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Theory of laser wakes in plasma channels
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Excitation of accelerating modes in transversely inhomogeneous plasma channels is considered as
an initial value problem. Discrete eigenmodes are supported by plasma channels with sharp density
gradients. These eigenmodes are collisionlessly damped as the gradients are smoothed. Using
collisionless Landau damping as the analogy, the existence and damping of these “quasi-modes” is
studied by constructing and analytically continuing the causal Green'’s function of wake excitation
into the lower half of the complex frequency plane. Electromagnetic nature of the plasma wakes in
the channel makes their excitation nonlocal. This results in the algebraic decay of the fields with
time due to phase-mixing of plasma oscillations with spatially-varying frequencies. Characteristic
decay rate is given by the mixing timeg,, which corresponds to the dephasing of two plasma fluid
elements separated by the collisionless skin depth. For wide channels analytic expressions for the
field evolution are derived. Implications for electron acceleration in plasma channels are discussed.
© 1999 American Institute of Physid$1070-664X99)00902-7

I. INTRODUCTION in plasma channef®~2°It was demonstraté?* that the ac-
celerating properties of the surface wave, generated in a hol-
Plasma channel is an important tool for a variety oflow plasma channel, are superior to those of the electrostatic
laser-plasma applications, such as laser-driven particlgake in a homogeneous plasma. In particular, the wake is
accelerators;® x-ray lasers;'® harmonic generatioh, and  transversely homogeneous inside the channel, and the mag-
inertial confinement fusioff: The primary objective of cre- netic component of the wake, combined with the radial elec-
ating a plasma channel is to guide radiatierg., an intense ¢ field, prevents the over-focusing of the accelerated
laser pulse in a laser wakefield acceleratrer many Ray-  particles?* Excitation of the accelerating wakes in an arbi-
leigh lengths. Underdense plasma channels can suppgfhy plasma channel by a short intense laser pulse was first
transversely localized laser modes which do not diffract.,sigered by Shvetst al,?22® with the emphasis on the

Since the frequencies of such modes are typically muclsjioy channels with a sharalthough not infinitely shajp
higher than plasma frequencies anywhere in the chann lasma-vacuum interface.

these eigenmodes are almost purely electromagnetic. Laser One of the interesting features of wake excitation in

guiding in plasma channels has been studied theor(:"t'c""llﬁﬂlasma channels with sharp density gradients is the excita-

H 14
and experimentally” tion of a damped quasi-mode. This quasi-mode, whose fre-
Inhomogeneous plasma channels support another Claa%enc is very close to the frequency of the surface mode in
of the lower frequency modes, which have both the electro- Y y . y
. . - a hollow channel, resonates with the plasma at the resonant
static and electromagnetic characteristics. These modes a]re

) . . ocation x,, defined by w,(X,;)=w¢,, Where o= wpg!
the extensions of electrostatic modes of the cold uniform o PR c ch P
plasma of densityry, which have the plasma frequenay, V1+wpoblc is the frequency of the surface wavejs the

= (4me?ny/m)Y2 where—e andm are the electron charge channel width andv is the plasma frequency. Very large

and mass, respectively. Waves in inhomogeneous plasm&Lctric fields develop ak,, eventually leading to wave
have been studied since the 1960’s because of their relevanB&aking and plasma heating. .
to the resonant absorption of obliquely incidgnpolarized It turns out that the response of a plasma channel with a
radiation’>-7 Calculations of the rate of energy absorption smooth density profile contains a continuous spectrum of
assume a cw incident electromagnetic wave of fixegfrequencies, unlike the response of a hollow channel with an
frequencyw,, resonantly driving a cold plasma wave in the infinitely sharp interface, which only supports a single sur-
close proximity of the plasma resonance point defined by ~ face mode ats¢, and a bulk plasma mode at,,. The dis-
wp(X,)=wo. Electromagnetic surface modes of the semi-crete channel mode is collisionlessly damped in the presence
infinite plasma were first studied by Stepartwho pointed  of the continuum of modes. Dissipationless damping of
out that these surface modes become damped as the sh&lgasi-modes in the presence of the mode continuum is a
plasma-vacuum interface is smoothed out. Excitation of theibiquitous phenomenon in the physics of continuous media.
electrostaticwaves in inhomogeneous plasmas was studied he well known examples include collisionless damping of
as an initial value problem by Sedkk'° However, the elec- plasma waves in warm unmagnetized plasnihandau
trostatic assumption does not hold in general. damping,?® Alfven waves in ideal magnetohydrodynamics,
Applications of plasma waves to particle accelerationmodes of inviscid fluid motiof’ and oscillations of strongly
brought about the renewed interest in the accelerating wakeaagnetized electron columA%®
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Presently, an interesting dichotomy exists in our undernonrelativistic laser pulse wita=e|A|/mc<1, so that all
standing of wake excitation in nonuniform plasmas. Twocalculations are performed to ordef. For largea, the pon-
radically different plasma profiles can be treated, at leastleromotive force will significantly distort the plasma chan-
perturbatively: (i) almost uniform plasmde.g., a shallow nel, precluding the analysis based on a prescribed density
parabolic plasma channel of width much exceeding both therofile. The group velocity of the pulse is assumed close to
collisionless skin depth and the spot size of the ponderomoienuous plasmaand all the plasma quantities are functions
tive drive>3%3): (ii) plasma channel consisting of a finite of {=t—z/c.
number of piecewise constant density stépg., a hollow For tenuous plasma,<w, two separate time scales
channel. The purpose of this work is to present a unified exist: fast scale of order the laser periodwd/ and slow
theory of plasma modes in arbitrary plasma channels. Thiscale of order the plasma periodw}ly. On a slow time
work relies heavily on the ideas of Briggs al?® for solving  scale, consistently with a weakly relativistic assumption,
the initial value problem for the inviscid fluid flows and os- electrons are driven by the ponderomotive force of the laser
cillations of magnetized electron columns. Despite the differ-and the electric field of the wake:
ences in the equations describing the excitation of accelerat-
ing wakes in plasma channels, and those solved by Briggs — = —(E+Vf), )
et al, the general concepts of causality, analytic continuation m
of the dispersion function and eigenfunctions into the com+wheref is the ponderomotive potential given by
plex frequency plane, and integrating differential equations
in the complexx-plane can be applied to the problem at f=——a? )
hand. 4e

The remainder of the paper is organized as follows. Ingng E s the electric field induced in the plasma. Assuming
Sec. Il the equations for wake excitation in nonuniform C°|dquiescent plasma in front of the laser pulse and Laplace
plasma by_a Iqser pulse are reviewed. Excitation_ of the e|th‘ransforming the electron fluid equation of motié® in ¢
tromagnetic eigenmode of a hollow channel is also deyjg|gs the electron current density- —enyv. The electric

scribed. In Sec. Il we show that plasma channels withfie|q of the wake is computed by substitutingto Ampere’s
smooth monotonic density profiles do not support any neurg,-

tral or damped eigenmodes. Wake excitation by an arbitrary 5
laser pulse is formally calculated in Sec. IV, where the E_ wpo(X)
Green’s function of the wake excitation is derived and ana- €~ &2
lytically contmueq into the Iowe_r h_alf of the plane. It is wheree is the cold plasma dielectric function:
shown that electric and magnetic fields can be computed by
summing the contributions of several cuts and poles of the “’So(x)

