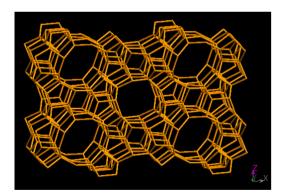
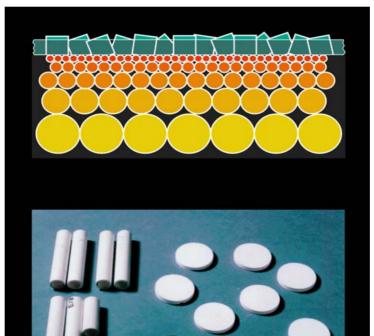
Defect-free Thin Film Zeolite Membranes for H₂ Separation and Isolation

Tina M. Nenoff Distinguished Member of Technical Staff Sandia National Laboratories Albuquerque, NM 87185

Team Members: Margaret Welk & John Heald, SNL/NM Martha Mitchell & Marco Gallo, Chem. Eng., NMSU Jay Keller, Program Manager, SNL/CA


> *DOE/H₂, Fuel Cells and Infrastructure Annual Review Meeting, May 19-22, 2003*

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94-AL85000



H₂ Separation Membranes: Introduction

Goal: Synthesis of robust microporous zeolite membranes to improve on H_2 separation technology of polymers of Pd alloys; Leverage technology to syngas separations, gas purification, biomass, gas enrichment, dehydration

Pore Structure ZSM-5

Schematic:

 Nonselective porous membrane support w/ selective molecular sieve top layer

 Actual membrane supports

H₂ Separation Membranes: Relevance

Relevance to Hydrogen: Need to produce H₂ reliably, at low cost Use of reforming to produce H₂ **Technical Barriers:** Defect-free Manufacturability **Technical Targets:** high permeation high selectivity low cost high durability

Steam Reforming: $CH_4 + 2H_2O \rightarrow 4H_2 + CO_2$

Dry Reforming (MCFC): $CH_4 + CO_2 \rightarrow 2CO + 2H_2$

H₂ Separation Membranes: Objectives

Objectives:

Synthesis

Defect-free Inorganic crystalline thin-film membranes:

synthesis efforts with Al/Si & Si/Ti phases (organic vs. alkali templating)

film growth on variety of supports (oxides, SS316, composite)

Permeation

Testing new membranes:

H₂, CO, CO₂, O₂, He, H₂O, CH₄ & SF₆; mixed 50/50 CH₄/H₂ and 50/50 CO₂/H₂

Modeling and Simulation

Light gases through 1D ZSM-22 and compare to ZSM-5

Validation through permeation testing

Business Partners/Collaborations

Basic research "directed" toward commercialization Industry (manufacturers, end-users), University

H₂ Separation Membranes: Approach (plan/milestones)

Project Method is "R&D":

Basic & Applied Research, Testing, Validation plus Business Development, Current Milestones due dates

Task 1: Thin Film and Bulk Growth:

Growth of Al/Si zeolite thin films and/or doped with other elements Synthesis of defect-free silicotitanate (Si/Ti) thin film membranes. Characterization of all new phases (X-ray diffraction, thermal analyses, surface area, and elemental analysis).

Membrane growth on various substrates (scale-up viability assessment).

Task 2: Modeling and Simulation:

Model separation values for pure light gases interacting with 1D channel pores compare to 3D pores (ZSM-22 vs. ZSM-5).

Model separation values for mixtures of light gases interacting with 1D channel pores compare to 3D pores (ZSM-22 vs. ZSM-5).

H₂ Separation Membranes: Approach (plan/milestones)

Task 3: Permeation Studies

Maintain unit to including repair of Residual Gas Analyzer to study selectivity to mixed gases.

Permeation studies of pure gases through membranes. Permeation studies of mixture gases through membranes.

