u" on the 3rd index (the J dimension) and CAPTools also partitions automatically the relevant arrays throughout the program. Figure T5-3 shows the partitioning window after the process is finished. You will notice that array "lhsb" was left untouched. The next thing to do is to select this array, index 4 and perform another partitioning.

5. Save to database. Use the Save Database menu to save the partitioned data to bt_part_j.dbs.

[image: image11.png]CAPTools: Knowledge of READ variables

4 Integer Vars are READ: Values From Profiles 3 User Knowledge Items:
<[miter Broa74:reaa oz, mes) niter -
| e BTAT6: resd ONIT2 PUI) ok g -
Ry:BT. 176 read (WIT-2, PYT-+)mws, ny 1z
[BT 176 road (WIT-2, PT=%)ro, 75, 1z \
Positive Nontrivial) Positive) Negative Nontrivial) _Neative)
Positive Nontrivial Default: 5 /]|
Negative Nontrivial Default: =5 /|7
User knowledge: nz.GT. 5 (DI5) (BER)
T mes (F_zzoTve)TzsaTve”
162 anes (£ sdial) redistl’
163 anes (£ rdisg) " redists’ CAPTools: Analyser.
184 hanes (£-add) =" add”
1% e ® Quick Choice: Basic | Intermediate [Full
167 Einerons. false
158 endif Analysis to include: [Knowledse Disproofs
160 Grite (UNIT-+, EXT-1000)
17 Gpen (unit- file-’inputhe. data’, stabus=’ald, iostatefs Interprocedural [Evact
i 5F (Estatus. oq 0) TEN
172 eite (UNIE+, PUT-233)
173 233 fornab(’ Reating From input File inputht. data’) scaler sl
1 —
1% Dependence test: | Banerjee | Omega

Limit Analysis Time: Ves | No

178 grid points (L
179 Sridpoints(z s Times 1 | o ke
130 Sridpoines (3
10 il s
182 write (UNIT=+, FMT=234)

13 Riter-niter, dofanlt

184 dt-dt. default Analyse Dismiss. Help.
188 Grid.poines (1) -problen._size

186 Gridpoints (2) -probLen_size

187 grid points(3)=problen_size

Figure T5‑1: The READ Knowledge window for entering user knowledge and the Analyser window.

[image: image12.png]= CAPTools: Partitioner = 00

Routines: cninig Cuorsticn Lish.) Help
(| Jada ~ | add:24 unpartitioned Arrays
S| 24 Name Index For Against
binverhs =|
ro— s (0: THA, 0: A, 0: KIAX) 0 0 0
BT rho_i (0: THAX, 0: TMAX, 0 : KIAX) 0 0 0
compute_ths rhs (5, 0: THAX, 0: TMAX, 0 KIAX) 0 0 0
e . square (0:TNA, 0: 1MAK, 0:KIAX) 0 0 0
gy tup_block (5, 5) 0 0 0
tnp_vec (5) 0 0 0
[(s, 0: Ta, 0: 1A, 0-KAx) 0 0 0
— 4| uwe(-2:problem_size+l,S) 0 0 0
e — s (0: THAX, 0: JMA, 0:KIAX) 0 0 0
Variable Index: 3, /|7 Tl ve(0:mex, 0: %, 0:) 0 0 0
Modulus: =
Divisor: nbariion 3¢ < Prevent) _Undo Preventions
offset: ned arrays
Index _Define Range Partition Range

Type: | Block Cyclic
Block/Cyclic | Unstructured

Partition Acceptance:
Maximum Against: 0/
For/Against R

Partition Alignment:
Tolerence: 5 /||

Partitioning Options:

Knowledae Exact
Disproofs Scalar Equality =
Interprocedural [Logic RSB © Disrniss

Partitionina,

Figure T5‑2: The Partitioner window for array partitioning: routine add, array u, index 3.