Green’s function. Contributions from the cuts describe the —€(X,@)=1— w2 ' )
(almos} local wake excitation, while the poles correspond to ] ] )

the global collisionlessly damped quasi-modes. Frequencie&nd the tilted variables are Laplace transformg and func-
damping rates, and excitation of these quasi-modes are colons of the transform variable. As Eq. (3) indicates, the
sidered in Sec. V. After several damping times, exponentiafot@l electric field is a sum of the locally excited plasma
decay of the fields is replaced by the power-law decay of th@erturbation(first _tern‘) and a global ele_ctrpmagnetlc field
locally excited wakes. Long-time asymptotic analysis of(Second term which we denote€. The significance of the
these wakes is carried out in Sec. VI, where the contribution§V0 contributions is determined by the channel profile. For
of the cuts of the Green’s function are evaluated. In Sec. VIEX@mple, in a hollow channel the contribution of the first
we calculate wake excitation in wide plasma channels, wherfrm vanishes in the vacuum region, and the second term
the density gradient scale is much longer tbaa, . We find (electromagnetic surface modgominates. The second term
that for wide channels quasi-modes are not important. Acceldentically vanishes in the homogeneous plasma, and be-
erating electric fielcE, and magnetic fiel®, decay in time comes very small for.very smc_)oth density 'prof|les. This is
according to(different power laws, while the focusing field P&cause ponderomotively excited wakes in homogeneous
E, reaches the steady state for=. Power law decay is plagmas are electrosta_ltlc.m the weakly relatlxlstw approxi-
demonstrated to be the result of phase mixing of adjacerif'@tion. Small magnetic field of the ord&~a;mcw,/e,
plasma fluid elements, which oscillate with their local Which is generated in the homogeneous pladfmis, ne-

plasma frequencies. Section VIII presents the discussion dlected in this calculation. o _ ,
the results. The equation for the magnetic field is derived by substi-

tuting Eq.(3) into Faraday’s law:

~ C ~
Vi+i—VXB, (3
w

€' w?(X w? €'
Il. THE MODEL OF WAKE EXCITATION Bg— ?B§_ 2(2 )By=? ?f(x,w). (5)
A number of simplifying assumptions make the problem
at hand analytically tractable. Slab geometry is assumed, sdince we only consider accelerating TM modes, boundary
that the plasma densityy(x) is only a function of the trans- conditionsﬁy(x=0)=§y(x=OO)=0 must be satisfied. As-
verse coordinate. lons are assumed immobile, providing a suming a monotonic density plasma density profile, which

neutralizing background. Wakes are driven by a nonevolvingasymptotes tm, at infinity, one can choose a transverse
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location Xpmay (finite or infinite), such thatw,(x)=wpo for A noteworthy consequence of E@) is that the amplitude of
X>Xmax- Therefore, the second boundary condition can bdhe surface mode is driven by thengitudinalrather than the

chosen ak,, asB’ + kooB=0. Equation(5) can be recast as transyerse gr_adi_e_nt of the ponderomotive poterititlence,
despite the significant transverse pressure, exerted by a nar-
6—7‘(x ) ©) row laser pulse on the plasma, the pulse still has to be short
cz et to excite a substantial wake inside the channel.
The situation dramatically changes when the transition
between vacuum and plasma occurs over a finite disthfice
where 6 may be arbitrarily small. A continuum of modes is

1 d ) wg(x) required to describe the fields over a continu@lbeit short

where Lg is a Sturm—Liouville operator, parametrically de-
pendent on dpossibly complexfrequencyw:

d
Lo(w)= ax

(X, @) dx () transitional region, with each spatial location having its own
local plasma frequency. This explains the third problem with
A possible approach to solving E¢6) is to find the  the normal mode expansion, which only produces a single
normal modes of the operatdls. As shown below for the  normal mode. In the next section, to demonstrate the second
hollow plasma channel, such an approach is elucidatingroblem with the normal mode method, we show that, in

when the plasma density profile is a piecewise constant funGact, no neutral or damped modes exist for smooth density
tion. It is, however, problematic when applied to arbitrary profiles.

density profiles. The deficiencies of the normal modes

method for a conceptually similar problem of two- I1l. EXISTENCE OF NORMAL MODES FOR SMOOTH
dimensional motions of the inviscid incompressible fluid pENSITY PROFILES

have been known for many years, ever since this method was
first applied by Rayleigh® More recently, the major three , :
problems with this method were summarized by Brigys, that the plasma frequency varies mpnotomcally frpm to
and we follow his account here. The first problem was noted®p2 PEIWEENK=0 andx=Xmay. Allowing X to be finite or

by Kelvin® in a paper titled “On a disturbing infinity in infinite, furth_er_assume, without loss of generality, that
Lord Rayleigh’s solution for waves in a plane vortex stra-Plasma density is constant and equakbig for X>Xmax. If i
tum,” which, in the context of wake excitation, refers to the IS @n €igenmode of the linear operatdig(w), where
resonant coupling of the electromagnetic eigenmode to th@ = @re™ ! ®; (')(37Xa ;omplex frequency, it can be shown that
electrostatic plasma waves when its frequency matches tHégx):C_e PO mad fOr X>Xmax. Multiplying Lsyy=0 by
local plasma frequency. The second problem is that the not/” @nd integrating betweex=0 andx=Xnmay yields

B c’e(X,w)

To study the normal modes of a plasma channel, assume

mal modes of a piecewise constant density prafitappear Xmax 02— wgz wf)(x) dy|?

as soon as the profile is smoothed out. The third problem is- kp|C|2=J dx——— — | ]2+ |— ) (10
. w—wi(X)\ C dx

that a finite number of the normal modes cannot form a P

mathematically complete set. Considering damped or growing modes witt# 0, and as-
However, the method of normal modes proved useful insuming that bothys and ¢’ are continuous between 0 and
analyzing the hollow plasma channel. It was shéWhat for X, find that the imaginary part of the right-hand side
the plasma density profile (RHS) of Eqg. (10) does not vanish. Since the imaginary part
of the left-hand sid€LHS) of Eq. (10) is equal to zero, the
(8) existence of the damped or growing eigenmodes is ruled out.
wpo for |x|>b Next we check for the existence of neutral modes with
a_single normal mode with frequencywe=wpo! w;=0. As evident from Eq(10), there can be no modes with

