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Theory of laser wakes in plasma channels
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~Received 21 July 1998; accepted 21 October 1998!

Excitation of accelerating modes in transversely inhomogeneous plasma channels is considered as
an initial value problem. Discrete eigenmodes are supported by plasma channels with sharp density
gradients. These eigenmodes are collisionlessly damped as the gradients are smoothed. Using
collisionless Landau damping as the analogy, the existence and damping of these ‘‘quasi-modes’’ is
studied by constructing and analytically continuing the causal Green’s function of wake excitation
into the lower half of the complex frequency plane. Electromagnetic nature of the plasma wakes in
the channel makes their excitation nonlocal. This results in the algebraic decay of the fields with
time due to phase-mixing of plasma oscillations with spatially-varying frequencies. Characteristic
decay rate is given by the mixing timetm , which corresponds to the dephasing of two plasma fluid
elements separated by the collisionless skin depth. For wide channels analytic expressions for the
field evolution are derived. Implications for electron acceleration in plasma channels are discussed.
© 1999 American Institute of Physics.@S1070-664X~99!00902-7#
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I. INTRODUCTION

Plasma channel is an important tool for a variety
laser-plasma applications, such as laser-driven par
accelerators,1–8 x-ray lasers,9,10 harmonic generation,11 and
inertial confinement fusion.12 The primary objective of cre-
ating a plasma channel is to guide radiation~e.g., an intense
laser pulse in a laser wakefield accelerator! over many Ray-
leigh lengths. Underdense plasma channels can sup
transversely localized laser modes which do not diffra
Since the frequencies of such modes are typically m
higher than plasma frequencies anywhere in the chan
these eigenmodes are almost purely electromagnetic. L
guiding in plasma channels has been studied theoretic
and experimentally.13,14

Inhomogeneous plasma channels support another c
of the lower frequency modes, which have both the elec
static and electromagnetic characteristics. These modes
the extensions of electrostatic modes of the cold unifo
plasma of densityn0 , which have the plasma frequencyvp

5(4pe2n0 /m)1/2, where2e andm are the electron charg
and mass, respectively. Waves in inhomogeneous plas
have been studied since the 1960’s because of their relev
to the resonant absorption of obliquely incidentp polarized
radiation.15–17 Calculations of the rate of energy absorpti
assume a cw incident electromagnetic wave of fix
frequencyv0 , resonantly driving a cold plasma wave in th
close proximity of the plasma resonance pointxr , defined by
vp(xr)5v0 . Electromagnetic surface modes of the sem
infinite plasma were first studied by Stepanov,18 who pointed
out that these surface modes become damped as the
plasma-vacuum interface is smoothed out. Excitation of
electrostaticwaves in inhomogeneous plasmas was stud
as an initial value problem by Sedla´ček.19 However, the elec-
trostatic assumption does not hold in general.

Applications of plasma waves to particle accelerat
brought about the renewed interest in the accelerating wa
5911070-664X/99/6(2)/591/12/$15.00
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in plasma channels.20–25It was demonstrated20,21 that the ac-
celerating properties of the surface wave, generated in a
low plasma channel, are superior to those of the electros
wake in a homogeneous plasma. In particular, the wak
transversely homogeneous inside the channel, and the m
netic component of the wake, combined with the radial el
tric field, prevents the over-focusing of the accelera
particles.24 Excitation of the accelerating wakes in an arb
trary plasma channel by a short intense laser pulse was
considered by Shvetset al.,22,23 with the emphasis on the
hollow channels with a sharp~although not infinitely sharp!
plasma-vacuum interface.

One of the interesting features of wake excitation
plasma channels with sharp density gradients is the exc
tion of a damped quasi-mode. This quasi-mode, whose
quency is very close to the frequency of the surface mod
a hollow channel, resonates with the plasma at the reso
location xr , defined by vp(xr)5vch, where vch5vp0 /
A11vp0b/c is the frequency of the surface wave,b is the
channel width andvp0 is the plasma frequency. Very larg
electric fields develop atxr , eventually leading to wave
breaking and plasma heating.

It turns out that the response of a plasma channel wit
smooth density profile contains a continuous spectrum
frequencies, unlike the response of a hollow channel with
infinitely sharp interface, which only supports a single s
face mode atvch and a bulk plasma mode atvp0 . The dis-
crete channel mode is collisionlessly damped in the prese
of the continuum of modes. Dissipationless damping
quasi-modes in the presence of the mode continuum
ubiquitous phenomenon in the physics of continuous me
The well known examples include collisionless damping
plasma waves in warm unmagnetized plasmas~Landau
damping!,26 Alfven waves in ideal magnetohydrodynamic
modes of inviscid fluid motion,27 and oscillations of strongly
magnetized electron columns.28,29
© 1999 American Institute of Physics
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Presently, an interesting dichotomy exists in our und
standing of wake excitation in nonuniform plasmas. Tw
radically different plasma profiles can be treated, at le
perturbatively: ~i! almost uniform plasma~e.g., a shallow
parabolic plasma channel of width much exceeding both
collisionless skin depth and the spot size of the pondero
tive driver25,30,31!; ~ii ! plasma channel consisting of a fini
number of piecewise constant density steps~e.g., a hollow
channel!. The purpose of this work is to present a unifi
theory of plasma modes in arbitrary plasma channels. T
work relies heavily on the ideas of Briggset al.28 for solving
the initial value problem for the inviscid fluid flows and o
cillations of magnetized electron columns. Despite the diff
ences in the equations describing the excitation of accele
ing wakes in plasma channels, and those solved by Br
et al., the general concepts of causality, analytic continuat
of the dispersion function and eigenfunctions into the co
plex frequency plane, and integrating differential equatio
in the complexx-plane can be applied to the problem
hand.