[image: image13.png]CAPTools: Partitioner

[=100

Routines: <ainig < Help.
add add: 19 Unpartitioned Arrays
adi Name Index For Against
binverhs
ro— cuf (-2:problen_size+l) 1 6 12
BT cv(-2:problen_size+l) 0 0 0
oo o £5a0 (5,5, 0:problen_size, 0:problend 0 18232
e . £3ac (5,5, 0:problen_size, 0:problend 10310 6110
error_nom grid_points (3) 0 0 0
Thsh (5,5, 0: IMAK, 0:JMAX, 0:KUAX) 9999 O 600
Base variable Spec Thsh (5,5, 0: THAR, 0: WA, 0:KINAX) 3 0 7636
variable: Lhsb Thsh (5,5, 0: THAX, 0: WA, 0:KNAK) 4 11386 72670
o 1hsh (5,5, 0: TMAX, 0: TMAX, 0 KMAX) 5 0 11386
Veri i (e & njac (5,5, 0:problen_size, 0:problen3 0 24920
Modulus:
Divisor: UnPartitioned Details.) Why UnPartitioned ..) Prevent) _Undo Preventions
offset: oned Arrays
Index _Define Range Partition Range
Type: [Block cydic
e || U forcing 3 - CAP_Lforeing: CAP_Hforcing
Inea 4 - €8 Lforeing: CAP_Hforcing
Sy Inse 4 - €8 Lforeing: CAP_Hforcing
. § @ 2 - €8 Lforeing: CAP_Hforcing
BT G thoi 2 - €8 Lforeing: CAP_Hforcing
For/Against R the 3 - 03_Lforcing: AP HForcing
Partition Alignment: square 2 - C&_Lforeing: CAP_Hforcing
[u 3 1:qrid_points(2)+-2 CAP_Lforcing:CAP_Hforsing
_ . us 2 - CaP_LForeing: CAP_Hforcing
LartitioninglOptions: vs 2 - €2 Lforeing: CAP_Hforcing
Knowledae Exact
et T Ey Solie parkition | Browse Partition Ranges
Interprocedural [Logic Generate Partition) _Accept All Partitions) Delete All Partitions) Dismiss

Partitioning complete.

Figure T5‑3: Apply array partitioning on the second array: lhsb, index 4.

6. Remove unwanted partitions. If you use the result produced from Step 4 to generate message-passing code, you would notice that CAPTools place quite a few communication calls inside routine COMPUTE_RHS, which exchange boundary values of some of the working arrays (such as qs, rho_i…) for the partitioned dimension. These boundary values, in fact, can be calculated in the routine instead of being communicated from neighbors to improve the performance. This kind of improvement can be achieved within CAPTools by removing partitions on the relevant arrays (although it is not very obvious and intuitive). In the Partitioner window, select routine "compute_rhs". Select "qs" in the Partitioned Array list and click the Delete Partition button. Apply the same procedure to arrays: rho_i, square, us, vs, and ws. Figure T5-4 is what you will see after this process from which partitions on six arrays have been removed.

Click the Accept All Partitions button.

7. Generate masks and communications. Start the Code Generator from the CAPTools main window. Choose 2 for Min Slabs Per Processor, which indicates at least 2 slabs in the partitioned direction to be used for the execution and reduces number of communications calls placed. Select Gather/Scatter for Communication Type. Click Generate Masks to start the mask generation and Calc & Gen Comms to generate communications. See Figure T5-5.

At this point you could produce a pure message-passing program if you wish (the Generate & Save Final Code button). But we move onto next step.

8. Save to database. Use the Save Database menu to save the communication data to bt_comm_j.dbs.

[image: image14.png]= CAPTools: Partitioner B[]
Routines: <ainig nipn Help.
{ | binverhs compute_rhs: 27 Unpartitioned Arrays

