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Abstract

Autonomy will play a key role in future science-driven, tier-scalable robotic planetary reconnaissance to extremely challenging (by
existing means), locales on Mars and elsewhere that have the potential to yield significant geological and possibly exobiologic
information. The full-scale and optimal deployment of the agents employed by tier-scalable architectures requires the design,
implementation, and integration of an intelligent reconnaissance system. Such a system should be designed to enable fully automated and
comprehensive characterization of an operational area, as well as to integrate existing information with acquired, ““in transit” spatial and
temporal sensor data, to identify and home in on prime candidate locales. These may include locales with the greatest potential of
containing life.

Founded on the premise that water and energy are key to life, we have designed a fuzzy system that can (1) acquire the appropriate
past/present water/energy indicators while the tier-scalable mission architecture is deployed (first layer), and (2) evaluate habitability
through a specialized fuzzy knowledge-base of the water and energy information (second layer) acquired in (1). The system has been
tested through hypothetical deployments at two hypothesized regions on Mars. The fuzzy-based expert’s simulation results corroborate
the same conclusions provided by the human expert, and thus highlight the system’s potential capability to effectively and autonomously
reason as an interdisciplinary scientist in the quest for life. While the approach is demonstrated for Mars, the methodology is general
enough to be extended to other planetary bodies. It can be readily modified and updated as our interdisciplinary understanding of
planetary environments improves. We believe this work represents a foundational step toward implementing higher-level intelligence in
robotic, tier-scalable planetary reconnaissance within and beyond the solar system.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Even though orbiting spacecraft and ground-based
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to be confirmed, such as in the case of Mars, whether
sites of suspected hydrothermal activity are indeed
hydrothermal environments, or whether prime candidate
sites of potential life-containing habitability (Dohm
et al.,, 2004) actually contain life. In answering the
question of how best to explore planetary environments
such as the ancient mountain ranges of Mars that
contain complex structure and magnetic signatures (Acuia
et al., 1999; Dohm et al., 2001a, b, 2002; Connerney et al.,
2005), the expansive martian canyon system of Valles
Marineris (Scott and Tanaka, 1986), the putative ocean
beneath the ice of Jupiter’s moon, Europa (Carr et al.,
1998), a scientific mission concept for remote planetary
surface and subsurface reconnaissance has been recently
devised (Fink et al., 2005a—c, 2006a, b, 2007) to replace
the engineering and safety constrained mission designs of
the past. This novel mission concept is a paradigm
shift from traditional missions that perform either
local ground-level reconnaissance via immobile landers or
rovers of limited mobility, or global mapping through
orbiters, to what is termed tier-scalable reconnaissance in
scientific missions. The paradigm integrates multi-tier
(orbit—atmosphere—surface/subsurface) and multi-agent
(orbiter—blimps—rovers—immobile  sensors) hierarchical
mission architectures to enable unconstrained, science-
driven and intelligent planetary exploration (Fig. 1, Fink
et al., 2005a).

The full-scale and optimal deployment of agents as part
of a tier-scalable mission architecture requires both the
integration of design and architecture and the implementa-
tion of an intelligent reconnaissance system. Such a system
should (1) include software packages that enable fully
automated and comprehensive identification, characteriza-
tion, and quantification of feature information within an
operational region (e.g., with the Automated Geologic Field
Analyzer (AGFA) by Fink et al., 2005d; now Automated
Global Feature Analyzer, see Fink et al., 2008) with
subsequent target prioritization and selection for close-up
reexamination (e.g., Fink, 2006¢); and (2) integrate existing
information with such AGFA-acquired, “in transit” spatial
and temporal sensor data to automatically perform smart
planetary reconnaissance and identify and home in on
prime candidate life-containing targets on planetary
bodies.

Our goal is to define the framework for the design of an
expert system (intelligent reconnaissance system) to be
integrated into the tier-scalable reconnaissance mission
architecture and more generally to provide a basis for
implementing intelligent algorithms capable of autono-
mously performing reasoning over data collected during
planetary exploration. Here, we propose a fuzzy logic-
based expert system capable of simulating the combined
approach of a geologist, biologist, and chemist to identify,
in one instantiation, prime candidate locales of life-
containing potential through tier-scalable reconnaissance,
which includes comparative analysis of the spatial and
temporal spaceborne-, airborne-, ground-, and subsurface-

based observations, 1i.e., synthesis of stratigraphic,
paleotectonic, topographic, geomorphologic, hydrologic,
geophysical, geochemical, spectral, and elemental informa-
tion. As explained in the subsequent sections, the system is
designed to acquire a sequence of life-habitat indicators
whose values are inferred from the sensor data streaming
through the system. The indicators, which are specific to
the planet under observation, are the input to the
system and are manipulated by the fuzzy rules, which
form the core of the knowledge-base, in order to infer
new facts. The number and type of indicators vary with the
planet being explored. For example, indicators suitable
for identifying life-potential locales on Mars may be
different than those required by the ice-covered Europa
where conditions for life may be drastically dissimilar.
The fuzzy logic knowledge-base we are creating for tier-
scalable autonomous reconnaissance is based on the
geologic mapping-based reconnaissance and related
synthesis of information of Mars, but can be modified/
revised and updated for other planetary bodies. The
intelligent system presented here may be considered a
critical part of the “brain” of the tier-scalable reconnais-
sance mission architecture, though there may be other
possible designs and implementations schemes. Impor-
tantly, we intend to show the potential of the methodology,
leaving an open forum for the community to discuss about
what are the appropriate life indicators for different
planetary scenarios.

Here, Mars is used as case study to show how the
fuzzy logic framework can be employed to design
autonomous systems capable of assessing planetary
habitability. Starting from the premise that water and
energy are key ingredients to life, we devised a two-layer
fuzzy system equipped with appropriate knowledge
(i.e. rules) as derived from field expertise. The two layers
are inherently interconnected: the first layer is comprised
of four independent fuzzy systems, each devised to acquire
remote and in-situ information and evaluate the potential
for past/present water and energy. The second layer
is comprised of rules that arrange water and energy
(both past and present) in order of importance. For
example, if the first layer infers that potentials for
past/present water and energy are all high, then the
potential for the site to harbor life will be very high. Life-
related rules at lower level of importance have been
included to provide the system with a comprehensive
understanding of Mars habitability for effective and
intelligent prediction.

The paper is organized as follows: Section 2 discusses the
general problem of designing expert systems for planetary
exploration. Section 3 makes a case for using fuzzy logic
and provides a review of the subject. In Section 4, the
rationale for designing the fuzzy expert is outlined and its
implementation is shown in Section 5. Simulations and
system testing for two hypothesized martian scenarios are
illustrated in Section 6. Conclusions and future efforts are
outlined in Section 7.
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Fig. 1. Schematic illustration of the “tier-scalable” mission concept (Fink et al., 2005a). The paradigm integrates multi-tier and multi-agent hierarchical
mission architectures to enable unconstrained, science-driven planetary exploration. The depicted three-tier architecture is comprised of: (1) a ground tier
composed of multiple miniaturized and expendable agents with complementary sensor suites that can transmit the sensor information back to a main data
compilation hub for comparative analysis; (2) an airborne tier comprised of blimps and/or balloons to control and command the surface/subsurface
reconnaissance agents; (3) a spaceborne tier comprised of multiple orbiters which command the airborne tier, receive the data transmitted from the
airborne- and ground-based agents, and interact with Earth-based systems (Fink et al., 2005a—c, 2006a, b, 2007). This novel paradigm introduces new
implications for space exploration, including increased mission safety, mission reliability, and science return, which in turn enable new scenarios for the

exploration of various planetary bodies.

2. Expert system design for planetary reconnaissance:
problems and solutions

The design of an expert system to assess the potential for
habitability (PH) through a tier-scalable reconnaissance
approach is a knowledge engineering problem: given
the domain-containing input data, find a suitable solution

among all possible candidates occurring in the solution
space. In our case, “input data” consist of information
collected via multi-scale and multi-sensor deployment
coupled with existing information, while ‘“solution” is
the answer to the following question: “What is the
potential for a particular locale under investigation to
harbor life?”.
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If the answer to this question must be given in an
automatic fashion, specific field-based knowledge must be
implemented on a computer. In defining an expert-system
approach to the problem, knowledge is one of the major
aspects of the procedure. Knowledge is ‘“‘condensed
information” and for our purposes consists of a set of
rules or methods from which it is possible to perform
plausible reasoning to obtain new facts, and to formulate
new hypotheses while testing existing hypotheses. Gener-
ally, the knowledge domain consists of a set of definite
rules that can be coded into computer language.

One other important aspect that must be considered is
the inference mechanism. Inference can be defined as the
process of matching data and knowledge to determine a
solution to the problem (i.e., infer new facts and/or map
around a problem, ultimately addressing the problem).
Knowledge is usually acquired and integrated via the
inference mechanism. To implement reasoning over knowl-
edge, a theoretical framework is required (i.e., the need to
define the appropriate logic). The selected logic will help
determine the chain of matching results created to provide
a suitable solution to the problem.

Fig. 2 shows a flow diagram that provides the general
architecture of an expert system suitable for the tier-
scalable reconnaissance mission concept. The various
blocks in the diagram represent the essential ingredients.
The knowledge-base contains information acquired via
interaction with a field expert required to solve the
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N

problem. The database contains information about existing
and in-transit acquired facts (i.c., information coming from
the sensor after processing coupled with existing informa-
tion). The inference engine is the place where the inference
mechanism for reasoning over knowledge and data is
implemented. The results of the inference are provided to
the spaceborne command and control module, which
selects the course of action based on the inferred
information. The latter is usually implemented in the
spaceborne tier and distributed through commands sent to
the tiers beneath according to a hierarchical scheme. The
explanation module is important because it provides
explanation about how and why new information has been
generated. This module can be interfaced with Earth-based
centers where the explanation provided by the reconnais-
sance system is monitored. The Earth-based center can
override the spaceborne control at “any” time (aside from
the communication time lag) if there is an error in the
inference.

The expert system paradigm defined above is general and
requires appropriate design, which includes definition of
knowledge, data inputs, and inference mechanisms. In the
following, we will focus on the two major parts of the
system: knowledge-base and inference. It should be pointed
out that different choices of those two ingredients may
yield different solutions for the intelligent reconnaissance
system. In this regard, we believe that an expert system
based on fuzzy logic may be a suitable candidate for
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Fig. 2. General architecture of an expert system proposed for tier-scalable mission deployment.
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an autonomously operating tier-scalable reconnaissance
mission.