VI+ wpoblc exists. This is a surface mode because it can b&’~ @pz OF @ =y, Since this would make the RHS of the

shown that the electron fluid is incompressible fef>b, equation p(_)si_tive. Hence, if the_ neutral do exist, their fre-
while there is a surface charge B{=b. Since 0<wy, quency satisfies <w<wp,. Since the plasma frequency

<wpo, it is very plausible that the normal mode may be'S monotorr:lc betv_veen=0 anddx=hxmalx, th(lere exists ?.Ioc:r;]\—
strongly perturbed if the interface between vacuum and!O Xr» Wherew=wy(x;), and the singular integral in the
plasma is not infinitely sharp, i.e., there exists a locatipn Eq. (10) can be expressed as
2)
1 1

wherew(X,;) = w¢p. At this locatione(x; ,wcy) =0, and the ) 5. [¥max wé(x) , |dy
operatorLs becomes singular. This is the essence of the first RHS= —(wp,— ©°) dx| ——[¥1*+ |-

P 0 C dx
time evolution of the electromagnetic field inside the channel x| P Fimo(X—=X) T2 (x| )l)a 11
is completely determined by the excitation of a single surface Ao

problem with the method of normal modes applied to a gen-
mode. For example, the transversely homogeneous inside thi¢ghere = corresponds taw approaching the real axis from

, 0 for |x|<b
wp(X)=

eral density profile. It was also shown in Refs. 22, 23 that the

w’— wg(x)

channel accelerating field, is given by above or from below, respectively. Since the imaginary part
) _ ) , of the LHS of Eq.(10) vanishes, so should the imaginary
E(0)= @po J5 q , Sinwey(£—¢") df(L",x=b) part of Eq.(11), implying that either(i) both ¢ and its de-
z (1+kpb)c J = Weh dg’ ' rivative vanish atx=x, (trivial solution), or (ii) |w,2,’(xr)|

(9 = (infinitely sharp interface
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o; Lsp.=0, (14)

satisfying their respective boundary conditiongi_(x
=0,w)=0 and ¢’ (X=Xmax,®)/ P+ (X=Xmax,)=—wpy/C.
’N‘/—_’ ConstantD(w) is the Wronskian of¢., given by D(w)
=[¢p.p_—o"_ ¢.]/e. D(w) will be referred to as the dis-

persion function because its zeros correspond to the channel
- - eigenmodes. For example, for an ideal hollow channel
D(wen)=0.

For any reak magnetic field can be calculated according

to

~ Xmax w2 !
By(x,w)=f dx’G(x,x’,w)(—Q—
0 Cc

m

f(x’,w)). (15

N

FIG. 1. T is the integration path for Eq12). Integral along the contour

can be reduced to a sum of two integrals along branch (catstoursI";). L. , . . .
! Similar Green'’s functions can be derived for the accelerating

and transverse components of the electric figlénd&, :

While the trivial solution is of no interest, infinitely ,
C IG(X,X",w)

sharp interface is encountered, for example, in an ideal hol- G (X,X', @) =i , (16)
low channel. This is in agreement with the calculation of we(X,w) 28

Sec. Il which demonstrated that an ideal hollow channel sup-

ports a neutral edge mode. However, if electron density is G (XX @)= G(x,x', ). 17)

continuous, there are no continuous neutral normal modes. €(X,w)
Therefore, the surface mode disappears as soon as the step- The linearly independent solutions. and ¢, can be

func'uor? ddensnyThproflle c|>f an |(§i_eal hO”OW. rﬁ:hannel II'S expressed in terms of the regular and singular solutipns
analytcal and numerical findings. presented in Refs. 22, 244 4 1 the viinity of the complex singuiar point . The
which recovered weakly damped surface modes for thir{‘egular solution can be expanded in the vicinityxpt
channel walls. Section IV resolves this disagreement by cal- ¢ (x)=(x—x,)?[1+k3(x—x,)2/8+ -], (18)
culating the Green'’s function of E¢6) and recovering the P
damped quasi-modes of a smooth plasma channel. As it turr@d the singular solution can be constructed in terms of the
out, these quasi-modes are discontinuous, so that there is f@gular solution:
contradiction with Eq(10). « dx’
Ps(X)= ¢r(X)f WG(X')- 19
IV. SOLUTION OF THE DRIVEN EQUATION 0 Pr
A. Construction of the Green'’s function The singular solution has a branch poinkatx, . Since any
L ) . . pair of linearly independent basis functions can be con-
The magnetic field in thg-domain is then obtained by g cted as a linear combination ¢f and ¢, at least one of
inverse Laplace transforming,(x,») along any contout’  the basis functions has a branch poinkat

in the upper half plane of complex, as shown in Fig. 1: Choosingg, and ¢ as the basis functions is convenient
do . . for analysis but not at all necessary for practical computa-
By(Xx,{)= frﬁe*"”g By(X,®). (12)  tions. Forw;>0 the eigenfunctiong_ and ¢, can be ex-

pressed in terms of any pair of linearly independent solutions

Magnetic fieldB, is computed by constructing the Green’s Of the homogeneous equatidiz¢=0. One such example is
function G(x,x’,w) of the operatorls, satisfying the @ Set @o,¢1), satisfying ¢o(0)=0, ¢o(0)=1, and ¢,(0)
boundary conditions at=0 andx= X, and a differential = €(Xx=0,w), ¢1(0)=0. Integrating these solutions accord-
equationLs G(x,x',@)=8(x—x'). Such an approach was iNg t0 Eq. (14) betweenx=0 to X=Xp4 yields both the
originally used by Brigg®t al. to study the eigenmodes of a dispersion function

strongly magnetized non-neutral plasfiBy causality, we

require thatG(x,x’,w) has no singularities in the upper half D= ¢?(Xma>‘)+kpz¢°(XmaX) ' (20)
w-plane. The Green'’s function dfg is $1(Xmax) + Kp261(Xmax)
, , and the ¢. basis functions: ¢_=¢y and ¢, =
D(w) ¢+ (X,w)¢_(x',0) for X'<x —D(w) ;. Integration of the homogeneous equation along
G(x,x",w)= 1 (13)  the real axis is unambiguous fax >0 since the singularities
msﬁ—(xyw)du(x',w) for x'>x, of Lg lie above the reak-axis. From the results of the pre-
w

vious sectionD (w) =0 has no roots ifv,(x) is a monotonic
continuous function. Alternatively, one might obtain. di-
where¢_ and ¢, are linearly independent solutions of rectly by integrating Eq(14) forward in x, starting fromx
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FIG. 2. A different cut which recovers the quasi-modgsandwg-zeros of
the analytic continuation of the dispersion functiog ().