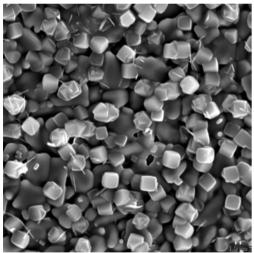
Task 4: Business Development:

Initiate an agreement for product development with an industrial partners. ie., NDA, licensing or scale-up development work; Mesofuels; Pall; Trumem.

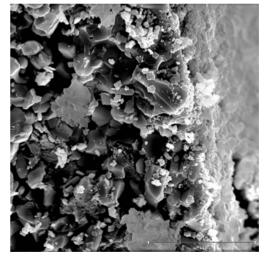
Pursue new collaborative funding opportunities with industrial partners

H₂ Separation Membranes: Timeline

	FY00 FY01			FY02				FY03				FY04			FY05 - FY(
	2Q00	3Q00	4Q00 1Q01	2Q01	3Q01	4Q01	1Q02	2Q02	3Q02	4Q02	1Q03	2Q03	3Q03	4Q03	1Q04	2Q04	3Q04	4Q04	FY05	FY06
Project Begins 12/99																				
Construct/modify Permeation Unit																				
Growth Cs/Zn/P Membranes																				
Permeation Studies Light Gases																				
Collaboration NMSU; Modeling																				
Model Gases in Zn/P & A Membra	nes																			
Synthesize Ga/P Bulk Phases																				
Begin Al/Si Membrane Growth																				
Characterize all phases																				
Growth Al/Si Zeolite Films- ZSM-5																				
Attempt Films Ga/F, Cs/Zn/P, Si/T	ï																			
Model gases Zn/P & ZSM-5 Mem	brane																			
Begin Discussions with Pall & Tru	men																			
Growth Al/Si and Si Zeolite Films																				
Attempt Si/Ti Films																				
Synthesize films on Various Subst																				
Model gases in various Si/Ti films																				
Business CRADA with Pall Corp.																				
Growth Al/Si thin films (un & supp																				
Growth bulk P, Si/Ti microporous																				
Growth Si/Ti films (composite sup	ports)																			
Growth of non Al/Si films (based o		()																		
Begin Discussions with Mesofuels																				
Model gases in differing Si Zeolite	s																			
FY04-06 Basic to Applied to Comme	ercial																			
Model, synthesize various membra	anes																			
Optimize Permeation Conditions																				
Industrial Partnerships Finalized																				
Permeation Module Design																				
Scale-Up																				
Commercialization Begins																				


H₂ Separation Membranes: (1/02 - 4/03) Accomplishments/Progress

- Permeation Unit: testing CO and mixed gases, RGA in repair; awaiting H₂S approval
- First evidence of **Zeolite W** (MER) membrane synthesis! 3D channel pores From attempted ZSM-22 growth. Secondary growth for defect-free underway
- Defect free Si/Ti membranes synthesized and permeation tested New Phase! Durable, Selective, Still under investigation To be tested versus simulation data
- All Si ZSM-5 Silicalite : Long lifetime and confirmed reproducible permeation results; growth on composite and oxide substrates; $CO_2 > CH_4 > H_2 > He > (N_2, CO) > O_2$
- Utilizing ceramic membrane supports: Inoceramic Alumina disks/tubes Trumem oxide-coated SS316 (TiO₂; SiO₂/Al₂O₃; ZrO₂ coatings) Pall is sending ZrO₂ coated SS316 tubes
- Modeling/Simulation: Preferential H_2 separation through ZSM-5 vs. ZSM-22



H₂ Separation Membranes: (1/02 - 4/03) Accomplishments/Progress

- A. Thin Film and Bulk (for future films) Growth:
 - New Silicotitanate Phase grown as thin film!
 Bulk shown to exhibit H₂ separation
 Durable, Unknown Phase, Selective (still being investigated)
 Calcination procedure being determined

Blocky silicotitanate crystals on an alumina support.

Cross section of silicotitanate crystal membrane on an alumina support.