3. Fuzzy logic paradigm for autonomous fuzzy expert
system design

The proposed system bases its foundation on the concept
of fuzzy sets and fuzzy logic as an inference mechanism. In
the following, an overview of fuzzy logic concepts, required
for an effective system design, is provided for a basic
understanding of the subject.

3.1. Why fuzzy logic for planetary exploration?

Planetary exploration is about understanding planetary
bodies via remote and in-situ sensing. New discoveries are
made using newly acquired data to infer new and unknown
facts, as well as to test working hypotheses and to
formulate new hypotheses. Formulated working hypoth-
eses become closer to reality when diverse layers of
information corroborate the formulated hypothesis (con-
ciliation of diverse information), upping the potential of
discovery, especially through interdisciplinary investiga-
tion. The tier-scalable reconnaissance missions strategy
provides the means to acquire multi-scale and multi-sensor
information (e.g., stored in a multi-layer-information
system (MLIS), introduced by Fink et al., 2005a—) that
must be appropriately synthesized to evaluate certainty
about possible new facts and findings. Nevertheless,
general statements such as ‘“‘the observed site contains
life” cannot be stated as true or false, as classical and
propositional logics require, until certainty is guaranteed.
Unfortunately, global scale measurements might be incon-
clusive and require the concentration of efforts in a defined
area where newly acquired information coupled with
existing knowledge gives us clues (but not necessarily
certainty) about, for example, presence of water and/or
presence of life. Moreover, a statement such as “elevated
hydrogen content is indication of an elevated presence of
water”’, although rather general, is a linguistic expression
of the common reasoning performed by planetary geolo-
gists in analyzing data. The knowledge system of planetary
scientists, expressed in such statements, can be incorpo-
rated in the knowledge-base of an expert system for
automatic reasoning.

The fuzzy logic semantic provides an ideal framework to
deal with independent layers of information of varying
degrees of confidence such us elevated hydrogen content,
low sulfate level, and medium number of sapping channels.
The absolute values of the input data can be transformed
into fuzzy values and incorporated in rules that deal with
concepts/working hypotheses of varying degrees of con-
fidence (depending on the layers of information that are
collectively consistent with the hypothesis), typical for
planetary exploration. Thus, fuzzy logic provides a power-
ful framework that can be exploited to design an expert

system to be embedded in tier-scalable reconnaissance
mission architectures for assessment of the PH.

3.1.1. Deploying fuzzy experts on planetary bodies: Titan,
Enceladus and Mars

One of the questions that naturally arise while consider-
ing autonomous systems for habitability assessment is how
the effectiveness of the system varies as function of the
observed planetary body. Indeed, the usefulness of a fuzzy
expert system for autonomous interpretation of global and
local habitability is influenced by two major and inter-
connected factors: (1) the ability of the system to acquire
and store data and (2) the distance of the observed planet
from Earth. Generally speaking, the larger the distance
between the deployed observing platform(s) and Earth, the
higher is the level of needed autonomy. Consider Titan and
Enceladus exploration scenarios. The current Cassini
mission has been successful in collecting and sending back
to Earth a great deal of information unveiling novel
features of these two saturnian satellites. For example,
Cassini radar observations and the Huygens descent/
landing probe unveiled apparent methane lakes, riverbeds,
coastlines (Elachi et al., 2006; Perron et al., 2006) and
dunes (Lorenz et al., 2006) on Titan. Enceladus geological
activity is under scrutiny as well: closer observations of the
saturnian satellite as imaged by Cassini, revealed an
interesting world where tectonic activity and cryo-volcan-
ism dominated the satellite geologic history and where
geyser-like eruptions continued in real-time during Cassi-
ni’s exploration (Porco et al., 2006; Kargel, 1995, 2006).
Cassini is an orbiting platform equipped with instruments
for remote data collection and most of its operations are
constrained by instrument resolution and atmospheric
effects (Tomasko et al., 2005). Science data are stored in
the solid-state recorder (SSR) which has the ability to
retain 2 Gigabits of data coming from the 12 on-board
instruments. Clearly, data storage becomes a factor since if
the collected bits exceed the storage capability, information
must be erased. Currently, since the spacecraft is located
between 8.2 and 10.2 astronomical units (AU) from Earth,
it takes about 68—84 min to communicate with Earth. Real-
time communication is impossible and as a matter of fact,
it takes 3 h for the system (including human beings) to react
to any on-board problem. Limited on-board software can
diagnose occurring problems, but if they appear too severe,
the spacecraft is put into a safe mode and essentially shut
down until human’s intervention. Similar approach to fault
tolerance caused the Galileo spacecraft at Jupiter to lose
nearly half of its data collected at the most interesting
close-approach phases. The absence of software capable of
autonomous decision-making and control jeopardizes the
ability of the system to perform optimal reconnaissance.

Far more problematic than engineering monitoring and
fault detection/protection (where the system is nominally
known and understood) is the task of autonomous science
which consists in autonomously and intelligently discover-
ing key natural phenomena in environments that are
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neither well known nor understood. These phenomena may
be either transient or may be observable for only brief
periods. The dynamic nature of some phenomena or the
brevity of the observing windows, coupled with concerns
for the engineering safety of the spacecraft are two key
aspects limiting the ability of current systems to respond to
serendipitous discoveries and to modify their observing
strategies. More fundamental are the problems of (1)
autonomous recognition of what may constitute an
important discovery, (2) autonomous prioritization of the
discovery relative to other observing and engineering
maintenance tasks, (3) the autonomous development of
an observing strategy if the phenomenon should be deemed
to be important enough to formulate and insert new
observations. Current systems are entirely unable to make
such decisions. The consequence is that many profoundly
important phenomena probably go undiscovered or under-
observed. This is a severe handicap when dealing with
phenomena that may be difficult to detect due to a
transient nature, due to low frequency or low concentra-
tion relative to detection thresholds, or due to observability
only from special vantages. When the phenomenology is
not yet known, and thus is not predictable by traditional
means of spacecraft observation, the ability to capture a
discovery observation is especially challenging; indeed,
some of the things we most search for in the Solar System
may be essentially impossible to find with current mission
and observing approaches. Is life or fossil detection on
distant worlds among these phenomena? We suggest that it
may be; thus astrobiology is an important and exception-
ally challenging application of the fuzzy logic-based
approach to planetary exploration.

In the case of Titan, while we believe that a tier-scalable
deployment on the saturnian satellite is the most effective
way to explore it (Fink et al., 2006b, 2007), any system
equipped with a fuzzy-based expert system for habitability
assessment can effectively overcome the limitation imposed
by Earth communication delays and data storage. We
envision a scenario where a multi-tier system (e.g.,
orbiter(s) plus blimp(s) plus ground agent(s)) is deployed
on Titan. The platforms are equipped with various sensors
for in-transit and continuous data acquisition. Despite the
fact that the overall amount of data collected during the
course of a tier-scalable mission could be extremely large, a
fuzzy-based expert system for life assessment and inter-
pretation can effectively retain only data that yields
significant findings; thus, the integrated system can
concentrate its actions on locales worth of exploration
using the platforms and sensors best suited to make the
observations.

Such expanded platform/sensor systems may work in the
traditional human-controlled mode, but they also may
work in a semi-autonomous mode. For example, on Titan,
the system might select potentially interesting information-
rich sites concentrated around zones of mobile condensed
hydrocarbons (e.g., lakes), send signals back to Earth and
initiate a human—machine interaction where the humans

analyze both system results and explanations (see Fig. 2).
Subsequently, humans could command further inves-
tigation or alternatively disregard the selected areas.
At Enceladus, the system might be designed to look
specifically for transient geyser eruptions and geother-
mal emissions and focus observations on the phenom-
ena deemed most interesting or most suitable for safe
observations.

In this paper, we focus on designing a fuzzy system for
habitability assessment taking Mars as a case study. Since
Mars is an extremely rich and complex environment, our
work may serve (a) to illustrate the ideas behind developing
such fuzzy expert and (b) to provide a platform for system
design and implementation that can be readily tested and
verified for consistency on hypothesized and (in the future)
real Mars scenarios. Mars is relatively close to Earth and
one could argue about the need for such system. Indeed,
one could envision two alternative scenarios where (1) one
deploys landers and/or rovers in a carefully selected locale
(e.g., forth coming Phoenix mission 2008) or (2) one
deploys a large number of inexpensive agents looking for
life everywhere. Case 1 suffers the classical limitations
associated with the relative mobility of the deployed agents
and past and present missions (e.g., Pathfinder, Mars
Exploration Rovers Spirit and Opportunity) have been
unsuccessful in looking for life. For case 2, either if agents
are deployed following a tier-scalable scheme or if multiple
agents are indiscriminately sent onto the Martian surface,
data management becomes a critical factor. As the number
of agents increases, the amount of data increases exponen-
tially. Fuzzy experts may be extremely functional in
understanding and interpreting the collected data and
again, if the semi-automatic mode with human in the loop
is preferred, Earth-based fuzzy systems could help humans
to perform synthesis of information quickly and effectively.
The Mars reconnaissance orbiter (MRO) has been recently
inserted into a martian orbit and its on-board instruments
are sending an unprecedented amount of data back to
Earth. For example, the high resolution imaging science
experiment (HiRISE) camera system is expected to send 12
Terabytes over the course of two years (McEwen et al.,
2007). Careful human analysis of large datasets is generally
problematic and expert systems capable of understanding
Martian geology and geochemistry as well as assess locales’
habitability may operate from Earth in a quasi real-time
mode and be established as an aiding tool to help
coordinating the sequence of observations. Therefore,
while we believe that the proposed methodology is most
effective in tier-scalable architectures, it may be considered
as foundational in developing an Earth-based semi-
autonomous system for decision making (with humans in
the loop). Such a system could help humans coordinating
the observing platforms already deployed around/on Mars.

3.1.2. Fuzzy logic versus alternative AI schemes
Any artificial intelligence (AI) scheme must be
able to deal with the major issues arising in knowledge
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engineering. For example, representation, inference, learn-
ing, generalization, explanation and adaptation capabilities
must be carefully analyzed and considered when choosing a
suitable scheme for habitability assessment. Symbolic
Al, fuzzy logic-based and neural networks schemes
provide different solutions to the life-searching problem.
Neural networks are connectionist systems where
knowledge is distributed among various nodes. Thus,
neural networks use unstructured knowledge (i.e.
they learn by examples, by doing or by analogy),
and they are capable of good generalization and adapta-
tion. Conversely, symbolic Al and fuzzy systems
provide an effective mean to represent structured
knowledge. Moreover, inference is exact in symbolic
Al while it is approximate in fuzzy-based and neural
network systems. Because of their nature, symbolic Al
systems do not deal very well with missing corrupted and
inexact data.