=0 (where the boundary conditions fef_ are set Simi- X,
larly, ¢, is obtained by integrating Eq14) backwardsn x, b
starting fromx= Xay- (b)

B. Analytic continuation of the Green'’s function

Singularities of L5 are encountered whes assumes a
real value from the intervdlw, ,w,,]. The dispersion func-
tion D(w) thus has branch points at,; and w,,. In addi- X4
tion, there is another branch point of the singular function C X X pax
#s(X,0) at w= wy(X). Hence, one can ensure tHAf(X, w) \
is single-valued by making a single cut betweep, and
wp2. The integration contouf can then be wrapped around
the cut, as shown in Fig. 1. A similar cut must be made
between— wp, and — wp; .

However, integration around the branch cut in Fig. 1
does not reveal any information about the damped quasi
modes. A different cut, shown in Fig. 2, can be used toFIG. 3. Integration paths in the compleplane of the differential equation

recover the quasi-modes. Following Ref. 28, the integration:y(w) ¢,,=0 for the basis functions, and ¢;, whose boundary condi-
contour is pushed into the lower half plane. To do that.tions are set at=0. x, is the resonance point, defined fx, ,w)=0. (a) @

D(w). ¢-(w), ando.(x,0) have o be analyticallycon- 115 0 M1, 11,0 7 s en pe Do
tinued for w; <O. AlthQUQh D(w) has. no ,Zeros above or Im <<0. Integration contour remains below the resonance pgita ezsurey
below the reak» axis, its analytic continuatioD, (@) may  analytic continuation of the Green’s function. Basis functions are discon-
have zeroswp and— wp in the lower half-plane, as shown in tinuous on the real axis at=x4, wheree(xy,Rew)=0.

Fig. 2. This phenomenon is analogous to the collisionless

Landau damping of electrostatic plasma waves. The dielec-

tric constant of the warm plasma does not vanish for anyoint x,(w). The analyticity of ¢_(X,w) in the complex
complex frequency, but its analytic continuation does, resultx-plane is ensured by making a branch cut, as shown in Fig.
ing in Landau-damped quasi-modes. 3(a).

Not only the dispersion functiob (), but also the ba- Whenw is moved into the lower half-plane, the resonant
sis functions¢. (X,w) need to be analytically continued. pointx=x,(w) is also lowered below the real axis, making
Analytic continuation involves integrating the basis func-the integration of the homogeneous equatid4) along the
tions [i.e., solving the homogeneous differential equationreal axis impossible as soon &scrosses the real axis. To
(14)] along a contour which is no longer a straight line alongensure the analyticity ofy..(x,w) as a function ofw, the
the real axis. To illustrate the considerations that go intantegration contour in the complexplane must be deformed
choosing the appropriate integration path, assumedta-  to stay below the branch pointx=x,(w). Such a contour
longs to the original contolrr, i.e., o= w,+iw;, wherew; avoids the branch cut in the complesplane, as shown in
>0. The complex resonant point is then located in the Fig. 3(b).
upper half of thex-plane® For example¢_(x,w) is com- To illustrate the choice of the appropriate branch cut in
puted by integrating Eq14) along any contour, which con- the x-plane, we first calculatgy(w), the intersection of the
nects the origin and (including the straight line, of course  branch cut with the real axis. Basis functions undergo a jump
provided that the contour always stays below the resonamwhen x moves fromxy(w)—¢ to X4(w)+e. To calculate

Xre
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Xq(w), note that the cuts in the plane are vertical for any and the local plasma excitations, associated with the branch
fixed x. Basis functions undergo a discontinuous changeut 2.

when o crosses the vertical cut which runs downward from

wp(Xq). Therefore, the discontinuity poimg(w) is found by

solving w,(Xq) = Rew. Note thatxy(w) does not correspond \, \WEAKLY DAMPED QUASI-MODES

to any physical discontinuity. As was earlier pointed out in

the literature?®?’ the discontinuity of the field is not “real” The origin of the weakly damped quasi-modes in inho-
in the sense that it only exists in the frequency domain. Thenogeneous plasma can be best understood by considering a
field discontinuity disappears after the integration ower plasma channel with an infinitely sharp interface between the
Moreover x4(w) depends on the choice of the branch cuts intwo regions of different plasma density. An example of such
the w plane. The prescription for calculating;, given a channel—hollow plasma channel—was recently consid-
above, is consistent with vertical cuts in the complex fre-ered as a possible candidate for a plasma-based particle ac-
guency plane. celerator due to the attractive properties of the accelerating

This analysis can now be generalized to construct thend focusing fields inside the evacuated chaftéf Hol-
entire branch cut in the complex plane, connecting the low plasma channel supports a surface mode which peaks at
Xxg(w) and x,(w) endpoints. The cut consists of a set of the vacuum-plasma interface and exists both inside the chan-
points X., such thatw,(X;)=Rew+iy,, where Imw<y,  nel and in the plasmewithin a collisionless skin-depth from
<0. It is, essentially, the mapping of the branch cut 2 of thethe vacuum-plasma interfacerhis electromagnetic surface
complex o plane onto the complex plane according to mode is a true eigenmode of the plasma channel, with a
wp(Xc) = w¢, Wherew, belongs to the branch cut 2. There- vanishing damping coefficient and frequencyo,
fore, the shape of the cut in the compleylane is entirely = wyo/v1+Kyob. The surface mode is decoupled from the
determined by the choice of the cut in the compleplane.  bulk plasma modes because its frequency is different from
In other words, choosing a different cut 2 in Fig. 2 would the bulk plasma frequency,,. Simply put, there are no
result in a different cut in th& plane for the same value af electrostatic plasma modes with frequensy,, that could

Basis functionsp.. (X,w) undergo a discontinuity on the strongly couple to the surface mode.
real axis atx=Xy4(w) for any w in the lower half plane with As the plasma-vacuum interface is smoothed out, the
wp1<Rew<wy,. The particularly important frequencies are surface mode couples to the continuum of the electrostatic
the poles of the analytically continued Green’s function atplasma waves. Now there exists a resonant locatigrsuch
w=wp. They correspond to the zeros of the analyticallythat w,(x,)=w¢,, and coupling between the electrostatic
continued dispersion functio®, (wp) =0. It can be shown plasma wave, localized &, and the surface mode leads to
that zeros oD, come in pairs ¢p ,— wp), as illustrated in  the damping and frequency shift of the latter. Similarly to the
Fig. 2. As explained in Sec. V, these poles define the collisurface modes of infinitely sharp plasma channels, quasi-
sionlessly damped quasi-modes of the plasma channeaiodes are peaked in the neighborhoodkofind decay ex-
Quasi-modes are the generalizations of the true eigenmod@®nentially away fronx, . Quasi-modes are distinct from the
of the channels with discontinuous density profiles, such akcalized electrostatic plasma waves in that they are global
the hollow channels. Real frequencies and damping rates df.e., exist throughout the plasmaet possess a well-defined
these quasi-modes are independent of the choice of brandrequency which is independent of the transverse location
cuts in thew plane. The existence of the quasi-modes doed he difference between the weakly damped quasi-modes and
not contradict the findings of Sec. Ill, where it was demon-the “true” surface modes is that the latter ones are the real
strated thaD (w) does not have zeros for any. The ana- undamped eigenmodes, whereas the former ones belong to
lytical proof of Sec. Il relied on the continuity and differen- the continuum of the plasma waves. Weakly damped quasi-
tiability of the hypothetic eigenfunctiony of the  modes are important only for short times of order the damp-
homogeneous equatidfh4). Since the analytically continued ing time, after which the coherent, single-frequency motion
basis functionsp .. (x,wp) are discontinuous aty(wp), this  of the plasma electrons is destroyed, and the local fields,
proof is no longer valid. oscillating with the local plasma frequencieg(x), prevail.

