
1 First Workshop on Advancing the State of the Art in
Run-Time Inspection

Organizers: Robert Filman, Katharina Mehner, Michael Haupt

Modern software development is inconceivable without tools to inspect run-
ning programs. Run-time inspection is a crucial factor for both building complex
systems and for maintaining legacy systems. Run-time inspection includes not
only querying of program state but also controlling its execution. Applications of
run-time inspection range from code-level tasks like debugging, profiling, tracing,
testing, and monitoring to conceptual activities such as program comprehension,
software visualization and reverse engineering. New applications incorporate run-
time inspection as a programming concept in the style of event-condition-action
rules.

The diversity of programming paradigms such as configurable software, com-
ponents, aspect-orientation, generative programming, real-time programming,
distributed programming, ubiquitous computing, applets and web services em-
phasizes the need to deal with heterogeneous run-time information and different
levels of abstraction. Lacking well-established technologies and models for rep-
resenting and accessing program dynamics, tools must use ad-hoc mechanisms.
This limits reuse and interoperability. De facto standards for run-time inspec-
tion such as the Java Platform Debugger Architecture (JPDA) have improved
the situation but do not cope with all requirements. Implementers seeking to
create debugging environments for ubiquitous computing are faced with even
greater difficulties.

The workshop sought to identify best practices and common requirements,
to specify conceptual data, control models and implementation approaches for
run-time inspection and to discuss practical issues such as standardized APIs
and data exchange formats.

The contributions for the workshop covered a wide range of topics. We di-
vided the contributions into two sessions: classical application of run-time in-
spection and novel architectures made possible by the expanded use of run-time
inspection. Classical uses of run-time inspection included debugging and pro-
gram visualization. The dominant novel use of run-time inspection was as a
foundation for dynamic aspect-oriented programming.

1.1 Session on Run-Time Inspection: Methods, Applications, and
Special Issues

The first three position papers of the first session presented run-time tools: a
debugger and two visualization tools, one of which also allows run-time program
manipulation. The last two position papers tackled specific problems in run-time
inspection: data collection and scalability.

E. Tanter, P. Ebraert. A Flexible Approach to Interactive Runtime
Inspection Tanter and Ebraert propose using behavioral reflection as a founda-
tion for run-time inspection. Behavioral reflection allows introspection (querying



the parts of a program describing its dynamic behavior), and intercession (con-
trolling its execution). Tanter presented a tool for run-time inspection which is
based on a previously developed system called Reflex.

Reflex supports partial (behavioral) reflection for Java by allowing the pro-
grammer to choose which operations of which classes or objects should be rei-
fied during which part of the program lifetime. These reifications of base-level
occurrences of operations are accessible statically and at run-time in terms of
meta-objects. Reflex is implemented using the Java Platform Debugger Archi-
tecture.

This run-time inspection tool provides a graphical interface representing the
meta-objects. Through this interface the program can be manipulated at run-
time. Tanter pointed out that the particular challenge of such a tool lies in dealing
with the visual load and in synchronizing the user interaction with the running
program by providing direct feedback. He also envisioned raising the level of
abstraction to yet another meta-level by viewing the meta-objects as units of
separated concerns and by providing an additional meta layer for monitoring
and manipulating these units.

This work is related to the position papers on dynamic AOP discussed in
the next section. The proposal of behavioral reflection as a foundation of run-
time inspection was picked up in the discussion group on a model for run-time
inspection.

B. Lewis. Recording Events to Analyze Programs Lewis presented the
Omniscient Debugger, a Java debugger which allows making a detailed recording
(also called trace) of a running Java program and stepping through this record-
ing, going both backwards and forwards. After each such step, a detailed state of
the program is presented. This approach allows an intensive examination of the
execution history without ever making a choice where to set a breakpoint. Going
backwards is extremely useful in tracing problems to the place where they first
occurred—the preeminent question is debugging is “How did that happen?”

Lewis entertained the group with a plush-toy demonstration of the impor-
tance of such a debugger: bugs are not “bugs” but different animals, namely
snakes and lizards who hide in the grass. Snake and lizard tails often stick out of
the grass. Following the bug to its source means grabbing the animal by its tail.
If the program produces an incorrect answer you have a tail on which you can
pull. If you pull on a snake’s tail long enough you will get to its head; by analogy,
this is finding the source of the bug. The Omniscient Debugger facilitates this
through its ability to move backwards in time, like moving along the body of
the snake. However, if you pull on a lizard’s tail long enough it will eventually
break, keeping you from getting to the source of the bug. Lizard-like bugs are
endemic to break-point centered debuggers, because you can’t pull the tail much
at all—you know the “now,” but not the “then.”