When dealing with planetary exploration one of the
major problems to be addressed is how to represent
uncertain knowledge and uncertain data. Besides fuzzy
methods that are inherently capable of dealing with
uncertainties, probabilistic methods could be also em-
ployed. By relying on the axioms of probability as a
mathematical framework, coherent knowledge-bases can
be built using (a) data collected in the course of past
missions and (b) statistical methods to determine the
appropriate conditional probabilities (objective probabil-
ity). Moreover, conditional probabilities that define beliefs
unsupported by data (subjective probability) can be
implemented as well. In short, probabilistic methods are
based on estimating the posterior probability for a
conclusion (defined by a rule) to be accepted as correct.
In practice, probabilistic methods cannot deal with
ambiguous and contradictory scenarios. Indeed Bayes’
theorem fails whenever multiple rules reach different
conclusions if a condition is true. Conversely, fuzzy systems
can deal with contradictory and ambiguous rules by
naturally providing a trade-off during the inference process
(rules are fired at the same time). Such scenarios are
expected to be found when assessing habitability in
complex environment.

At this stage of development, we believe that fuzzy-based
systems are an ideal solution to the problem of assessing
planetary habitability. In such systems, structured knowl-
edge is directly implemented by intuitive, easy-to-devise,
fuzzy rules that can facilitate the interaction between
planetary scientists and computing, autonomous machines.
The basis of fuzzy logic is the basis for human commu-
nication and therefore in unknown and uncertain planetary
environments, fuzzy systems will be able to provide good
and solid explanation for any autonomous decisions.
Planetary experts (e.g., geologists, astrobiologists, cosmo-
chemists) will be required to provide their knowledge and
to contribute both in the design and testing phase while
working on a common ground with computer and Al
engineers.

3.2. Fuzzy logic basics

Fuzzy logic was introduced by Lotfi Zadeh (1965, 1975)
as multi-valued logic capable of dealing with intermediate
values between traditional, absolute evaluations such as
“true or false”, “hot or cold”, “yes or no”, and so on.
Fuzzy logic-based systems were born as an alternative to
the traditional notion of set membership and the Greek
classical logic. One of the famous propositions of the
Aristotelian logic is the “law of the excluded middle”
according to which any proposition must be either true or
false. The semantic meaning of a proposition is usually
determined via a truth table. Fuzzy logic allows the
possibility of degree of membership to a set, opening the
door to a new way of defining knowledge using statements
that can be true to a certain degree (the “‘excluded middle”
coming to the forefront). Fuzzy logic is an excellent tool for
implementing common sense knowledge on a digital
computer. It is based on simple mathematical concepts
and is supported by a well-defined logical framework.
Moreover, fuzzy logic is tolerant of noisy, imprecise, and
faulty data. Fuzzy logic expert systems deal with un-
certainty by reasoning over the general understanding of
the problem rather than on exactness of the process (e.g.,
the natural world vs. the confines of a lab-based controlled
experiment). Next, we define the basic ingredients and
concepts that are required to design a fuzzy expert system
for assessing life habitability.

3.3. Fuzzy sets and membership function

The basic ingredient of fuzzy logic design is the simple
notion of a fuzzy set (Zadeh, 1965; Dubois and Prade,
1980; Kasabov, 1996). In conventional classical and/or
propositional logic, given a set U (called universe of
discourse) and a subset 4 (included in U), any element ¢ in
U can either belong or not belong to 4. Formally, this can
be stated defining a function, called membership function,
that takes any element ¢ in U and assigns either 1 (the
element belongs to A) or 0 (the element does not belong to
A). In this sense, the set is distinctly constrained since it has
well-defined boundaries (“crisp” in Fuzzy Logic terms). A
fuzzy set is a set without crisp boundaries, i.e., an element £
can belong to the set with a certain degree of membership.
The fuzziness of the set is translated into a new definition
of the membership function, which can now take any value
between 0 and 1. If the value of the membership function
over ¢ is 0 or 1, then the element belongs or does not
belong to the set. For any intermediate value, say 0.7, we
state that the element ¢ belongs to 4 with a degree of
membership of 0.7.

It is clear that fuzzy sets are extensions of ordinary
(crisp) sets. Operations between fuzzy sets can be extended
in similar fashion. Generally, it is desirable to intersect,
unify, and negate fuzzy sets. These operations are allowed
by using the logical operators AND, OR, and NOT (see
Zadeh, 1988; Kaufmann and Gupta, 1985; Ross, 2004, for
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a detailed explanation of these operators and how they are
applied).

3.4. Fuzzy logic paradigm: fuzzy rules and inference
mechanism

The fuzzy logic paradigm is based on the appropriate
definition of fuzzy propositions, fuzzy rules, and an
inference mechanism, which are built upon the concept of
fuzzy sets. Fuzzy propositions are linguistic statements
linked by fuzzy connectivities. In general, the statements
are not true or false but their truth-value is defined by the
membership value associated with the respective fuzzy
variable represented in the proposition. The connectivities
are the classical logical operators such as AND, OR, and
NOT, but they are applied according to the way operations
between fuzzy sets are defined (see Zadeh, 1988, 1989). If
complex propositions must be evaluated, this can be done
by the computation of a new membership function
constructed using the operational rules between fuzzy sets.

Fuzzy rules are defined by linguistic statements expres-
sing the expert field knowledge required to infer new facts.
The rules express conditional statements, which form the
basis of the fuzzy logic knowledge system. A large part of
the presented effort is devoted to defining the appropriate
rules that condense the methodology employed in ap-
proaching the problem of identifying suitable prime
candidate sites of high potential for life in planetary
environments. Thus, the “field expertise’” and “knowledge”
of a field geologist will be translated into appropriate rules
for a direct implementation of an intelligent fuzzy-based
expert system.

Two major classes of rules are commonly used by fuzzy
systems: Sugeno-type and Mamdani-type. The Mamdani-
type rules (Mamdani and Assilian, 1975; Mamdani, 1977)
have the following structure:

IF (zis A) THEN (Bis B).

Here, we distinguish between two fuzzy propositions:
antecedent or premise (z is A4) and consequent or
conclusion (f is B). The truth-value of these propositions
is defined via their membership functions. 4 and B are two
linguistic values defined by their associated membership
function in the universes X (for variable o) and Y (for
variable §). For example, in the context of Mars explora-
tion, o could be the number of water-carved valleys present
in a region, f is the potential for life habitability, and 4 and
B could be representative of linguistic statements such as
“high”, “low”, etc. The Mamdani-type rules are therefore
IF-THEN rules. If many inputs are present, many
propositions can be formed and linked using logical
operators such as AND and OR. For example, the rules
may have more than one antecedent:

IF (o is A1) AND (e is A2) ... AND (0, is A,,)
THEN (B is B).

In general, many rules are required to implement the
desired knowledge. In fuzzy logic, the inference mechanism
determines the sequence used in firing the rules to obtain
the desired solution. In typical settings, the rules are fired at
the same time or cyclically. In certain Mamdani-type rules,
a confidence factor (CF) can be introduced to deal with
uncertainty. In essence, the factor is used to weight the
importance of a rule relative to the others. We will see how
the confidence factor associated to one rule or to a group of
rules will play a key role in planetary settings. In our
design, we will focus exclusively on Mamdani-type rules
(for more information on Surgeno-type rules see, e.g.,
Sugeno, 1974, 1985).

The Inference Mechanism is a process of matching the
domain with the solution space. In some sense, the process
can be seen as given some data X and a set of rules, to infer,
through a chain of matching, a new value Y. This is a key
process since new facts are inferred using some plausible
reasoning over knowledge and data. In a broader sense, the
inference mechanism is defined by specifying an implica-
tion operator, a composition rule, and else-links between
rules. Examples of else-links are the AND- and OR-link. In
the AND-link, two propositions are linked together by the
AND operator, which consists of determining a new
membership function through the MAX operator (i.e.,
the new membership function is obtained by comparing the
two original functions point-by-point and taking the
maximum value). In the OR-link, two propositions are
linked via the OR operator, which consists of determining
the new membership function via the MIN operator (i.e.,
the new membership function is obtained by comparing the
two original functions point-by-point and taking the
minimum value). The implication operator provides a
way to perform inference using the rule. The antecedent is
linked using AND/OR operators and the result is
transformed by the implication operator, which shapes
the fuzzy set of the consequent. In practice, the Mamdani
inference system (Mamdani and Assilian, 1975) is generally
employed, which includes the MIN function, (i.e., the fuzzy
set is chopped off to a degree specified by the antecedent)
and the PROD (scaling) function (i.e., the fuzzy set is
squashed to a degree specified by the antecedent). (For
more information see text books such as Ross, 2004.)

Importantly, if many rules are considered, the fuzzy
inference mechanism combines the results of all rules to
provide the output.

4. Knowledge-base for the fuzzy-expert system: mimicking
the scientific/operational approach of a geologist, biologist,
and chemist

This section provides the basis for building the knowl-
edge-base required to construct a fuzzy-based expert
system capable of autonomously determining the potential
exhibited by the planetary locale under observation to
harbor life. The knowledge-base construction is not only
an attempt to simulate the approach of a geologist, but also
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an attempt to merge other disciplines with geology such as
biology and chemistry, thereby establishing connections
between presence of life and/or biosignatures and a specific
geological environment. As explained in Section 3.1.1, we
focus on Mars, which affords an opportunity to establish
the basic methodology that can be eventually extended to
other planetary scenarios, and we discuss the rationale that
underlies the proposed two-layer fuzzy system.

4.1. Rationale for building the knowledge-base to assess
potential for life habitability

In a recent paper (Dohm et al., 2004), a novel approach
was proposed for selecting prime candidate sites for future
Mars exploration. Indeed, published geological maps
portray Mars as an episodically active, dynamic planet
with magmatic, tectonic, water/ice, and wind activity in its
recorded geologic history. It may still be internally active,
which includes local elevated heat flow and potential
magmatic-driven activity (Dohm et al.,, 2001b). In the
martian context, a prime candidate site can be defined as a
locale that has the greatest potential to yield significant
geologic, paoleohydrogeologic, paleoclimatic, and exobio-
logic information (Dohm et al., 2004). More importantly,
in answering the fundamental question of life on Mars, the
site should possess the greatest potential for extant and/or
fossilized life. In the proposed approach, which has been
built upon past efforts (e.g., Greeley and Thomas, 1994),
the optimal candidate site is established through a synthesis
of all published information, including stratigraphic,
topographic, geomorphic, paleotectonic, paloehydrologic,
geophysical, thermal, spectral, and elemental data. Based
on this approach, Dohm et al. (2004) concluded that the
martian Northwestern Slope Valleys (NSVs) region has
elevated probability to yield significant geologic, climatic,
and possible exobiologic information. The elevated con-
fidence came from compiling layers of information, which
jointly and consistently pointed in the direction of the
region being a prime candidate for future science-driven
exploration.