2. **Silicalite** membranes : Lifetime studies (1+ years) show good durability; high reproducibility in procedure yielding consistent permeabilities

H₂ Separation Membranes: (1/02 - 4/03) Accomplishments/Progress

- B. Modeling and Simulation:
 - 1. Studies on Silicalite vs. ZSM-22 continuing
 - 2. Early indication 1D pores of ZSM-22 easily blocked by gases, no good for gas separation

C. Permeation Studies for Validation - Testing pure and mixed gases

- 1. CO testing (ES&H approved);
- 2. RGA for mixed gases: in repair;
- 3. H₂S testing to be developed, working with ES&H for approval.
- D. Business Development
 - 1. Initiated interaction with Mesofuels Inc.; "Portable reforming unit" Non Disclosure Agreement (NDA) in progress
 - 2. Attended HyTeP as SNL representative;
 - 3. Invited by Sen. Jeff Bingaman (D-NM) for H₂ and Fuel Cell Economic Development discussions (SNL rep, industry attendees)

H₂ Separation Membranes: Interactions and Collaborations

Presentations:

<u>M. E. Welk</u>, T. M. Nenoff, F. Bonhomme, "Defect-Free Thin Film Membranes for H_2 and CO_2 Separation and Isolation", Hydrogen and Fuel Cells 2003 Conference and Trade Show, Vancouver, BC, Canada, June 2003.

<u>T. M. Nenoff</u>, M. E. Welk, F. Bonhomme, "Defect-Free Thin Film Membranes for H_2 and CO_2 Separation and Isolation", Spring National ACS meeting, New Orleans, LA, March 2003. *Invited Lecture*.

<u>T. M. Nenoff</u>, M. E. Welk, F. Bonhomme, "Defect-Free Thin Film Membranes for H_2 Separation and Isolation", National Hydrogen Association Meeting, Washington DC, March 2003.

<u>T. M. Nenoff</u>, F. Bonhomme, "Defect-Free Thin Film Membranes for H₂ Separation and Isolation", 14th World Hydrogen Energy Conference, Montreal, Canada, June 10, 2002.

Publications:

Mitchell, M.; Gallo, M.; Nenoff, T. M. "Molecular dynamics simulations of binary mixtures of methane and hydrogen in titanosilicates", *J. Phys. Chem.*, **2003**, submitted.

Bonhomme, F.; Welk, M. E.; Nenoff, T. M. "CO₂ Selectivity and Lifetimes of Silicalite Membranes". *Micro. & Meso. Materials*, **2003**, in press.

Bonhomme, F.; Thoma, S. T.; Nenoff, T. M. "Two ammonium templated gallophosphates: Synthesis and structure determination from powder diffraction data of 2D and 3D-GAPON". *Micro. & Meso. Materials*, **2002**, *53*, 87.

Nenoff, T. M.; Bonhomme, F. "Defect-free thin film membranes for Hydrogen separation and isolation". 14th World Hydrogen Energy Conference Proceedings, Montreal, Canada, 2002.

Symposium:

"Modeling and Simulation in Surface and Colloid Science"; Tina M. Nenoff, Martha Mitchell, Marcus Martin, *Co-Organizers* ACS National Fall Meeting, NYC, NY Sept 7-13, 2003

H₂ Separation Membranes: Interactions and Collaborations

Cooperative Efforts:

- NDA in progress with Mesofuels Inc, Alb. NM
- Collaboration with NMSU extended to new Al/Si and Si/Ti phases
- CRADA #1596 with Pall Corporation for study of microporous materials on separation membranes; examining routes for collaboration (ie., Proposals, etc.); membrane supports, possible module design
- Cooperation with Trumem International, LLC, for oxide-coated membrane supports
- Attended HyTeP as SNL speaker/representative in Santa Fe, NM, 4/23/03
- Invited by <u>Senator Jeff Bingaman</u> (D-NM) for H₂ and Fuel Cell Economic Development discussions (included national lab & industry attendees), Albuquerque, NM, 4/25/03