Lewis pointed out that even with the arbitrary reversibility of the omniscient
debugger, some bugs are still intractable. Bugs due to the failure to do something
cannot be traced back to a mistaken action. If a program fails to produce a



correct answer then one does not have an animal tail to grab. However, the
Omniscient Debugger can be used to help search for the hidden-in-the-grass tail.

The Omniscient Debugger is implemented by Java byte code instrumenta-
tion, and relies heavily on timestamps. An instrumented event causes an average
slowdown of two microseconds. At best, a slowdown of factor two can be achieved
for an entire program. Due to the efficient implementation and clever recognition
of state-preserving routines, the Omniscient Debugger can work with programs
generating a ten million events.

A. Cain, J. Schneider, D. Grant, T. Chen. Runtime Data Analysis
for Java Programs Cain et al. examined the usefulness of the Java Platform
Debugger Architecture (JPDA) for data flow analysis. Data flow analysis requires
capturing the definition and the references of all variables in a program. Often,
it is desirable that the scope of the analysis can be targeted. Because local
variables and array elements are not covered by the JPDA, Cain presented a
hybrid solution using source code transformation and run-time analysis through
the JPDA.

A. Zaidman, S. Demeyer. Program Comprehension Through Dynamic
Analysis Zaidman and Demeyer addressed the problem of the size of trace data.
Huge traces are not only a problem of memory but also a cognitive problem for
the user. Their solution to reducing trace size is to compress trace data. They
propose to cluster method-call events based on the same frequency of occurrence
in a program run. This clustering technique is based on the heuristic assumption
that methods working together to reach a common goal are be executed about
the same number of times. Zaidman suggested that the spectral visualizations
of these clusters could also be used to do dissimilarity measures and to search
for visual patterns.

H. Leroux, C. Mingins, A. Requile-Romanczuk. JACOT: A UML-
Based Tool for the Runtime-Inspection of Concurrent Java Programs
Leroux et al. presented a tool called JACOT to dynamically visualize a running
program by means of animated UML sequence diagrams. A sequence diagram
can show object interaction over time and thus can present the history of pro-
gram execution. JACOT has a special focus on threading and exceptions. It
provides an animated state chart for depicting thread state and an activity di-
agram for depicting exception flow. The tool is implemented using the Java
Platform Debugger Architecture.

Session Conclusion The discussion group on visualization noted that the pre-
sentations by Lewis and Leroux contrasted different visions of how to present the
history of program execution. Lewis’s approach provides a detailed, step-by-step
history. Leroux presents a quickly understood though less-precisely meaningful
visual abstraction. Clearly, the ultimate run-time inspection tool would present
both kinds of mechanisms, and allow the user to switch between them as needed.



1.2 Session on Dynamic Aspect-Oriented Programming

The presenters in this session focused on implementation approaches to dynamic
Aspect-Oriented Programming (AOP) systems and language design problems.
Implementation languages used in the papers were Common LISP, Java, and
Smalltalk.

P. Costanza. Dynamically Scoped Functions for Runtime Modification
Costanza argued that a function definition is dynamically scoped if its binding is
always looked up in the current call stack, regardless of which point in program
execution is currently being processed. This contrasted with lexically scoped
definitions, whose meaning is determined by examining a program’s syntactic
structure.

Costanza claimed that dynamically scoped functions are useful for modifying
an application’s behavior, a common task for aspect oriented programming. The
paper proposes extending LISP with dynamically scoped functions to be able to
decorate functions with additional enclosing behavior.

S. Chiba, Y. Sato, M. Tatsubori. Using HotSwap for Implementing
Dynamic AOP Systems Chiba et al. presented Wool, an implementation of
dynamic aspect weaving for Java utilizing the standard JVM’s HotSwap capa-
bilities. HotSwap allows for changing class implementations at run-time via a
function that is part of the Java debugger API.

Wool follows a hybrid approach in decorating join points with additional
behavior at run-time. At first, all active join points are registered as debugger
break points. The system checks each time such a break point is reached to see if
any aspects should be invoked. However, there is a large execution costs to this
repeated checking. When a break point has been reached often enough (decided
by a simple heuristic), the corresponding method is replaced with a modified
version that directly calls the aspect.

S. Aussmann, M. Haupt. Axon — Dynamic AOP through Runtime
Inspection and Monitoring Haupt and Aussmann presented Axon, an imple-
mentation approach to dynamic AOP that relies solely on the JVM’s debugger to
intercept application execution at join points and branch to aspect functionality.