Ebidio Name Index For Against
3| =r =

compute_ths | 4| binverses) 0 0 0

elapsed_tine | buf(-2iproblen_sizes1,5) 1 45 a2

error_norm ce(5,13) 0 0 0

exact_rhs cuf (-2:problen_size+l) 1 6 12

exact_solution cv(-2:problen_size+l) 0 0 0

El £5a0 (5,5, 0:problen_size, 0:problend 0 25732

Base variable - £3ac (5,5, 0:problen_size, 0:problend 28560 8610
qrid_points(3) 0 0 0
) . njac (5,5, 0:problen_size, 0:problen3 0 36170
Gl iz B njac (5, 5, 0:problen_size, 0:problent aas64 12064
sadutust § el
Divisor pariitione (cred) B Undo Preventions
offsets compute_rhs: oned Arrays
. Name Index _Define Range on Range
Type: | Eixh Cciic =|
) : s || foreing 3 - CAP_Lforeing: CAP_Hforcing
C e 4 - €8 Lforeing: CAP_Hforcing
partition Avceutance: Ihsh 4 - O [foig (0 Ty
o e Inse 4 - €8 Lforeing: CAP_Hforcing
Herimum Against ¢ the 3 0:qrid_points(2)+-1 CAP Lforcing:CAP_Hforsing
u 3 -

Partitian At

amont:

Tolerence: %

Partitioning Options:

Knowledge Exact

Disproofs Scalar Equality
Interprocedural [Logic (7

CAP_LEorcing: CAP_Hforcing

Browse Partition Ranges

< Accent All Partitions) Delete All Partitions) Dismiss)

Figure T5‑4: The Partitioner window after partitions on six arrays were deleted.

[image: image15.png]Min Slabs Per Pracesso

Communication Type:

Communications Opt

Generate Options:

Execution Mask Heuristic:

a_ =M
Bulk

CAPTools: Code Generator

Gather/Scatter

Individual

Gather/Scatter + Pipeline Grouping

First Pass Only (NO CODE GENERATION)

Union OF Masks

Most Frequent (unit count)
Most Frequent (cummulative count)

Maximise Loop Allignment

Masking _Generate Masks

Communications _Calc Comms)

Optimisations 7~

Finalise

Knowledge Disproofs
Interprocedural | Exact
scaler Logic

G

Disrniss) _Help

: [Short Circuit Broadcast Calculation (QUICK)

|

iy

Calculating Communications.

Figure T5‑5: The Code Generator window for the final generation of message-passing code.

Insertion of OpenMP directives at the second level:

9. Browse directives. In the View menu, click Directives to perform the directives analysis. The Directives browser will be popped up shortly. Select the All Routines scope and browse through all loop filters. Pay attention to the serial loops (Totally, Covered and Falsely).

10. Re-enforce new loop types. In the Directives browser window, select the All Routines scope, the Falsely Serial loop filter and I/O Statement sub filter (Figure T5-6). There are two K loops listed under this category. Choose the first loop: y_solve:8/1/302: do k=1,grid.. and click the Why button. The WhyDirectives window (see Figure T5-7) indicates that there are four MP (Message-Passing) calls (as part of the parallel pipelines) inside the K loop, which serialize the K loop. If nothing is done here, the inside I loop will be chosen for the second level parallelization with directives, which will not give a good performance.

[image: image16.png]CAPO: Directives Browser =0

Scope: 29 Routines: 7 Falsely serial loops (with /0 or MP statements):
llRotine B:11/1/280: do 4=t last,1

iters error_norn:6/1/131: do CRP_meL,5,1
Looplilicer the_norm:6/1/121: do CAP me1,5,1
Tty Sl ||| 6l verify:4/1/282: da meL 5,1
Covered erial | Privatization verify:5/1/209: da meL 5,1
Falsely Serial | 1/0 Statement g y_solve:8/1/302: do k=1,grid points(3)-2,1

solve:13/1/353: do ke1, qrid_points(3)-2,1

Reductions No Granularity ¥ s @)
Pipeling User Defined
Chosen
Not Chosen
Show Parallel 1/0: [Ves No | RoutineDup. why..) Update Directives..) Satting,

Current Routine: y_sclve User Loon Disiss) _Help,

708
209 begin inner most do loop
300 3Ll the elements of the cell unless Last

1,5.K) by b_int
(@ 1K) by b_inve

Figure T5‑6: The Directives Browser window for the Falsely Serial and I/O Statement type.