H₂ Separation Membranes: Plans, Future Milestones (5/03-9/04)

- Synthesis and characterization:

Ion exchanged or metal doped Al/Si films Si/Ti film growth continued Novel bulk microporous phases, future thin films Membrane growth on various substrates, for scale-up viability assessment (ie., SS316 vs. oxide vs. composite) Attempt use of ALD (Atomic Layer Deposition): metal oxide layer on top of zeolite layer to catalyze H₂S

- Permeation:

Pure and mixed gases, RT and 80°C; seek ES&H approval for H₂S

- Modeling:

Simulation of gas permeation thru different Al/Si type zeolite membranes ie., ZSM-5 vs. Zeolite W

- Business Development:

Build partnerships with end-users & membrane Co. (ie.,Mesofuels; Pall; Trumem)

H₂ Separation Membranes: Responses to Panel's Questions

1. Strength/Robustness of Membranes:

Stable in air and water.
Durable in temperature cycling (Si/Ti >500C),
continuous treatment and gas exposure,
over time (1+ year Silicalite).
mechanically durable to handling, transport and heat cycles.

2. Water and H₂S Stability of Membranes:

Steam: Membranes are not water soluble.

(a) a cold trap or other dehydrator could be used either upor downstream of the membrane to remove steam.

 H_2S :

(a) use of a Metal Oxide to remove upstream of membrane,

(b) development of a "catalytic" membrane;

layer of metal oxide on top of the zeolite membrane

H₂ Separation Membranes: Responses to Panel's Questions

3. Cost **Estimate** of Zeolite Membranes vs. Pd Membranes:

(a) Pd in limited and politically-sensitive supply for "H₂ Economy" *Currently supplied from Russia and South Africa*

(b) Industry approximation of Pd film $\approx \$100/\text{ft}^2$ or installed $\$250/\text{ft}^2$

 (c) Zeolite films estimated ≤ \$200/ft² installed Assuming zeolite membranes will become nearly as commercially viable as Pd membranes, cost will drop!!

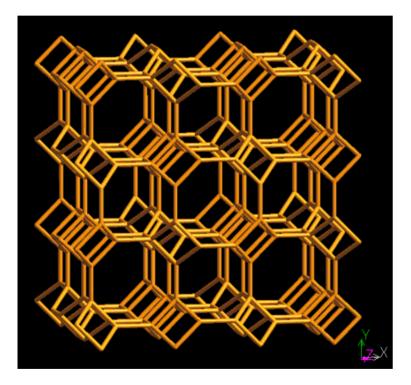
H₂ Separation Membranes: Current Year Highlights: Si/Ti Membranes

Unidentified/New Silicotitanate phase grown as film

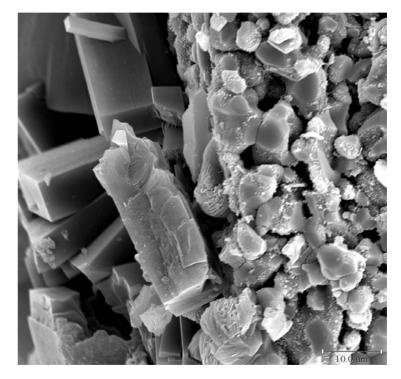
Blocky silicotitanate crystals on an alumina support.

Cross section of silicotitanate crystal membrane on an alumina support.