The geologic approach of synthesizing layers of in-
formation from various perspectives, including orbital,
airborne, ground, and subsurface, can in principle be used
to determine the potential that a specific locale on Mars
comprises extant and/or fossilized life. The appropriate
synthesis is usually performed by the field expert (i.e., the
planetary geologist/biologist/chemist) who collects avail-
able information and, using existing field- and remote-
based knowledge and expertise, determines and explains if
a certain region has the potential for past and/or present
life. To the extent possible, the terrestrial geologic
approach has been adopted and then adapted to meet the
needs and special challenges inherent in producing
planetary geologic maps that rely on spacecraft data,
lacking ground truth. In the specific case, the approach
used to determine the life potential for a certain locale via
synthesis of layers of information, requires the field expert

to perform comparative analysis among various elements
in the field, employing some level of intuition/judgment to
establish when certain data collectively indicate that a site
yields the highest probability for the presence of life. If the
amount and diversity of information is great, this is indeed
difficult and time consuming for any geologist/biologist/
chemist (e.g., while in transit, maintaining location,
synthesizing spatial and temporal information at various
scales, and testing and formulating hypotheses, etc.).
Moreover, in the context of the tier-scalable reconnaissance
mission concept, it is desirable to have an autonomous
system that mimics the geologist approach, while readily
coupling information gathered from wvarious disciplines
such as biology or chemistry. Such a system would provide
independent inference over a set of basic rules to establish
the level of confidence that a certain region is harboring
life. Relying on this foundational approach, we aim at
defining a set of independent rules that (a) mimic the
layers-of-information-synthesis approach as defined above,
and (b) can be directly implemented in the fuzzy expert
system paradigm. The key element of the knowledge-base
approach is to establish how the search for sites with
elevated potential for life can be conducted on the basis of
layers of synthesis and comparative analysis of diverse
information.

One of the premises is that water is the key to life, and as
such, the system that performs tier-scalable reconnaissance
must identify, characterize, and quantify past and present
water. Water is considered a first-order indicator of life-
containing potential (including surface and subsurface
water) in the form of solid (ice/rock with interstitial ice),
liquid (including brines), and water vapor (e.g., moisture to
the surface such as in the case of fog embankment). In the
case of the evolution of the Tharsis magmatic complex
(Dohm et al., 2006a, in press; Komatsu et al., 2004),
geologic information points to an episodically active
complex, which includes magmatic-driven floods (including
hydrothermal activity), ponding forming water bodies
ranging from lakes to oceans, and transient hydrological
cycles with possible extensive periods of inactivity (Baker et
al., 1991; Fairén et al., 2003). During the pulses of
catastrophic activity, does life originate in the subsurface
and potentially thrive at the surface, as hypothesized (e.g.,
Schulze-Makuch et al., 2005b; Fairén et al., 2005)? In the
Atacama desert, Chile, there are investigations underway
that are indicating promising results that life may have
sprung during magmatically and hydrothermally active
periods. The history of water on Mars is recorded not only
in geomorphological features such as valley networks, but
also in sedimentary facies, and as such, a variety of
sedimentary rocks are candidates for exobiological inves-
tigation (Komatsu and Ori, 2000; Ori et al., 2000).
Furthermore, groundwater is a potential habitat for life
in the past (Mahaney et al., 2004) and present.

Based on published geologic, paleohydrologic, and
geomorphic information, Mars has been active and water
enriched until geologically recent times (Late Amazonian
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epoch; e.g., Scott and Tanaka, 1986; Scott et al., 1995;
Fairén et al., 2008, currently under review). This was
recently confirmed through gamma ray and neutron
spectrometers (Boynton et al., 2002; Feldman et al., 2002,
etc.) to the extent that it could be currently enriched in
water in places. In addition, Mars Global Surveyor-, Mars
Express-, and Mars Exploration Rovers-based informa-
tion, which includes the identification of rock materials
such as hematite, sulfates, and phyllosilicates, points to
histories involving water. Moreover, Mars demonstrates
internal heat release, both past and possibly present (e.g.,
see Dohm et al., 2004, 2006D).

Another first-order indicator for life-containing potential
is energy. Voids in the martian subsurface (e.g., Rodriguez
et al., 2005, 2006), which are expressed at the surface by a
diverse suite of features such as collapsed and broken
terrain, referred to as chaotic terrain, may provide suitable
habitats for life, but without energy into the system, life
may exist in dormant form; once energy is injected into the
environment in the form of heat and/or nutrients, then life
may spring (e.g., Boston et al., 1992; Boston, 2004;
Schulze-Makuch et al., 2005a,b; Fairén et al., 2005).
Anything that indicates present energy is extremely
important (e.g., elevated heat flow related to the internal
heat release of a planet). There are multiple lines of
evidence that collectively point to an active Mars
(Anderson, 2001; Mitchell and Wilson, 2003; Marquez et
al., 2004), and thus there may be heat release to subsurface
and surface environments (including associated aquifers).
The thermal emission imaging system (THEMIS), an
instrument aboard the Mars Odyssey spacecraft, was
intended to identify thermal anomalies on Mars related
to internal heat release, but has not identified such. One
possible explanation is the low resolution of the instru-
ment, or that the heat releases are low grade, and thus
exceedingly difficult to identify by remote sensing (Dohm
et al., 2006b). The tier-scalable reconnaissance mission
paradigm originated by Fink et al. (2005a—, 2006a, b,
2007) would afford an optimal opportunity to test whether
Mars is still active through higher resolution spectroscopy
(both multispectral and nuclear) acquired via airborne and
field-based reconnaissance (with the advantage of mini-
mizing noise from electromagnetic radiation and atmo-
spheric conditions). Other means of identifying energy,
which could be part of a tier-scalable architecture, include
heat sensing, seismic, radar sounding, etc.

Our primary objective is to autonomously identify,
characterize, and quantify environments that indicate both
water and energy (past and present). For example, by
identifying a region of heat release with associated near-
surface water, the life potential would be at an elevated
level. If the presence of water and energy is long-lived,
however, then the life potential is even further increased.

These considerations are useful in assessing the utility/
importance of the indicators (ranking). We now distinguish
between past long-lived water/energy and present water/
energy. The simultaneous presence of these four conditions

has the highest life potential. For example, if volatiles
release from fractures and geologic contacts, a ponding of
brines in a topographic low, elevated heat flow, and/or
near-surface aquifers are observed, then the probability for
life is elevated. If such indications of potential life are
coupled with, for example, evidence of past water and
energy such as vent structures, lava flows, joints, faults, and
rift systems, valleys (including networks), etc., then the life
potential is further increased.

Importantly, water alone, though significant, may not be
enough. For example, the observation that valley forms
such as sapping channels sourcing from fractures, as noted
for Mars (e.g., Mouginis-Mark, 1985, 1990), is an
indication of past water-related activity, but not necessarily
life. The basic indicators for water-related activity (tran-
sient and long-lived) are typically geomorphologic, strati-
graphic, and topographic. Other indications of past water-
related activity include drainage basins, valleys that
debouch into basins, stratigraphic sequences (water and
rock materials that are deposited into basins), and valley
forms (e.g., valley networks, sapping channels). Specifi-
cally, if a locale is to be identified as the highest life
potential, it must record long-lived, water- and energy-
related activity (e.g., ancient-, middle-, and recent-planet
magmatic and tectonic activity). Thus, present water and
energy coupled with indications of past water and energy
has the highest life potential.

The terrestrial- and planetary-based analysis of the
relationship between water, energy, and life presented
above, allows us to categorize the areas of interest
according to past/present water/energy, leading to indica-
tors of life potential. Detecting past AND present water
plus past AND present energy is the first order of
importance, whereas the second order of importance are
areas exhibiting present water AND present energy; a third
order of importance are areas with EITHER past and
present water OR past and present energy (water and
energy separately are at the same level), and a forth order
of importance is past water AND past energy.

To implement the above outlined approach in a fuzzy-
based expert system, a two-step process is required to
connect life to water and energy indicators. First, the
expert system acquires water and energy indicators
collected via streaming of sensorial data and assesses the
past/present water and energy potential of the observed
locale. Subsequently, the system reasons over past/present
water/energy to extract life-containing potential. Thus, a
two-layer fuzzy system is required. The first layer contains
knowledge-bases made of rules linking the appropriate
water/energy indicators to past/present water and energy
potential. For example, if the system detects channels and
streamlined bed forms, this is an indication of past aqueous
conditions. In addition, if spectral data report high
chlorine, sulfates, and evaporites, everything collectively
points to past aqueous conditions. The same reasoning can
be applied to the indicators of present water and past and
present energy.
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The second layer contains a knowledge-base comprised
of rules linking past/present water/energy to life-containing
potential. The second layer of the expert system reasons
over the output of the first layer using rules combining
order of importance of past/present water and energy to
effectively infer PH of the observed locale. For example, if
potential for past/present water and energy is high, the
potential for life-containing will be high to the highest
degree.

Although the presented analysis outlines the essential
approach that considers many lines of evidence and
demonstrates the path that must be followed to construct
the appropriate knowledge-bases, some extensive work
must be done to translate the expert knowledge in
appropriate rules that can be implemented on a digital
computer (IF-THEN Mamdani-type rules, see Section 3.4).
Similar to human experts, fuzzy systems are capable of
learning and self-adapting, or being manipulated by
humans based on experience. Depending on system
performance on Mars, or performance in test simulations
on Earth, it might be decided to change some rules or to
introduce additional expert systems (e.g., warm vs. cold
environmental conditions on Mars; e.g., see Kargel, 2004).
The following sections illustrate the details of the process

that creates effective knowledge-bases and implements the
rules required by the two-layer fuzzy expert system.

5. Building a fuzzy logic expert system for life habitability
assessment

Here, we describe in detail the basic structure of the
proposed two-layer, fuzzy-logic-based expert system. The
life indicators and the proposed set of rules should be
foundational and open to revision as our understanding of
life on other planctary bodies develops. As such, the
approach is generic enough to accommodate any possible
modification while still employing the same framework.