With the procedures for the analytic continuation of the  Frequencies of the quasi-modes are defined by the zeros
basis functions and the dispersion functi@(w) estab- of the analytic continuation of the dispersion function:
lished, the inverse Laplace transform integration, given byD, (wp)=0. The numerical procedure for calculating
Eq.(12), can be carried out along the branch cuts and aroun®, (w) consists of several steps. First, for a giwenn the
the poles of the analytically continued Green’s function, adower half-plane, the resonant poirf(w) is calculated. A
shown in Fig. 2. Contributions of the quasi-modes are im-contour, which passes beloxy and connects the endpoints
portant for the short-time evolution of the plasma wakesx=0 andx=Xya [as shown in Fig. @)] is then chosen in
{<1/lm(wp). For longer times quasi-modes damp out, andthe complexx-plane. Next, two linearly independent solu-
branch cut contributions dominate. This is because the field$ions(e.g.,¢, and ¢;) are integrated along this contour from
associated with the branch cutlgebraically decay in{.  x=0 to X=Xqa. The dispersion function is then given by
Moreover, for very wide plasma channels quasi-modes ar&g. (20). Complex frequency can now be scanned to find
important in a very small part of the channel, and the branclzeros ofD,, .
cut 2 dominates throughout the rest of the channel. In the rest The contribution of the quasi-mode to the magnetic field
of the paper we separately consider the global quasi-modes the transverse locationis given by
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B(p)( 0) i
X, ()=—7—7

D; (wp)

2
wp €' (X", wp)~ |
- c? e’(X",wp) fix 'wD)>'

e*“"ngL(X,wD)f:dX'de(X',wD)

(21)

T

Equation (21) loses validity in the immediate vicinity of
X=X4(wp). The contribution of the branch cut 2, shown in
Fig. 2, generates fields at the frequency of the quasi—mode§
and needs to be taken into account. This could be anticipatetC
since the pole contribution to the magnetic fi@#(x,¢) is
discontinuous at=x4(wp), whereas the total magnetic field
must be continuous.

As an example, consider parabolic plasma channels

ency @
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of two types:(a) hollow on axis @, =0), or(b) with finite
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w5(X) = why + (22
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profiles have been experimentally generdied guide laser
pulses through the plasma. For such chanig|{w) is
found from Eq.(20), where the basis functiong, ; are nu- ~o
merically integrated fronx=0 to X=X, @long the contour " ~o
shown in Fig. Zb). Parabolic channels are the easiest from z ~
the standpoint of the numerical integration: only one com-
plex resonant poink,(w) exists in the lower half of the
complexx-plane. This simplifies the choice of the integration
contour, which was taken as a sum of two straight lines in
the complex plane: one, connecting=0 and x=X,(w) 11
—iv (wherev is an arbitrary positive numbeand the other,
connecting<= X, (w) —i v andXy,, (chosen ak,,,=3b). The
real frequency and the damping rate of the quasi-modes o
are plotted as functions of the dimensionless channel widtt
Kpob in Figs. 3a) and 3b). We observe that for both types of
plasma channels, with and without plasma on axis, there €X1G. 4. The quasi-mode’s real frequency Rg) (solid line) and damping
ists a single quasi-mode which becomes localized near th@te imep) (dashed lingas a function of the channel widtt,ob for two
origin as the channel widens. Note that even for the widdypes of plasma channelga) zero plasma density on axis aifh) finite
(kpob>1) plasma channels the damping rate of the quasiP'asma density on axis. Plasma frequency satisighx) = wp + (wpo
mode is much smaller than the real frequency. ~ep)X (D).

For a hollow channel the only contribution to the accel-
erating gradientE,(x=0) comes from the quasi-mode. A proportional tob (which would be the case if the resonant
fluid code, which calculates all the electromagnetic fields angpoint always remained somewhere arourrb), the exis-
plasma fluid quantities as a function @f was recently tence of the quasi-modes would contradict the earlier state-
developed® To extract the damping coefficient and the fre- ment aboutD, () in almost homogeneous plasma. This
quency from the fluid code, we fittedE,(x=0,{) by  contradiction is resolved by noticing that the real frequency
Eocosfw,{+ ¢g) exp(— i), whereE, and ¢, are constants. Of the quasi-mode decreases with increasipg. Thus, the
We then compared, and v, the fit parameters of the fluid resonant location, shifts towards the origin with increasing
simulation, with the complex frequenayp from Fig. 3a). channel size. In fact, for,<b the channel density can be
For a wide range of the channel widtksyb we found an ~assumed as given by
exact agreement between the two approaches: the analytic
continuation of the Green’s function in the frequency domain
and the numerical simulation in time domah. The frequency of a quasi-mode of such a channel must be

In Sec. VIl we demonstrate thaX, (») does not vanish, expressed as a function af,,/b and the speed of light.
provided that the plasma is almost homogenekyis>1, ~ The only dimensionally correct combination is
where L=wp(X)/w)(x) is the inhomogeneity scale of the Wy M2
plasma density, evaluated at the “resonant”such that E) ) ,

e(w,x)=0. As Fig. 4a) indicates, the quasi-modes of the
plasma channel, described by E@®2), persist even for whereP is a complex constant which has to be determined
numerically by solving the eigenvalue equation

kpob>1. If the inhomogeneity length of the channel is

-~

08 < 2

Real Frequen
/
A oye1 Buidweq

086 . .
09 1.9 24 29
Channel Width kpob

14

w3 (X) = w5ox?/b?. (23)

(24)

(DD=P




598 Phys. Plasmas, Vol. 6, No. 2, February 1999 G. Shvets and X. Li

tant. The contributions of the cuts 1 and 3 are very distinct
x from those of the cut 2. Mathematically, cuts 1 and 3 are the
branch cuts of the dispersion functidh, (w). Basis func-
tions ¢.(X,w) are continuous across these cuts for all
0<x<Xmax- Physically, cuts 1 and 3 describe the electro-
magnetic fields generated at the edges of the plasmd

and X=Xy, Which penetrate by about a collisionless skin
depth into the bulk of the plasma. These fields resemble the
guasi-mode in that they too are highly localized. However,
for {> 7, , wherer,, is the phase-mixing time

.
oooooooo

E,andE, (a.u.)