In order to improve the performance, we can enforce a parallel type for the two K loops with an assumption that the MP calls are thread-safe. This is possible within the context of MPI-2. To define a new loop type, click the New Type button in the WhyDirectives window (Figure T5-7). Select new type Parallel and push Apply. A new entry is now added to file userloop.par.

Select the second K loop: y_solve:13/1/353: do k=1,grid.. and click the New Type button. Again in the LoopType window choose new type Parallel and push Update. CAPO will save the new entry to file userloop.par and re-perform the directives analysis with the new loop types.

[image: image17.png]CAPO: Why Directives 7
Loop: y_solve:8/1/302: do k=1, grid_ | Reasol

Type: Falssly Serial New Type,,) Alti-dep. variables _ Output-dep. variables In/out-dep. variables

Hints: J J J
Contains 1 parallel loop - - -

: with 1/0 or MP statements inside

| CAPO: Loop Type

selectall

Loop: ~[1/302: do kL, grid_points (3-2,1
i Rest) ¢ 3 L L

current Type: 1/0 inside
10/Exit statements: Contains parallel loops:

New Type:
parallel serial | Reduction | Break | Original

To update directives with new loop types,

use ——> Update
Apply) Dismiss) Help,

324:call CAP_SEN
325:call CAP_SEN

|| 303:call oap_RES | 4[| y_solve:10/3/306: do i
|| avaicanl e wec |

Figure T5‑7: The WhyDirectives window for the selected loop and the LoopType window for defining a new loop type.

11. Insert OpenMP directives. In the File menu, click Save OpenMP Directives Code. Enter a filename (bt_cap_j_omp.f) and click Save. By now you will have the first version of a hybrid BT code. The log file, bt_cap_j_omp.log, contains additional information and statistics for the parallelization process. You will see warnings on "I/O or MP statements inside parallel region". This is what we need to fix next.

Modification to the generated hybrid code:

12. Replace MP calls with thread-safe version. As mentioned before, the current tool does not really support the generation of hybrid codes, but is merely used to assist such a process. The message-passing (MP) calls (CAP_SEND, CAP_RECEIVE…) placed inside the generated code by the tool are assumed to be used in a single-threaded environment. The supporting library, CAPLIB, is designed to run under a single-threaded environment as well. So in order to have the hybrid code working properly, we need to modify the message-passing calls inside parallel regions so that they can work safely under a multi-threaded environment. To achieve the goal, we will create a subset of the routines in CAPLIB to support multi-threading. These routines contain an additional field "TAG" in the argument for use with a specific thread. A sample implementation of the thread-safe MP routines used in this tutorial is included in file caplib_thread.F.

So we want to make a final touch to the generated code: replace several message-passing calls with the thread-safe version. Edit file bt_cap_j_omp.f with a text editor:

1) In subroutine Y_SOLVE, include the following two lines in the declaration

integer omp_get_thread_num, myid

external omp_get_thread_num

2) In subroutine Y_SOLVE, the third parallel region, change

!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,j,k)

to

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,myid)

and add the following lines before "do k=1,grid_points(3)-2,1"

 myid = omp_get_thread_num()

!$OMP DO

Now add a message tag to the four MP statements in the K loop by replacing

 CALL CAP_RECEIVE(...)
with

 CALL CAP_RECEIVE_TAG(...,2000+myid)
and

 CALL CAP_SEND(...)
with

 CALL CAP_SEND_TAG(...,2000+myid)
The tagged SEND and RECEIVE calls are from caplib_thread.F and the tag "2000+myid" is added to ensure the point-to-point communication between two threads with the same thread number. The offset "2000" in the tag is to avoid potential conflict with message tags internally used by CAPLIB, but the choice of the value is a bit of arbitrary.

Lastly, change

!$OMP END PARALLEL DO

to

!$OMP END DO NOWAIT

!$OMP END PARALLEL

3) Apply the same changes as in 2) to the fifth parallel region in subroutine Y_SOLVE and save the modification.