Axon’s underlying model is strongly influenced by the concept of event-
condition-action (ECA) rules found in active databases. An ECA rule comprises
an event describing a (complex) situation in the database, a condition that is
evaluated when the event is signaled and an action that is executed when the
condition evaluates to true.

Haupt argued that ECA rules and aspects are related in that join points and
pointcuts, marking that a certain point in execution has been reached, form an
event algebra and advice correspond to actions. From the observation of this
relationship, Axon’s aspect model was developed that strongly decouples the
different parts of an aspect from each other.



S. Hanenberg, R. Hirschfeld, R. Unland, K. Kawamura. Aspect Weav-
ing: Using the Base Language’s Introspective Facilities to Determine
Join Points Using a sample implementation of a generic observer in AspectJ,
Hanenberg et al. first showed that most existing AOP languages suffer from not
being thoroughly equipped with reflective capabilities. An observer ensures that
any change to a subject’s instance variables that is done through the subject’s
interface is reported to the observers. However, this is not true if the instance
variables are changed by some other means, e. g., if they are instances of reference
types and a modification of their own data is done.

Having presented this problem, the authors demonstrated a solution based on
the using the reflective capabilities of Smalltalk and the facilities of the AspectS
AOP extension to Smalltalk. In their solution, reflection is used to traverse an
observed object structure and to decorate all necessary places—i. e., all places
where data belonging to the structure may be changed—with notification calls,
thereby ensuring that any change in the subject is reported to the observers.

Session Conclusion The two concrete implementation approaches presented
by Chiba et al. and Aussmann/Haupt show that implementing run-time AOP
systems is an active area. Both approaches utilize an interception-based strategy,
illustrating the relationship between run-time AOP and event-based systems.
Using dynamically scoped functions to implement dynamic AOP contributes to
a better understanding of the semantics of such systems.

The work of Hanenberg et al. shows that purely lexical join points are not
enough to precisely express the interactions of aspects with the applications they
decorate. There is a need for mechanisms that are able to capture and express
logical requirements of application structures.

1.3 Discussion topics of break-out groups

The workshop broke into three groups to discuss particular topics in greater
detail.

A model for Run-time Inspection The aim of this group was to describe a
model capturing the essence of run-time inspection.

The group argued that the term “inspection” is a source of misunderstanding.
It was coined by the workshop organizers in analogy to the term guided inspec-
tion, sometimes also called code inspection, which refers to a testing practice
using code walkthroughs. In analogy to guided inspection, run-time inspection
can be seen as being purely observational, perhaps also including the possibil-
ity of pausing program execution. However, this definition does not capture the
ability to change the program’s execution. Some of the participants considered
this to be an essential part of run-time inspection. Reflection was therefore pro-
posed as a foundation for run-time inspection because it includes the possibility
of making changes to the program and its execution.



The model for run-time inspection proposed by this discussion group is built
not only on reflection but also draws on existing models from the related area of
software visualization. Models for software visualization typically distinguish the
phases data collection, data transformation, and data presentation. The following
model aims at clearly identifying the different phases in the process of run-time
inspection:

– Running the program
– Collecting data
– Transforming data
– Presenting data
– Effecting changes based on presentation of data
– Propagate changes to the program

This is a cyclic process. The changes become effective in the running program.

Visualization This group was considered the visual presentation of informa-
tion about running programs. The group noted that the first step in visualiza-
tion is always defining what information is to be visualized. The group then
addressed the problem of dealing with high volumes of information gathered
at run-time. Suggestions to shape a call graph to one line per function were
contrasted with animation of a class diagram by highlighting fields and mem-
bers involved in method invocation during (re)play. Information compression
was addressed through clustering of method calls based on the coupling, i. e.,
the number of calls between two methods. Also, different diagrammatic nota-
tions were discussed such as tree-like structures for hierarchical information and
spiral and kiviat (spider) structures.

Applications This group was looking at applications of run-time inspection
with a primary focus on applications for dynamic aspect-oriented programming.
Client-reside code and application servers were identified as promising applica-
tion areas for technologies that can make changes to running code. Examples of
uses of such technologies in these domains include:

– Bug fixes
– Usage monitoring
– Integration with other applications

The group raised the important issue of the safety of run-time changes. Safety
concerns arise both for security and for system integrity—it is easy to imagine
making dynamic changes that corrupt a system’s logical state. After all, even in
tightly release-controlled environments, a high percentage of bug fixes themselves
introduce new bugs. This issue reflects similar concerns in AOP, which has the
hope of modularizing changes in aspects but has long recognized the potential
problem of conflicting aspects.