Fig. 3 shows a schematic of the proposed multi-layer,
fuzzy-logic-based expert system. The system is defined by
two layers: according to the deployed multi-tier architec-
ture, data collected by multiple sensors at multiple scales
from several vantage points observing an operational area
of interest are pre-processed by AGFA-like software
(Automated Geologic Field Analyzer by Fink et al.,
2005d; now Automated Global Feature Analyzer, see Fink
et al., 2007, to be submitted) to extract feature information
in the form of numerical values for the respective indicators
of interest. The indicators are arranged according to
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Fig. 3. Schematic of the two-layer fuzzy logic-based expert system for the tier-scalable mission architecture. The illustration shows how an intelligent
reconnaissance system can be integrated into the tier-scalable architecture. The “brain” of the system consists of a set of five interconnected fuzzy systems
distributed over two layers and operate according to the scheme outlined in the text. Depending on the life-assessment result, the system might order
further deployment to the locale (e.g., drill rig that is optimally placed to sample identified near-surface groundwater in a locale of elevated heat flow).
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specific categories of scientific interest (e.g., elemental,
spectral, geomorphologic, paleohydrologic, topographic,
stratigraphic, seismic, paleotectonic, atmospheric, spectral,
elemental, etc.) and fed to a set of four independent fuzzy
systems that are designed to generate past/present water/
energy information. The first layer processes the indicators
according to defined fuzzy rules and generates the past/
present water and energy potential. The latter is forwarded
to the second fuzzy-layer to provide, after appropriate
fuzzy inference over a pre-defined set of fuzzy rules, the PH
exhibited by the locale under investigation. Next, the rules
for both layers are defined.

5.1. First fuzzy-layer: past/present water/energy
assessment for life-containing potential

The first layer is defined by four independent fuzzy
systems. Each fuzzy system has an embedded knowledge-
base composed of a sequence of IF-THEN, Mamdani-type
rules. Using the appropriate rules, each fuzzy system
independently assesses the present/past water and energy
potential.

5.1.1. Fuzzy system #1: present water assessment

The first fuzzy system is designed to acquire indicators of
present water at a locale under investigation as signs for
potential life. In essence, the first fuzzy system evaluates the
presence of water, yielding a parameter (PrW) in the range
0-100, the latter being the maximum possible level. Table 1
shows a set of (intuitive) indicators of the presence of
water, and thus relevant to the potential for life. We
consider water in all forms (solid, liquid, and vapor/
moisture), occurring in the subsurface, on the surface, and
in the atmosphere. The mixture of salt and water is also
considered (i.e., brines). The confidence factor (varying
between 0 and 1) is descriptive of the importance of the

Table 1
Present water indicators

Present water

Confidence
factor

Category Indicators

Surface liquid water (SLW)

Elemental/spectral 1
Surface solid water (SSW) 0.9
1
1
1

Elemental/spectral
Elemental/spectral
Elemental/spectral
Elemental/spectral

Surface brine (SB)
Subsurface brine (SSB)
Subsurface liquid water

(SSLW)
Elemental/spectral Subsurface solid water 0.9
(SSSW)
Atmospheric Atmospheric moisture (AM) 0.9
Atmospheric/spectral Soil moisture (SM) 0.9
Atmospheric/ Embankments moisture 0.9
geomorphology (EM)

The parameters, which are selected to characterize the presence of water
on Mars, are the input to the fuzzy system #1 (first layer) to determine the
“present water” potential (PrW).

indicators relative to each other. Moisture embankment
has been considered separately, and when combined with
other indicators, is critical to identifying potential life-
containing locales.

The associated rules are shown in Table 2. The set of 1F-
THEN, Mamdani-type rules are defined and organized to
show the impact of the present water potential on
harboring life. In the semantic description of the rules,
“H”, “M”, “L” stand for high, medium, and low,
respectively. The rules have been organized in two sets
where the indicators have the same confidence factor. The
confidence factor weights the importance of the rules
associated with the corresponding indicators. Particular
care has been taken in defining the lower limit. For
example, the locale under observation might show high
liquid water content but low solid and atmospheric water
(ice and moisture, respectively). In this situation, the locale
still exhibits an elevated presence of water. To adapt the
rule to this circumstance, the AND connector is utilized for
low content, i.e., “present water” is low only if all
indicators are low (see Table 2).

Table 2
Fuzzy rules for fuzzy system #1 (first layer)

Present water fuzzy system: rules

Indicator and Rules

confidence factor

SLW, CF =1 IF SLW is H THEN PrW is H
IF SLW is M THEN PrW is M
SSLW, CF =1 IF SSLW is H THEN PrW is H
IF SSLW is M THEN PrW is M
SB, CF =1 IF SB is H THEN PrW is H
IF SB is M THEN PrW is M
SSB, CF =1 IF SSB is H THEN PrW is H

IF SSB is M THEN PrW is M
IF SLW is L AND SSLW is L AND SB is
L...AND SSBis L THEN PrW is L

Low-rule, CF =1

SSW, CF =0.9 IF SLW is H THEN PrW is H
IF SLW is M THEN PrW is M
SSSW, CF =0.9 IF SSW is H THEN PrW is H
IF SSW is M THEN PrW is M
AM, CF =0.9 IF SLW is H THEN PrW is H
IF SLW is M THEN PrW is M
SM, CF =09 IF SLW is H THEN PrW is H
IF SLW is M THEN PrW is M
EM, CF =0.9 IF SLW is H THEN PrW is H

IF SLW is M THEN PrW is M
IF SSW is L AND SSSW is L AND AM is
L...AND SMis L AND EM is L THEN PrWis L

Low-rule, CF = 0.9

The rules define the knowledge base required for automatic inference of
the present water potential (PrW) Mamdani. The rules structure is fairly
intuitive. For example, “IF SLW is H THEN PrW is H (CF = 1) should
be read as “If the surface liquid water is high then the present water
potential exhibited by the observed area is high (with the highest
confidence)”. Each confidence factor group (CF =1, 0.9) has an
associated Low-rule. The latter has been constructed linking water
indicators with same confidence factor via the AND connector. The
Low-rule reflects the circumstance that potential for water containing is
low only if a reconnaissance system observes a concurrent low value for
any of the considered present water indicators.
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5.1.2. Fuzzy system #2: past water assessment

The second fuzzy system accepts past water indicators as
inputs and yields a parameter that assesses the potential for
presence of water in the past (PsW). Table 3 shows the
major parameters that can be used as indicators of past
water-related activity and that are relevant to the possible
presence of life at the locale. The indicators are mostly
categorized as elemental, spectral, geomorphologic, and
topographic. As in the previous case, the indicators are
associated with confidence factors that weight the relative
impact of the indicators on the potential for past water.
The rules, shown in Table 4, are constructed following
patterns similar to the previous case, but some variations,
due to the nature of the categories, are considered. For
example, in defining the rules, the elemental and spectral
indicators for past water, generally indicating the chemistry
of the observed locale, are not mixed with geomorphologic,
topographic, and stratigraphic indicators, which are
physical markers of the geologic and paleohydrologic
histories of the region. The indicators are organized such
that each group possesses the same confidence factor. Each
group is evaluated with rules that are based on the level of
indicator value (e.g., the higher the indicator value the
higher the potential of past water at the locale). Again,
“past water” is assumed low if all indicators exhibit low
values at the same time, i.e. we used the AND logical
connector to implement this condition (see Table 4).

Table 3
Past water indicators

Past water

Category Indicators Confidence factor
Elemental/spectral Chlorine (CHL) 1
Elemental/spectral Sulfates (SU) 1
Elemental/spectral Hematite (HE) 1
Elemental/spectral Potassium/thorium (PT) 1
Geomorphology Valley networks (VN) 0.9
Geomorphology Sapping channels (SC) 0.9
Geomorphology Anastomosing patterns (AP) 0.8
Geomorphology Outflow channels (OC) 0.9
Geomorphology Poligonal patterns (PP) 0.8
Geomorphology Alluvial fans (AF) 0.8
Geomorphology Stream-lined bedforms (SLB) 0.8
Geomorphology Scarps/terraces (ST) 0.6
Geomorphology Parallel/concentric ridges (PCR) 0.6
Geomorphology Summit pits (SP) 0.6
Geomorphology Pit crater chains (PCC) 0.5
Topographic Basins (B) 0.6
Topographic Topographic highs (TH) 0.8
Stratigraphy Layered stratigraphy (LS) 0.6

The parameters, which are selected to characterize the possible presence of
past water on Mars, are the input to the fuzzy system #2 (first layer) to
determine the “‘past water” potential (PsW). The CF values have been
established using our long-live experience in studying elemental, geomor-
phologic, topographic structures of Mars. The indicators list is not
intended to be comprehensive but reports the parameters our group
believes have the major impact on past water potential.

Table 4
Fuzzy rules for fuzzy system #2 (first layer)

Past water fuzzy system: rules

Indicator and Rules

confidence factor

CHL, CF =1 IF CHL is H THEN PsW is H
IF CHL is M THEN PsW is M
SU,CF =1 IF SU is H THEN PsW is H
IF SU is M THEN PsW is M
HE, CF =1 IF HE is H THEN PsWI is H
IF HE is M THEN PsWlis M
PT,CF =1 IF PT is H THEN PsW is H

IF PT is M THEN PsW is M
IF CHLis LAND SUis LANDHEisL...
PT is L THEN PsWis L

Low-rule, CF =1 AND

VN, CF =0.9 IF VN is H THEN PsW is H
IF VN is M THEN PsW is M

SC, CF =0.9 IF SC is H THEN PsWlis H
IF SC is M THEN PsW is M

OC,CF =09 IF OC is H THEN PsW is H

IF OC is M THEN PsW is M

Low-rule, CF =09 IF VNis L AND SCis L AND OC is L...THEN

PsWis L
AP, CF =0.8 IF AP is H THEN PsW is H
IF AP is M THEN PsW is M
PP,CF=0.8 IF PP is H THEN PsW is H
IF PP is M THEN PsW is M
AF, CF =0.8 IF AF is H THEN PsW is H
IF AF is M THEN PsW is M
SLB, CF = 0.8 IF SLB is H THEN PsW is H
IF SLB is M THEN PsW is M
TH, CF=0.8 IF TH is H THEN PsW is H

IF TH is M THEN PsW is M
IF AP is L AND PPis L AND AF is L...AND
SLBis L AND TH is L THEN PsW is L

Low-rule, CF = 0.8

ST, CF =0.6 IF ST is H THEN PsW is H
IF ST is M THEN PsW is M
PCR, CF =0.6 IF PCR is H THEN PsW is H
IF PCR is M THEN PsW is M
SP, CF = 0.6 IF SP is H THEN PsW is H
IF SP is M THEN PsW is M
B,CF =0.6 IF B is H THEN PsW is H
IF B is M THEN PsW is M
LS, CF =0.6 IF LS is H THEN PsW is H

IF LS is M THEN PsW is M
IF STis LAND PRCis LAND SPisL...AND B
is LAND LSis L THEN PsWis L

Low-rule, CF = 0.6

PCC, CF =0.5 IF PCCis H THEN PsW is H
IF PCC is M THEN PsW is M

IF PCCis L THEN PsWis L

The rules define the knowledge base required for automatic inference of
the past water potential (PsW). The structure of and the rationale for
building the past-water knowledge base is conceptual similar to the other
first-layer knowledge base.