......... wp
............. Tm= 7 7 (26)
0.0 + saas, pr
0.0 3.0 6.0

KX these contributions decay algebraically with time. For shorter
times {< 7, these fields are proportional to the powers of
FIG. 5. Spatial profiles of the focusingolid line) and acceleratingblack ¢l 7,,. Therefore, cuts 1 and 3 do not contribute if the plasma
circles electric fields of the collisionlessly damped quasi-mode of a wide m: T . . L.
plasma channel. Plasma frequency satisfi6) = w2x?/ (x2+b?); chan- channel has vanishing dgnsny gradients at Fhe edges, as it is
nel widthk,ob= 3. Accelerating fielcE, of the quasi-mode is discontinuous the case for the parabolic channels, described by(£2).
at xg~ 1.5 Since for the majority of smooth and symmetric plasma
channels cuts 1 and 3 are not important, they are not consid-
ered in this paper.
d 1 dy u? Basis functions¢ .. (X,w) are discontinuous across the
du\PZ=uZdul — P2=42 ¥ (29 cut 2, the contribution from which describes the locally ex-
) ] ) cited electromagnetic fields, oscillating with the the local
In Eq. (25 u is the normalized transverse dlsplacementmasma frequency,(x). The contribution from the cut 2 is
u=+wy/cbx, and the usual boundary conditiong(0) iynifi e i iHati
po ' ) s y & significant whenever the ponderomotive excitation extends
=¢(+)=0 are imposed. Equatio(25) is integrated be- (5 or there is a nonvanishing initial perturbatiorxaSince
tweenu=0 andu=+ along a contour in the compleX  he Green’s function of the magnetic fie®(x,x’,w) does
plane which passes below the singulatity P. This numeri- 5t have a pole aiv=w,(X), cut 2 provides the only con-
cal procedure yields a single value®f0.85-0.20. Thus it AN i fi
) ! O YaMd ' tribution to the locally excited magnetic field. The locally
the quasi-mode of a parabolic channel is heavily dampedyycited electric field&, andE, have three sources: the local

decaying by a factoe in less than one full oscillation. electric field, described by the first term in the RHS of Eq.
(3), pole contributions ab»= w,(x), and the cut 2 contribu-
VI. ASYMPTOTIC ANALYSIS OF WAKE EXCITATION tion.

o ] o Let us calculate the inverse Laplace transform of
Contributions of the quasi-modes are not sufficient toll? (x,0) along the branch cut 2 in the vicinity of
. . . y )
describe the electromagnetic wakes for all times and at aw:wp(x)_ For simplicity, assume that is removed from
transverse locations inside the plasma channel. The quask,

S - “discontinuity” point X4(wp). This is equivalent to as-
mode contribution to the total electromagnetic fields at asuming that the cut 2 does not cross the quasi-mode fre-

given transverse point can be negligible if the quasi-mode 'auencwa. Integrals along the two sides of the cut 2 do not

E)OC;“Z;Z;?; ?)\;Wtir)]/efrv?/irg;hc?algﬁzflOzlazg:n?))((jaembp;i’oxg Zildc_ancel because the Green’s function is discontinuous across
P d P%e branch cutalthough the dispersion functidd, () re-

nﬁméalgoigggr ?rl:glzegttil; farrofﬁévsa)gffiﬁg] ;:felzzgzan;ﬁmains continuous It is convenient to separate the integra-
point. T the sp profe: . 9 qion path in the complex’ plane into three separate inter-
focusing electric fields, shown in Fig. 5, which correspond to

the quasi-mode of the parabolic hollow channeﬁ(x) vals:C betvyeen Oand, —ie; Cbetweer, —is andx; C. .
— w2 x%(x>+b?) with kob=3. Both fields peak at betweerx, —ie andx,,. The Laplace transformed magnetic
~ @po pol = 9.

_ . . field is thus separated into two contour integralg:along
xd(wDI)~%.5/kp0, Wh?rteh wD_wlpO(Og]-S__l(_)HO?V)I IS thfeb tthe contour€_ andC, , andZ, along the contou€. Assum-
compiex requency of the quasi-mode. The values of bo r?ng that the ponderomotive potential is nearly homogeneous

fields a'F the e_dge Of_ the channel=2D) are negligible in in the vicinity of x, f can be brought outside of the integral.
comparison with their peak values atxy. Note that the The separate contributions are then given by
accelerating field, corresponding to the quasi-mode, is dis-

continuous aky. As explained in Sec. V, this does not cor- wﬁ(x,wp) e’
respond to a physical discontinuity. In addition to being lo- 1=~ ¢+(X)j dx' ¢ _(x') =
. . . : c D*(wp) c_ €
calized, quasi-modes exponentially decay wittpractically
disappearing several decay times 1#m after the passage €'
of the laser pulse. +é_(x) L dx' ¢ (x") = (27)
+

Under these circumstances the contributions from the
branch cuts 1-3, shown in Fig. 2, can become very imporand
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However, when plasma inhomogeneity is welld,> 1, the
contour integral can be analytically calculated. Moreover, the

e ’
I :a)pf(X,wp) & (X)f dx’ ¢ (X,)f_ restriction of the very large time can be removed, enabling
2 D, (wp) |7 e el the calculation oB(x,{) for arbitrary {>1/w,. The results
. of this calculation are presented in Sec. VII.
€ i _ti i .
—¢—(X)f dX' ¢, (X)), (28) US|_ng Eqs.(1_6),.(17), the long _t|me behavior of the ac-
c € celerating electric fields can be similarly evaluated by split-

ting the integration path into three contoufsC_, andC, .
The important difference in the calculations of the electric
and magnetic fields is thaE,(x,w) has a pole at
o= wy(X). One can demonstrate that the contribution of the

where w,=w,(Xx). We are interested in the changeslin
and |, as the frequency moves across the cut 2l rhis
change comes about from the jumpdgn (x), yielding

wgf(x,wp) €' pole exactly cancels thecomponent of the first term in the
g 1:W5¢S(X)J dx’ ‘f’(t);z’ (29 RHS of the Eq(3). The remaining accelerating field decays
P Cre according to
where ¢y=¢_ onC_ and ¢(-y=¢, on C,. It can be e’ 1
shown, using Eqs(18), (19), that the jump of the singular E,(x,)~e 1@p)i__P € ( )
solution ¢ across the<—x, cut is given by an 2D, (wp) | ce'{
i€’ k> , €~
Sh(x)=—5— $r(x), (30 X Lmdx b 21X @p). (33
where bothe’ andk, are evaluated at=Xx; . According to Eqgs.(32), (33), the accelerating field decays
Two factors contribute to the change Ig: first, the  slower than the magnetic field fde> 7,.
basis functions. (x) change(just as inl;), and, second, the Similarly, both the pole atv=w,(x) and the integral