Preliminary permeation values (a) RT, SNL Si/Ti $\approx 10^{-8} \text{ mole/(m² Pa sec)}$

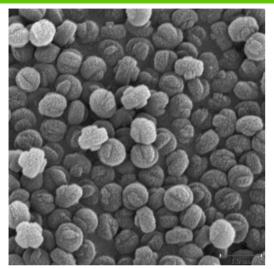

 $H_2/N_2 = 2.3$ $H_2/CH_4 = 1.9$ $He/N_2 = 2.0$ $CH_4/N_2 = 1.2$ $H_2/CO_2 = 3.0$ $H_2/O_2 = 3.2$ $CH_4/CO_2 = 1.5$

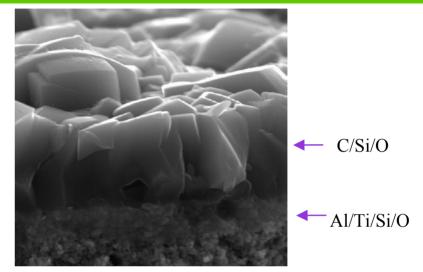
Work in Progress though Selectivity Evident! Calcination procedure not perfected yet. Template pore blockage still interfering with gas permeation.



H₂ Separation Membranes: Current Year Highlights: Si/Al Membranes

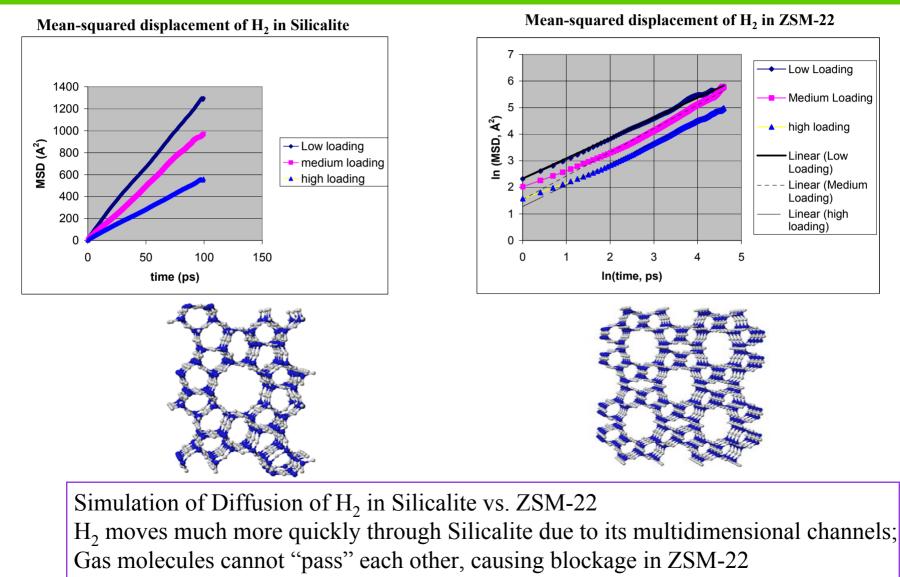
Zeolite W: 8 rings, 3D Pores


Cross Section of Zeolite W Film On Alumina Support


First reference of Zeolite W as a thin film membrane Continued research needed to fill defects and study permeation

H₂ Separation Membranes: Current Year Highlights : Silicalite Films

Seed Crystals Uniform in size, 1µm



10 µm thick Silicalite Membrane on composite support

	as / (Kinetic \emptyset (Å))	He (2.6)	SF ₆ (5.5)	H ₂ (2.8)	CO_2 (3.3)	O ₂ (3.5)	CH ₄ (3.8)	N ₂ (3.6)	CO (3.7)
Permeation and	Membrane			()					
Regenerability	18A	1.8	< 0.05	2.4	2.9	1.4	-	-	1.6
Single Gas Permeance	21A	1.2	< 0.04	1.6	3.0	1.3	1.7	1.1	-
$(10^{-7} \text{ mole/m}^2 \text{ s Pa})$	22A	1.5	< 0.02	2.0	5.9	1.2	3.2	1.4	1.4
Trans-membrane	22B	1.5	< 0.03	2.9	4.9	-	-	-	-
	22B	1.1	-	1.4	2.9	-	-	-	-
pressure= 16 PSI	"regenerated"								
	28A	0.8	< 0.03	1.9	5.1	1.3	2.6	1.6	1.6

Current Simulation Studies at NMSU

(R) Sandia National Laboratories