5.1.3. Fuzzy system #3: present energy assessment

The third fuzzy system is designed to evaluate
the potential for present energy (PrE) via thermal,
spectral, atmospheric, and seismic indicators that have a
high impact on habitability. The indicators are shown in
Table 5. From a life-searching point of view, the fuzzy
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system must indicate the level of current energy that is fed
into the system and that may support life. The tier-scalable
exploration architecture should look for locales where
thermal anomalies are present due to the internal heat
release of the planet, both from manifesting in the ground/
subsurface and in the atmosphere. The ground heat
anomaly (GHA) and atmospheric heat anomaly (AHA)
are defined as the difference between the mean ground and
atmospheric temperature of the locale and possible
localized thermal spikes. The spectral thermal profile must
be processed to filter the thermal signature coming from
other possible energy sources, i.e., electromagnetic and
radioactive. Thermal inertia and albedo are important
parameters indicating the ability of the locale to retain
energy. Volatile release might be associated with internal
heat release, while seismic events may also record internal
activity (e.g., magmatic-driven tectonic activity). The rules
are shown in Table 6 and follow the same pattern shown in
the previous cases, i.e., the higher the indicator value, the
higher the potential for energy to be fed into the locale. The
AND logical connector is used for the rules defining the
condition that when every indicator is low, the energy
present in the system is low.

5.1.4. Fuzzy system #4. past energy assessment

The fourth fuzzy system is designed to indicate the
potential for energy flowing in the past. The indicators are
shown in Table 7, and placed into the “past energy”
category based on stratigraphic, paleotectonic, and geo-
morphologic information. Past energy might have been fed
into the region through endogenic-driven injection of
magma, Marsquakes, and/or water flow (including hydro-
thermal activity). The corresponding rules are shown in
Table 8. The rules follow the same pattern defined for the
previous fuzzy systems based on indicators value (e.g., the
higher the indicator value, the greater the potential that
energy was flowing into the locale in the past). The

Table 5
Present energy indicators

Present energy

Category Indicators Confidence
factor

Thermal Ground Heat Anomaly (temperature 1
spike) GHA

Thermal/ Atmospheric heat anomaly (temperature 1

atmospheric spike) AHA

Thermal Thermal inertia (TT) 0.8

Thermal/spectral Albedo (AL) 0.8

Elemental/ Volatiles (VL) 1

Atmospheric

Seismic Richter number (RN) 1

Energy related indicators are categorized as thermal, spectral elemental
and seismic. The selected CF values are not absolute and in the future they
can be modified to reflect new acquired knowledge and understanding of
present energy mechanisms on Mars.

Table 6
Fuzzy rules for fuzzy system #3 (first layer)

Present energy fuzzy system: rules

Indicator and Rules

confidence factor

GHA, CF =1 IF GHA is H THEN PrE is H
IF GHA is M THEN PrE is M
AHA, CF =1 IF AHA is H THEN PrE is H
IF AHA is M THEN PrE is M
VL,CF =1 IF VL is H THEN PrE is H
IF VL is M THEN PrE is M
RN, CF =1 IF RN is H THEN PrE is H

IF RN is M THEN PrE is M
IF GHA is L AND AHA is L AND VL is
L...AND RN is L THEN PrE is L

Low-rule, CF = 1

TI, CF =0.8 IF Tl is H THEN PrE is H
IF TI is M THEN PrE is M
AL, CF =0.8 IF AL is H THEN PrE is H

IF AL is M THEN PrE is M

Low-rule, CF=0.8 IF Tlis L AND AL is L THEN PrE is L

The rules define the knowledge base required for automatic inference of
the present energy potential (PrE).

Table 7
Past energy indicators

Past energy

Category Indicators Confidence
factor

Stratigraphic Number of rock types (RT) 0.7

Stratigraphic Rock Sorting Index (RSI) 0.7

Paleotectonic Number of Faults (NF) 1

Paleotectonic Number of Joints (NJ) 0.7

Paleotectonic Number of intersection between 1
faults (NIF)

Paleotectonic/ Number of channels connected to 1

geomorphology faults (NCF)

Paleotectonic/ Basins (B) 0.7

geomorphology

Paleotectonic/ Number of different lava flow in 1

geomorphology contact (NLC)

Paleotectonic/ Lava/basaltic material (LBM) 1

geomorphology

Such indicators are categorized as stratigraphic, paleotectonic and
geomorphic. Each CF value has been established using our team’s
expertise in understanding the impact of the selected indicators on the past
energy potential.

indicators are accompanied by confidence factors that
weight their relative importance. The AND connector is
used in the “low” rule, consistently following the scheme
outlined for the other systems.

5.2. Second fuzzy layer: water and energy assessment for
life-containing potential

The second fuzzy layer is comprised of one fuzzy system.
It accepts four inputs describing, respectively, the potential
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for past/present water and energy (i.e., the outputs of the
above-discussed fuzzy systems forming the first layer), and
outputs the PH. Its knowledge-base has been constructed
following the rationale outlined in Section 4.1 where water

Table 8
Fuzzy rules for fuzzy system #4 (first layer)

Past energy fuzzy system: rules

Indicator and Rules

confidence factor

NF,CF =1 IF NF is H THEN PsE is H
IF NF is M THEN PsE is M
NIF, CF =1 IF NIF is H THEN PsE is H
IF NIF is M THEN PsE is M
NCF, CF =1 IF NCF is H THEN PsE is H
IF NCF is M THEN PsE is M
NLC CF =1 IF NLC is H THEN PsE is H
IF NLC is M THEN PsE is M
LBM, CF =1 IF LBM is H THEN PsE is H

IF LBM is M THEN PsE is M
IF NFis LAND NIFis L AND NCFis L...AND
NLCis L AND LBM is L THEN PsE is L

Low-rule, CF =1

RT, CF =0.7 IF RT is H THEN PsE is H
IF RT is M THEN PsE is M
RSI, CF =0.7 IF RSI is H THEN PsE is H
IF RSI is M THEN PsE is M
NJ, CF =0.7 IF NJ is H THEN PsE is H
IF NJ is M THEN PsE is M
B, CF=0.7 IF B is H THEN PsE is H

IF Bis M THEN PsE is M
IF RTis LAND RSIis LAND NJis L... AND B
is L THEN PsE is L

Low-rule, CF = 0.7

The rules define the knowledge base required for automatic inference of
the past energy potential (PsE).

Table 9
Second-layer fuzzy knowledge base

and energy contributions to possible extinct and extant life
have been highlighted. Table 9 shows the full set of rules.
The rules have been organized by order of importance,
which is generally defined by a confidence factor that
weights the importance of the rule relative to the others.
The confidence factor is selected to have one out of five
possible values (e.g., first order: CF = 1, second order:
CF = 0.8, etc., see Table 9). There are 13 possible rules
which form the backbone of the second fuzzy-layer. Rules
number 1 and 2 are of first order of importance. They state
that if all the values for past/present water/energy are high
(low), the PH is very high (very low). To second order, if
the locale under observation exhibits high (low) value of
only present water and energy at the same time, the PH is
high (low), but the rule is weighted with a lower confidence
factor. Decreasing the order of importance further, there
are situations where given high (low) potential of past
water, or alternatively high (low) potential of past energy,
the PH is still high, but the rule is weighted with CF = 0.2,
which indicates that the importance of the rule, in our
framework, is the lowest possible. The medium condition
for the parameters is expressed in rule number 5, where all
water and energy indicators are medium. In this case, the
PH is medium. The rule is assumed to be of second-order
importance.

Importantly, the constructed second-layer knowledge
base is directly connected to the experience acquired by our
team regarding understanding the connection between life
and water/energy indicators. The rules might be modified
for wvarious planetary scenarios where the expertise
acquired by planetary geologists, astrobiologists, and
chemists may require a different set of rules that work
better for the particular planetary body under investiga-

Second-layer fuzzy knowledge-base

Order Ruler no. Confidence factor Rule semantic

First 1 CF=1 IF PrW is H AND PsW is H AND PrE is H AND PsE is H THEN PH is VH
First 2 CF =1 IF PrW is L AND PsW is L AND PrE is L AND PsE is L THEN PH is VL
Second 3 CF=0.8 IF PrW is H AND PrE is H THEN PH is H

Second 4 CF=0.8 IF PrWis L AND PrE is L THEN PH is L

Second 5 CF =0.8 IF PrW is M AND PsW is M AND PrE is M AND PsE is M THEN PH is M
Third 6 CF=0.6 IF PrW is H AND PsW is H THEN PH is H

Third 7 CF=0.6 IF PrE is H AND PsE is H THEN PH is H

Third 8 CF=0.6 IF PrWis L AND PsWis L THEN PH is L

Third 9 CF=0.6 IF PsE is L AND PsL is L THEN PH is L

Fourth 10 CF=04 IF PrW is H OR PrE is H THEN PH is H

Fourth 11 CF=04 IF PrWis L OR PrE is L THEN PH is L

Fifth 12 CF=0.2 IF PsW is H OR PsE is H THEN PH is H

Fifth 13 CF=0.2 IF PsWis L OR PsE is L THEN PH is L

The table shows the structure of the fuzzy rules selected to form the backbone of the second-layer fuzzy system Mamdani. The rules are organized in five
groups each with decreasing CF factor defining the relative importance of the rule. Each group is coupled with an order of importance depending on the
CF value (first order the highest with CF = 1, 5th order the lowest with CF = 0.2). The rules can be read in a very intuitive way. For example, rule number
one, “IF PrWis H AND PsW is H AND PrE is H AND PsE is H THEN PH is VH (CF = 1)”, states that if the content of present water, past water,
present energy and past energy is shown to be high (as evaluated by the first fuzzy-layer) then the potential for habitability exhibited by the locale under
observation is very high with the highest level of confidence. The order of importance of the rules can be understood by observing that for example regions
with high past water and present water content are more important than areas with only high water or energy content.
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tion. Similarly, the life indicators may have to change in
number and variety, and may have to be custom-tailored to
provide the most appropriate information on habitability
potential for the locale under investigation. The fuzzy logic
framework is general enough to incorporate new expertise
into the system without changing its underlying structure.