values of the integrals along the contalalso change. This along the branch cut contribute to the focusing electric field
is because whemw is to the left(right) of the cut 2, the Ex. Since the locally excited electric field, given by the
integration contout lies to the left(right) of thex—x, cut. ~ X-component of first term in the RHS of the E®), is pro-
The singular solutionp is discontinuous across the- x, portional todf/dx, the ponderomotive potential in the inte-
cut, and so are the basis functiofis . Using the expression grand is expanded according th(x")~f(x)+f’(x)(x’

for the jump of the singular solutiog across thex—x, cut, —X). Unlike the case of the longitudinal field, the pole con-
given by Eq.(30), it is a matter of straightforwarthlthough  tribution does not cancel the local field, so that there is a
lengthy) algebra to demonstrate that the two factors cancelpondecaying oscillating wakefield left in the plasma. Since

so thatl, is continuous across the cut 8t,=0. magnetic field decays faster than the electric field, we see
Assuming thatw=wp(x) —iv, wherev<w,, the com- that_, over time, the wake becomes predominantly electro-
plex resonant poink, is determined by static.
The time evolution of the electromagnetic wake in the
(X—X,)=i L (31) plasma channel can be described as follows. Initially, a glo-
wp(X) €' (X, wp) bal quasi-mode is excited. Electromagnetic fields, associated

with the quasi-mode, oscillate with a fixed frequency
throughout the plasma. The oscillation amplitudes exponen-
tially decay in time with the damping rate equal to the imagi-
nary part of the quasi-mode frequengy, . For longer times
local excitations prevail. At a given transverse position
H]ese fields oscillate with the local plasma frequeagyx).

For the times longer than the phase-mixing time magnetic
and electric fields algebraically decay in time according to
different power laws, with magnetic field decaying the fast-
est,Byo<§*3, and the transverse electric field retaining a con-
k205'2( 1 )3 stant oscillation amplitude. More quantitative statements

The small-argument expansion of tie, given by Eq.(18),
is valid if k(x—x,) <1, which translates inte<<ce’. Since
only the frequencies witlr<<1/{ effectively contribute to the
integral along the cut 2, EqQ.(18 is valid for
¢{>max1/(ce'),llw,]. Physically, this corresponds to the
times longer than than the longest of the plasma period an
the phase-mixing time, .

Substituting Eg.(31) into Eg. (27), and integrating
B(x, ) over v yields

—iw P ) ' :
B(x,{)~e™' p(x)gm about the time dependence of the fields are made in Sec. VI

P for wide plasma channels, whose density varies slowly on
the scale of the collisionless skin deptl >1.

ce'l
xf I TP (32
X +) 2 X ] .
e+c, (£) g2 @p

In Eq. (32) the powers ofe’ were combined to emphasize viI. WAKE EXCITATION IN WIDE PLASMA CHANNELS

that the generated magnetic field is proportional to the, _. , o
. . o A. Time evolution of local excitations

plasma inhomogeneity’. This is because the bracketed

term is required to be much smaller than unity in order for  In Sec. VI the long-time {> r,,) asymptotic behavior of

the Eq.(32) to be valid. The contour integral in E432) the electromagnetic wakes was evaluated. It turns out that

cannot be analytically evaluated for a general plasma profilehe long-time restriction can be lifted, and the Green'’s func-
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tion can be analytically integrated along the branch cut 2vhere the plasma quantities, sucheds are evaluated at
(responsible for the local excitationi§ simplifying assump- =X, .

tions are made about the plasma density and laser profiles. In  Since the basis functiors, is localized by |x—x,|
this section we assume that the plasma is weakly inhomoge<1/k,, the dielectric function can be expanded in the vicin-
neous, so that the scale of the plasma inhomogeneity is mudty of x, ase(x’)=¢€'(x'—x,). Substituting the expression
longer than the plasma Wavelengklj:< kf,. The laser profile  for ¢’./(x—x,) from Eqg. (34) into Eq. (39), obtain, after
is also assumed only weakly nonuniform on a scalg,1/ integrating by parts,

dIn|f[/ox<k,. The closed form expressions for thle. and B

¢__ can_ be obtal_ned, enabling the analytic c_alculathn of the By(x,w)=4t|1(t)wlcf dt tKy(t)=2mtl (1) w/c.
dispersion functiorD, (@) and the contour integral in Eq. 0

(29). (40)

In the vicinity of the resonant p0|nd,x—xt|<L _the For the times longer than the local plasma period,
Ipwest-orderTaonr e,xpanS|on for the pIasma dle[ept_rlc func—§>l/wp(x), only the frequencies withy<aw(x) signifi-
tion can b? usedef N (X_Xr.)' Therefore, in the vicinity of cantly contribute to the inverse Laplace transform integra-
X; the basis functiong.. satisfy tion, S0 thatt =Kk(x—x;)~i(wp/c)(¥/w}). Note, however,

2 1 9 that althoughw is always close taw, for weakly inhomoge-
K X—x. g—kp =0. (34)  neous plasmast| can be either smalffor v<c/L), or large
' (v>c/L). These two limits correspond to the times longer or
Equation(34) has two independent solutions: shorter than the phase-mixing timsg, .
IntegratingB, (X, w) along the contour 2 yields
d=tl(t) and ¢P=tK(1), (35
wherekp,=kp(x), t=Kky(x—Xx,), andl(t) andK(t) are the By(x,g)ze‘i“’pmlf dve™ "*kf(X,w)td,(it)
modified Bessel functions. 0
Further assume thatis at least I, away from both the w2
origin and the discontinuity pointy(wp). The origin can =~ —jei0p0¢ > p,?(x,wp)
now be treated as being infinitely far away, so that the inte- C@p
gration in Eq.(28) can be carried out along the path which o W, v
runs from— o to + o, passing right under the resonant point X fo dVeV§VJl(TpU : (41)

X; .

The next step is to construct the basis functiahs,  The integral in Eq(41) can be evaluated exaci§ resulting
satisfying their boundary conditions ate. For example, the in
second solution of the E@34) tK,(t) vanishes a$— +oo.
Of course, Eq(34) is not valid for|x—x,|>L, and neither
are its solutions. However, sinégL>1 (wide channel the
true approximate solution becomes exponentially small for o _ o _
L>|x—x,|>1/k,, so that the difference between the exactCombining this contribution of the cutv=wy(x)—iv,
solution¢, and the approximate solutiai,(t) is exponen- »>0 with the contribution from the symmetric cub
tially small. The linear combination of the Bessel functions = —~ @p(X) —iv, »>0, yields the final expression for
from Eq.(35), decaying ax— — o, can also be constructed. By(X,{) excited by a short laser pulse with a large spot size
Altogether, the basis functions are given by in a wide plasma channel:

, Kp-,

By(x,{)=-2 5|r(wp§)7_—f(x,wp)

m

2
1+ 2
T

—(3/2)

H k —iw
By(x,g)z—lT—ie pF (X, wp) (42)