Compile and run the hybrid code.

In order to compile and run the hybrid code successfully, the following additions or installations are required:

1) The CAPLIB library from the CAPTools distribution. CAPLIB can be downloaded from http://captools.gre.ac.uk/.

2) A thread-safe extension to some of the routines in CAPLIB, which are supplied here in caplib_thread.F for MPI. One of the main things in the file is a dummy MPI_INIT() routine which just passes the call to MPI_INIT_THREAD(). The CAP_*_TAG routines are also in this file.

3) A thread-safe implementation of MPI-2 library that supports MPI_INIT_THREAD in level MPI_THREAD_MULTIPLE. Such an implementation is available from SGI's MIPSpro 7.3 compilers and MPT 1.4 toolkit.

We will use the supplied Makefile to compile the hybrid code on the SGI Origin2000. Modify the content of Makefile, in particular the value for CAPLIB. Then do

% make

which will create an executable "bt_cap_j_omp.1". To execute the parallel code with 3 MPI processes and 3 threads per MPI process, do

% setenv OMP_NUM_THREADS 3

% mpirun -np 3 ./bt_cap_j_omp.1 -top pipe3

The output (for a class-W problem on 195MHz O2K) looks like:

Thread support on Rank 0 = 3, number of threads = 3

Thread support on Rank 1 = 3, number of threads = 3

Thread support on Rank 2 = 3, number of threads = 3

PID HOSTNAME MPI_PROCNAME UNIX_PID BIN_NAME

 1 turing turing 35973 bt_cap_j_omp.1

 2 turing turing 35974 bt_cap_j_omp.1

 3 turing turing 35979 bt_cap_j_omp.1

Programming Baseline for NPB - BT Benchmark

 Size: 24x 24x 24

 Iterations: 200 dt: 0.000800
 Time step 1

 ...

5 0.1018045837718E+02 0.1018045837718E+02 0.4575047075825E-12
 Verification Successful

 BT Benchmark Completed.

 Class = W

 Size = 24x 24x 24

 Iterations = 200

 Time in seconds = 11.66

 Mop/s total = 662.12

The execution time from a single process run is 84.69 seconds, so we have a speedup of 7.3 on 9 CPUs. You can run the code with different combinations of MPI processes and OpenMP threads, for example, to run with 2 MPI processes and 8 threads per MPI (2x8 = 16 CPUs):

% setenv OMP_NUM_THREADS 8

% mpirun -np 2 ./bt_cap_j_omp.1 -top pipe2

Table T5-1 on next page contains a collection of results from runs on two SGI Origin2000s: 195 (CPU type 195 MHz, 32Kb L1 and 4Mb L2 cache) and 300 (CPU type 300 MHz, 32Kb L1 and 8Mb L2 cache). NP stands for number of MPI processes and NT is the number of threads per MPI process. For a given number of CPUs, the hybrid code has a better performance when NP is close to NT. However, you also notice that "8x2" performs better than "4x4" or to say MPI is more preferable in this case.

Table T5‑1: Execution time (in seconds) and Mop/s (million floating point operations per second) of the hybrid BT code, obtained for the Class W (24x24x24) and with 1, 9 or 16 CPUs.

	195 MHz Origin2000, 1 or 9 CPUs

	NPxNT
	1x9
	3x3
	9x1
	1x1

	Time
	14.26
	11.66
	12.26
	84.69

	Mop/s
	541.46
	662.12
	629.47
	91.14

	300 MHz Origin2000, 16 CPUs

	NPxNT
	1x16
	2x8
	4x4
	8x2
	16x1

	Time
	8.21
	6.38
	5.76
	5.38
	6.88

	Mop/s
	940.61
	1210.05
	1339.76
	1433.53
	1122.38

� Due to the improvement in Version 1.1 of CAPO, the IF-type reduction is now automatically recognized. The described serial loops will no longer exist. But the concept of user interaction from this Tutorial is still valid.

26
CAPO User Manual

52
CAPO User Manual