6. Testing the system on planetary scenarios: two examples

In this Section, we construct and simulate a fuzzy logic
expert system based on a simplified version of the above-
mentioned knowledge-bases (1) to analyze the behavior of
the expert system on reconnaissance-based, hypothesized
planetary scenarios, and (2) to demonstrate the potential of
the overall approach.

The projected scenario is the following. It is assumed
that a tier-scalable reconnaissance mission architecture has
been deployed on Mars (Fig. 1): the architecture includes
potentially three tiers, i.e., spaceborne, airborne and
ground-based, all equipped with multiple agents/sensors
to collect sensor data at multiple scales, resolutions, and
vantage points. The goal of the mission is to look for signs
of life over a large region of Mars. For this simulation, we
assume that only nine indicators are available to assess the
life potential exhibited by the hypothesized locale under
investigation. More specifically, we assume that the gamma
ray spectrometer (GRS)-based hydrogen abundance in-
dicates weight percentage of water (Boynton et al., 2002,
2004) in this region. The GRS experience has already
shown how gamma ray and neutron spectrometers can be
used to map the hydrogen content of an area. Although the
knowledge-bases constructed in the previous sections
contain a variety of indicators for present water assessment
(see Table 1), we assume that the system is able to assess
only the relative abundance of hydrogen, which has been
interpreted to be related to water in various forms (ice,
brine, liquid, moisture, and/or hydrated minerals). More-
over, it is assumed that the system is able to assess
abundance of sapping channels, valley networks, and
sulfates (in weight percentages) as indicators for past
water; heat energy release (thermal spikes/anomalies) and
Richter number (i.e. it quantifies the amount of seismic
energy released during an earthquake) as indicators for
present energy, and number of local faults, volcanoes, and
lava flows as indicators for past energy.

The system performs reconnaissance during hypothetical
deployments to two martian regions by collecting data en-
route (orbiting, hovering, roving, and homing in on) while
determining the absolute value of the nine indicators of
past/present water and energy (the regions are inferred,
though they are not considered unrealistic based on
existing geologic, paleohydrologic, geomorphic, geophysi-
cal, spectral, and elemental information—e.g., the NSVs
regions is hypothesized to approximate region 1, though we
do not know whether there is elevated heat flow and
groundwater lurking near the surface). Table 10 shows the
values of the indicators across the observed regions. Data

collected during the hypothetical martian deployments
portray a highly interesting region 1: the eclemental
information is fairly high, with medium-high water content
and very high sulfate content. The low number of valley
networks is compensated by a high number of sapping
channels. Moreover, the area exhibits internal heat release
(detected thermal anomalies not attributed to atmospheric
and/or electromagnetic radiation) and a high number of
faults, lava flows, and volcanoes. During the time of
observation, it is assumed that intense seismic activity was
recorded. Region 2 is less interesting from a life-potential
point of view based on elemental, stratigraphic, paleotec-
tonic, and geomorphologic indicator information: the
hypothetical region exhibits low hydrogen abundance
interpreted to be low weight percentage of water (based
on Boynton et al., 2002, 2004), medium sulfate abundance,
low number of faults, minor seismic activity, and medium
heat release from the ground. For each of the considered
hypothetical regions, the indicators are categorized and fed
into the first fuzzy layer to assess the past/present water/
energy potential.

6.1. First layer fuzzy system simulation

The four fuzzy systems forming the first fuzzy layer have
been designed and implemented using the MATLAB fuzzy
logic toolbox, which allowed expeditious modeling/asses-
sing of the fuzzy-design parameters. Fig. 4 shows the
conceptual scheme of one of the four first-layer fuzzy
systems (i.c., the system capable of assessing past water
from the value of the corresponding indicators). Here, the
“past water’ system is used as an example to show how the
parameters have been selected and how the system
operates. Initially, the indicators have a crisp value, and
they must be fuzzified by a defined membership function.
Fig. 5 shows the selected membership functions for the
“past water” case. The membership functions, which map

Table 10
Life indicators for two hypothesized martian regions

Life indicators for region #1 and #2: first layer input

Life indicator Category Region #1 Region #2

Hydrogen content  Present water 6% (weight) 2% (weight)

Sapping channels Past water 3 (number) 1
Valley networks Past water 10 (number) 1
Sulfates content Past water 19% (weight) 10% (weight)

Heat release
Richter number

Present energy
Present energy

250 (differential)
6 (Richter scale)

100 (differential)
0.5 (Richter scale)

Local faults Past energy 7 (number) 2 (number)
Local volcanoes Past energy 8 (number) 2 (number)
Local lava flows Past energy 6 (number) 1 (number)

It is assumed that an autonomous tier-scalable system performs
reconnaissance over two distinct regions and collects data to derive nine
(9) life indicators. The two areas are markedly different with the first
region being the place with the richest elemental, geomorphologic,
paleotectonic, and thermal features.
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Fig. 4. Conceptual scheme for fuzzy system #2 on the first layer. The system is designed to ingest past water indicators and output the past water potential.
In the current simulation, sapping channels, valley networks and sulfates content have been identified to be past water indicators.

the crisp values of the “past water” indicators into truth
values, ranging between 0 and 1, are fundamental design
parameters of the system. The membership functions
quantify our concept of “HIGH”, “MEDIUM”, and
“LOW?”. For example, a locale containing sulfates in the
0-10% range is characterized as “LOW”, 10-16% as
“MEDIUM?”, and values higher than 16% as “HIGH”,
quantified using a generalized bell curve. The same
technique was applied to sapping channels and valley
networks. Note that the latter parameter is mapped by the
number of networks in terms of order of magnitude
(0 =no network, 1 =10 networks, 2 =100 networks,
3 =1000 networks, etc.), again emphasizing that such
parameters are open to revision and flexible enough to
accommodate changes (one planetary surface may merit a
different parameter than another planetary surface). Fig. 5
also shows the membership functions quantifying HIGH,
MEDIUM, and LOW for the output for the “‘past water”
fuzzy system. The remaining three fuzzy systems, consti-
tuting the backbone of the first layer, have similar
membership functions defined for both inputs and outputs,
which are appropriately scaled to define HIGH, MED-
IUM, and LOW for the corresponding range of the input
parameters.

After fuzzification, the inputs are processed by the IF-
THEN rules associated with the corresponding fuzzy
system. The knowledge-base, established in Sections
5.1.1-5.1.4, has been reduced to accommodate the nine
available indicators. Table 11 summarizes the rules for the
“past water” fuzzy system included in the first layer. For
any of the four first-layer fuzzy systems, the rules are fired
concurrently to map out and characterize the potential for
past/present water and energy. After fuzzification, if the
antecedent of any rule is composed of several parts
connected by logical operators (e.g., AND, OR), the fuzzy
logical operator is applied to combine the antecedent and
provide the support for the rule. Conventional MIN and
MAX constructs (see Section 3.4) have been used for
AND/OR operators, respectively. Next, the implication
method is applied to every rule to appropriately shape the
output functions. The MIN implication method was used

whenever the support of the rule is employed to cut the
output membership function (see Section 3.4). All rules are
finally aggregated via summation of all possible reshaped
output functions, and the system is defuzzified using the
centroid method (i.e., the fuzzy output is defuzzified by
computing the centroid of the area under the output
membership function).

Figs. 6 and 7 show the overall implication process that
yielded the fuzzy-aggregated output and the defuzzified
output (crisp number) for the “past water” system in
regions 1 and 2, respectively. Interestingly, the past-water
characterization, autonomously evaluated by the fuzzy
expert system, is different for both regions, since region 1
exhibits high past-water content (80.1/100) whereas region
2 shows a low past-water content (34.8/100). The outputs
of the four fuzzy systems (first fuzzy-layer) are reported in
Table 12.

6.2. Second layer fuzzy system simulation

The fuzzy system’s first layer was designed to provide an
assessment of the potential of energy and water both
currently present and once existing within the regions.
While this information might be used independently by the
users via a direct interface with the system, a second layer
has been implemented to perform autonomous assessment
of the expressed PH in the regions under investigation.
Using the knowledge-base established in Section 5.2, and
employing similar methods and software outlined in
Section 6.1, the second layer fuzzy system was designed
and connected to the first layer for rapid streaming of
information/assessment.

Fig. 8 shows the second layer schematic. Each of the four
inputs is fuzzified using a set of membership functions
quantifying the relation between input crisp values and
corresponding degree of truth for linguistic terms such as
HIGH, MEDIUM and LOW. Fig. 9 shows the employed
input membership functions. Fig. 10 also shows the
membership functions that have been used to quantify
the output. VERY HIGH and VERY LOW statements
were also included in the characterization process. The
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Fig. 5. Membership functions for fuzzy system #2 (Past water, first-layer). The four panels show the selected membership functions for three inputs
(sapping channels, valley networks and sulfates) and one output (past water potential). For each of the input-output parameters, the “Low”, “Medium”
and ““High” functions have been established using a generalized bell curve. While the shapes are defined by selecting the function-type, additional
considerations and team’s experience in working with the input indicators were required to select a suitable parametric form.