—(3/2)

4‘2

v
Tm

d_=tKy()+imtl, (1) and ¢, =tKy(t). (36)

1+ (43

The dispersion function is then given by
The inverse Laplace transform Bf andE, can be done

_ (37) in a similar way. The main difference is that in the cas& of

€ there is a nonvanishing contribution to tkeintegral from a

Magnetic fieldB,(x,£) is found by substitutings.. , D, , pole atx’ =x, which exactly cancels the locally driven field.

and §¢s= 8¢, from Egs.(36), (37) into Eq. (29) and inte- After some algebra we find

5 :k_g é_de, Idt— ¢, de_/dt :_iwkg

* 6, t !

grating the result ovew. The jump of the basis functions (X, wp) 21792
across the cut is given BY E (X,0)= —simwpg)prp 1+ =
. Tm
S, =t[K (te'?™) — K (t)]=2imtl(1). (39 , ,
w T
By noting that¢_(t)=¢. (—t), Eq. (29) can be integrated —cog wp{) ?rf(X,wp) \/T% (44)
Tm

by parts and simplified to
2

N I¢’ [ 1
51, = — ate f ax ", (39) ELx.0) =00 ond) FHxon) =z 45

Xy
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wherew,=w;(X) is thelocal plasma frequency at the trans- the nonlinear wave breaking timﬂNB=|Aw,')|_l is calcu-
verse positiorx. In deriving Eqs.(43), (44), (45) the second  |ated by substituting\x=A into Eq. (46). For very small
and higher derivatives dfare neglected. Although the first oscillation amplitudes the trajectory-crossing time becomes
term in Eq.(44) is proportional tosf/ox and decays as™®  very long. This type of the transverse wave breaking, which
for large times, it was kept because it is larger than the seqakes place several plasma periods behind the laser pulse,
ond term for{<ry,. was recently described by Bulanev al*°

In a homogeneous plasma the second term in(E4). On the other hand, wakes in plasma channels are not
identically vanishes. Interestingly, in a channel the locallypurely electrostatic. There is a nonvanishing Pointing flux,
excited transverse electric f|6|d, described by the first termassociated with these Wakes, which enables communication
rapidly decays with time, while the electromagnetic contri-petween different transverse positions. Locally excited
bution, described by the second term, reaches the steady qQ§asma oscillations do not remain localizéand electro-
cillation amplitude. This amplitude isndependentof the  statig because of the finite magnetic field generated in the
transverse gradient of the ponderomotive potential. Also not@hannel according to Eq43). This magnetic field produces
that the nondecaying component of the focusing electric fiel finite Pointing flux which spatially re-distributes the elec-
is in phasewith the accelerating field. This is potentially tromagnetic energy. As a result, electromagnetic wakes in
important for plasma-based particle accelerators. In a stajhe inhomogeneous plasma become nonlocal: fields at a
dard laser wakefield accelerator, based on a transversely urjiven spatial locatiorx are affected by the plasma currents
form plasma, the accelerating and focusing electric fields argithin a collisionless skin deptie/w, from x. Therefore,
90 degrees out of phase. Therefore, the phase region, whefgakes damp when, roughly, two fluid elements, separated by
an injected particle is both accelerated and focused, is only/wp, get out of phase. Substitutinx= c/w,, into Eq.(46)
Ap/4 long. In a channel this region can bg/2 long, as seen  results inr,= w,/cw;,. Below we demonstrate how this es-
from Eqgs.(44), (45). A qualitatively similar observation was timate can be obtained in a more formal way.
made by Andreeet al,?® who earlier studied wake excita- As Eqgs.(43), (44), (45) indicate, magnetic field decays
tion in wide plasma channels for very short times 7,,. faster than both components of the electric field. This implies

Equations(43), (44), (45) constitute an important result that, by conservation of the total vorticif§,
of this paper. For the first time, to our knowledge, the closed

form expressions for the wake evolution in wide plasma _¢B
. . ; . Xv=—, (47)
channels, valid for the arbitrary times, have been derived, mc

and the phase-mixing timer, introduced. The physical so that for large time& xv~0, and the plasma flow be-

meaning of the phase-mixing time, as well as the basic phy.séomes almost curl-free. This property of the flow helps un-

IcS Of_ the coliisionless field decay in plasma channels, Rerstand why the axial electric field is much smaller than the
explained below. e .
transverse electric field for large times. The curl-free flow
condition for (>, implies dv,/dx=dv./dz, or v,
B. Phase-mixing in plasma channels =—v,7y/{. The same relationship exists between the axial
D . f the elect tic fields in ol h and transverse components of the electric field, as can be
amping of the electromagnetic 1Ields in plasma chan<,,qo a4 from Eq944), (45). Combining Maxwell’'s equa-
nels is reminiscent of the decay of two-dimensional plasmq- ; :
L . : . ' ions with Eq.(47) yields
oscillation due to the trajectories crossing, as described by
Dawson® To appreciate the differences of these two damp-
ing mechanisms, consider the underlying basic physics. Lo-
cal plasma oscillationgand the corresponding electric figld )
decay when different plasma fluid elements, oscillating withWhere we have used the curl-free flow assumption and the
their local plasma frequencies, get out of phase. Considd@cCt that, for largeZ, v, oscillates with a constant amplitude
two fluid elements, initially located ak=x, and x=x,  2Ux- ) _ o
+Ax and oscillating with their local plasma frequencies  ASsuming that the plasma density does not significantly
wp(Xo) and w,(Xo+Ax), respectively. These two elements change on a scale of the collisionless skin depth (&8).can

62

4Ameng
2 —k3(x)

B,~ Tgvxe_i“’p(’%%— c.c., (48)

get out of phase after be solved in closed form by expanding,(x')~ wy(X)
+ wp(X" —x):
m=|wpAx| " h (46)
o _ i 2mwenyly .

Below we qualitatively argue for the appropriate, which By(x,0)=— 2 © top(x)¢
has to be substituted into EG16). pC¢

Electrostatic cold plasma oscillations, considered by e x| ol 2
Dawson, collapse when adjacent fluid elements collide with X f_m dx'e " lelwp +cc. (49

each other. This is because there is no Pointing flux associ-

ated with such oscillations, so that the energy can only bés illustrated by the integrand of E@49), fluid elements
transported from one position to the next by the plasma eleawithin one collisionless skin depth fromt contribute to
trons. This results in the trajectory crossing, which can beB,(x). For large{ these contributions get out of phase, and
interpreted as dephasing between the electrons separated e integral in Eq(49) decays as (& gzlrﬁq)‘l. Therefore,
the distance equal to their oscillation amplitudleTherefore, magnetic field decays as 2, in agreement with Eq(43).
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This calculation illustrates how the electromagnetic nature of°H. M. Milchberg, C. G. Durfee Ill, and J. Lynch, J. Opt. Soc. Am1B
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