Table 11
Fuzzy rules summary for the fuzzy system #2 (past water, first layer) employed in the simulation
Sapping channel Valley networks Sulfates Past water Connector CF Rule no.
H H None 1 1
M M None 1 2
H H None 0.9 3
M M None 0.9 4
H H None 0.9 5
M M None 0.9 6
L L L L AND 1 7

The extended past-water fuzzy knowledge base (Table 4) has been modified and adapted to operate with the three available inputs (i.e. sapping channels,
valley networks and sulfates). Seven (7) rules are required to operate the system. The rules are presented in a convenient and synthetic form. For example
the first row show two H (under sulfates and past water), no connector, and confidence factor equal to 1. The rule should be read as follow: “IF Sulfates
content is High THEN Past Water Potential is High (with the highest confidence factor of 1)”. Because of the reduced number of input parameters we

decided to implement one cumulative Low-rule (rule #7) which states that if all the past water indicators are low then past water potential is low.

generalized bell curve was employed for any of the possible
functions. After fuzzification, the system follows a proce-
dure analogous to the one described for the “past water”
case. Table 13 reports a symbolic version of the rules
employed by the system already defined in Table 9. The
rules are implemented in terms of IF-THEN statements

and inference is performed using the MIN implication
method (see Section 3.4). Defuzzification is accomplished
using the centroid method (see Section 6.1). The simulation
results are reported in Table 14. Figs. 10 and 11 show how
the system operates to assess the potential for life
habitability. Fuzzification, rule evaluation, implication,
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Fig. 6. Fuzzy rules interpretation process for past-water fuzzy system (first-layer) as applied to region #1. The figure illustrates how the overall rule
interpretation/implication operates. Each row represents one rule, according to the scheme presented in Table 11. The values for the input parameters are
reported at the top of each column. First, the “crisp” input values are processed by the rules using the appropriate membership function (i.e. every fuzzy
rule is resolved in the antecedent where the input values are fuzzified into a number between 0 and 1, see yellow regions in the panels belonging to the first
three columns). The latter value is generally called “degree of support for the rule’”. Subsequently, fuzzy operators (AND/OR) are applied if the antecedent
is composed of multiple parts (see rule #7). In the next step, implication is applied by taking the degree of support for the rule and using it to shape the past
water membership function (blue regions under the past water columns). Finally, the shaped membership functions for the output are aggregated (see
bottom-right blue panel), the area computed and its centroid defined to be the output crisp value (defuzzyfication). Past water potential for region #1 is

evaluated to be 80.1/100.

and aggregation are reported to show the step-by-step
procedure as explained above.

6.3. Discussion of the simulation results

The simulations were aimed at designing two intercon-
nected fuzzy layers to mimic the operations of the proposed
fuzzy logic-based expert system for tier-scalable reconnais-
sance. The overall system was tested on hypothetical
scenarios based on the assumption that real-time streaming
data were converted into the absolute value of a limited
number of indicators available to the system for proper
habitability assessment. It is clear from the reported data
(i.e., the values of the indicators for the observed regions)
that region 1 is a potential candidate locale for further
exploration/deployment. The system confirms the human
prediction. In fact, the system exhibits high levels of
geomorphologic, thermal, elemental, spectral, and paleo-
tectonic information that collectively points toward a high
life potential. Based on the fuzzy assessment, the intelligent
system will transmit the results to the central navigation
and control system of the tier-scalable reconnaissance
mission architecture, which will define a new plan of action
and send the appropriate commands for further deploy-

ment. For example, based on the fuzzy expert system
results, further ground deployment of more agents may be
ordered to collect higher resolution data that in turn may
yield additional proof for life existence. In the region 2
scenario, the system assesses a low PH, and therefore, the
fuzzy expert will inform the central navigation and control
system not to consider the area as a candidate for further
investigation. In fact, the life indicators of region 2 do not
collectively describe a locale of elevated life potential.
Water and energy indicators are generally low and the
fuzzy logic expert system corroborates the same conclu-
sions as provided by the human expert.

Importantly, the design and simulation of the two-layer
fuzzy expert system have been accomplished through
proof-of-concept. Design parameters have been chosen to
show the basic ideas underlying the approach required to
successfully design and implement an intelligent system
suitable for the integration into a tier-scalable reconnais-
sance mission architecture. For example, particular mem-
bership functions, implication methods, and
defuzzifications were selected to complete the design, while
realizing that other alternatives are available (e.g., Gaus-
sian membership functions, singleton method for defuzzi-
fication, etc., see also Ross, 2004). These parameters can be
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Fig. 7. Fuzzy rules interpretation process for past-water fuzzy system (first-layer) as applied to region #2. The overall rule interpretation and implication
methodology is applied to the second region of interest to determine its past water potential. The fuzzy system ingests the three reported input values and

output 34.8/100 as assessment of the past water potential.

Table 12
Fuzzy first-layer output

First-layer fuzzy systems: outputs

First-layer fuzzy systems Output region #l Output region #2

Present water potential (PrW) 57.7/100 15.5/100
Past water potential (PsW) 80.3/100 34.8/100
Present energy potential (PrE)  77.9/100 51.1/100
Past energy potential (PsE) 86.4/100 40.9/100

The observed life indicators are categorized as past/present water and
energy indicators and fed to the four independent fuzzy systems for past/
present water and energy potential assessment. The table reports the
results for the two hypothesized regions.

generally changed to tune the system and improve
performance. Indeed, a full-scale fuzzy expert system
design (including all “known” (to date) life-containing
indicators) requires trade studies on the parameters and a
multiple-iteration approach to converge to the optimal
system design. Nevertheless, the performed design/simula-
tion lays the foundation for and outlines the basic structure
of an autonomous, intelligent expert system that may be
integrated into tier-scalable reconnaissance mission archi-
tectures.

7. Conclusions, implications, and future efforts

If there is any chance of finding life beyond Earth, as
well as testing overarching theories concerning the evolu-

tion of planetary bodies (e.g., GEOMARS proposed
by Baker et al., 2007, Superplume book), a paradigm
shift in planetary exploration is required. The novel tier-
scalable reconnaissance mission paradigm of Fink
et al. (2005a—c, 2006a,b, 2007) will fundamentally
change the way current missions are conducted by
allowing less constrained, science-driven planetary
exploration via deployment of a multi-tier system of
sensor platforms (yielding spaceborne, airborne, surface,
and subsurface perspectives), approximating the approach
of a geologist/biologist/chemist. “Autonomy’ is a key
factor in achieving the desired success in future planetary
reconnaissance (i.e., detecting, characterizing, and
homing in on features of special interest, including
transient events). Here, a fuzzy expert system is
proposed and described to autonomously identify
locales with the greatest PH. This system may serve
as the part of a multi-tier architecture that elaborates
newly acquired information, compiles it with existing
information, and performs comparative analysis
of the compiled spatial and temporal information while
in-transit.

The proposed system has been conceived specifically
with the goal of mimicking the approach of a planetary
geologist, while coupling the expertise of a terrestrial
biologist or chemist. The system assesses and evaluates the
life-containing potential of a locale through utilization of
all possible clues coming from collecting multiple layers
of information, which may include elemental, spectral,
atmospheric, geophysical, hydrologic, geomorphologic,
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Fig. 9. Membership functions (MFs) employed for the second-layer fuzzy system. The top panel shows the MFs used for one of the input parameters
(PrW, range between 0 and 100). Low, medium and high have been implemented using the generalized bell curve. The other input potentials have been
associated with membership functions with identical structure. The bottom panel illustrates the MFs associated with the output parameter (PH). In
addition to the standard “High”, “Medium” and “Low”, two extra MFs have been considered to introduce the “Very High” and “Very Low” statements.

stratigraphic, topographic, and paleotectonic information. In order to effectively design an intelligent system that
The compiled information must be interpreted to char- can autonomously execute the desired task to look for life,
acterize life potential. the knowledge-base that condenses the multidisciplinary
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Fig. 10. Fuzzy rules interpretation process for the second-layer fuzzy system as applied to region #l. The figure illustrates how the overall rules
interpretation/implication operates. The fuzzy knowledge-base is comprised of 13 rules, which are operated concurrently. The fuzzy rule interpretation and
implication method has been already explained (see Fig. 6). The second-layer system proceeds in similar fashion using the same mechanism to evaluate

PLH.

Table 13
Fuzzy rules summary for the second-layer fuzzy system employed in the
simulation

Prw PsW PrE PsE PH Connect CF Rule no.
H H H H VH AND 1 1
L L L L VL AND 1 2
H H H AND 0.8 3
L L L AND 0.8 4
M M M M M AND 0.8 5
H H H AND 0.6 6
H H H AND 0.6 7
L L L AND 0.6 8
L L L AND 0.6 9
H H H OR 0.4 10
L L OR 0.4 11
H H H OR 0.2 12
L L L OR 0.2 13

The extended version the fuzzy knowledge base is reported in Table 9.

expertise must be defined and constructed. The fuzzy logic
framework provides a way to translate expertise (including
both practical and theoretical knowledge) into simple rules
that can be understood by a digital computer. The main
goal of this paper was to lay the foundation for a fuzzy
knowledge-base that can be constructed and implemented
in a digital form to autonomously evaluate the PH of the

locale under investigation through tier-scalable reconnais-
sance. Hypothetical deployments to two different regions
of Mars were examples for demonstrating proof-of-concept
and for showing how fuzzy-based rules can be implemented
to characterize life-containing potential. For hypothesized
martian scenarios the system autonomously reached the
same conclusions as a field expert, showing self-consis-
tency.

It is important to stress that the presented approach is an
essential part of the basic foundation currently built by our
team of what we think can be the most effective way to
perform planetary exploration in the future. Fuzzy logic,
applied to tier-scalable reconnaissance mission architec-
tures, can effectively provide the intelligence that is
required for autonomous less constrained and science-
driven planetary reconnaissance. The fuzzy logic expert
system is shown to be flexible enough to accommodate any
finite number of indicators and rules. This foundational
work on autonomy for tier-scalable reconnaissance mis-
sions could initiate an open forum (likened to a field camp
for geologists) for the entire planetary science community
as well as for any other scientific community (e.g., Math,
Engineering, Biology, Chemistry, Physics, Geology, Hy-
drology) interested in space exploration, to discuss the role
of the indicators, the number of indicators, the most
appropriate rules that should be used to search for life, or
any other objective on planetary bodies. As shown in the
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Table 14
Second-layer fuzzy system simulation results

Fuzzy expert system potential for life habitability assessment

Input region #1

PH region #1

Input region #2 PH region #2

Present water 57.7/100
Past water 80.3/100
Present energy 77.9/100
Past energy 86.4/100

81.2/100

15.5/100
34.8/100
51.1/100
40.9/100

24.6/100

The table shows the input values presented to the second-layer fuzzy system for region #1 and region #2 and the output of the system for both scenarios.
The table shows that region #1 is the area with the highest potential for habitability and therefore a region worth of further deployment/investigation.
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Fig. 11. Fuzzy rules interpretation process for the second-layer fuzzy system as applied to region #2. The figure illustrates how the overall rules
interpretation/implication operates (see Fig. 6 for details about the rule interpretation and implication method).

above sections, the system is modular, i.e., is constructed
using a sequence of interconnected fuzzy systems and
therefore has the flexibility to add and delete elements
depending on the goal to be achieved. Future challenges
will therefore include the extension of the concept to
multiple real-world planetary scenarios to confirm and test
working hypotheses, to review and evaluate the rules and
indicators to tailor-fit to various planetary bodies, as well
as to implement the designed software in tier-scalable
Earth-based deployed hardware to test the effectiveness of
the system in selected environments on Earth. The latter
will be a critical step to promote the transition of tier-
scalable reconnaissance architectures from a concept to an
operational system for autonomous planetary reconnais-
sance.
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