The remainder of the paper is organized as follows.
Sec. II the equations for wake excitation in nonuniform co
plasma by a laser pulse are reviewed. Excitation of the e
tromagnetic eigenmode of a hollow channel is also
scribed. In Sec. III we show that plasma channels w
smooth monotonic density profiles do not support any n
tral or damped eigenmodes. Wake excitation by an arbitr
laser pulse is formally calculated in Sec. IV, where t
Green’s function of the wake excitation is derived and a
lytically continued into the lower half of thev plane. It is
shown that electric and magnetic fields can be computed
summing the contributions of several cuts and poles of
Green’s function. Contributions from the cuts describe
~almost! local wake excitation, while the poles correspond
the global collisionlessly damped quasi-modes. Frequenc
damping rates, and excitation of these quasi-modes are
sidered in Sec. V. After several damping times, exponen
decay of the fields is replaced by the power-law decay of
locally excited wakes. Long-time asymptotic analysis
these wakes is carried out in Sec. VI, where the contributi
of the cuts of the Green’s function are evaluated. In Sec.
we calculate wake excitation in wide plasma channels, wh
the density gradient scale is much longer thanc/vp . We find
that for wide channels quasi-modes are not important. Ac
erating electric fieldEz and magnetic fieldBy decay in time
according to~different! power laws, while the focusing field
Ex reaches the steady state fort5`. Power law decay is
demonstrated to be the result of phase mixing of adjac
plasma fluid elements, which oscillate with their loc
plasma frequencies. Section VIII presents the discussio
the results.

II. THE MODEL OF WAKE EXCITATION

A number of simplifying assumptions make the proble
at hand analytically tractable. Slab geometry is assumed
that the plasma densityn0(x) is only a function of the trans
verse coordinatex. Ions are assumed immobile, providing
neutralizing background. Wakes are driven by a nonevolv
r-
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nonrelativistic laser pulse witha5euAu/mc2,1, so that all
calculations are performed to ordera2. For largea, the pon-
deromotive force will significantly distort the plasma cha
nel, precluding the analysis based on a prescribed den
profile. The group velocity of the pulse is assumed close tc
~tenuous plasma!, and all the plasma quantities are functio
of z5t2z/c.

For tenuous plasmavp!v0 two separate time scale
exist: fast scale of order the laser period, 1/v0 , and slow
scale of order the plasma period, 1/vp0 . On a slow time
scale, consistently with a weakly relativistic assumptio
electrons are driven by the ponderomotive force of the la
and the electric field of the wake:

]v

]z
5

e

m
~E1¹ f !, ~1!

wheref is the ponderomotive potential given by

f 52
mc2

4e
uau2, ~2!

andE is the electric field induced in the plasma. Assumi
quiescent plasma in front of the laser pulse and Lapl
transforming the electron fluid equation of motion~2! in z
yields the electron current densityj52en0v. The electric
field of the wake is computed by substitutingj into Ampere’s
law:

eẼ5
vp0

2 ~x!

v2 “ f̃ 1 i
c

v
¹3B̃, ~3!

wheree is the cold plasma dielectric function:

e~x,v!512
vp0

2 ~x!

v2 , ~4!

and the tilted variables are Laplace transforms inz and func-
tions of the transform variablev. As Eq. ~3! indicates, the
total electric field is a sum of the locally excited plasm
perturbation~first term! and a global electromagnetic fiel
~second term!, which we denoteE. The significance of the
two contributions is determined by the channel profile. F
example, in a hollow channel the contribution of the fir
term vanishes in the vacuum region, and the second t
~electromagnetic surface mode! dominates. The second term
identically vanishes in the homogeneous plasma, and
comes very small for very smooth density profiles. This
because ponderomotively excited wakes in homogene
plasmas are electrostatic in the weakly relativistic appro
mation. Small magnetic field of the orderB;a0

4mcvp /e,
which is generated in the homogeneous plasma,32 is ne-
glected in this calculation.

The equation for the magnetic field is derived by subs
tuting Eq.~3! into Faraday’s law:

By92
e8

e
By82

vp
2~x!

c2 By5
v2

c2

e8

e
f̃ ~x,v!. ~5!

Since we only consider accelerating TM modes, bound
conditionsB̃y(x50)5B̃y(x5`)50 must be satisfied. As
suming a monotonic density plasma density profile, wh
asymptotes ton0 at infinity, one can choose a transver
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location xmax ~finite or infinite!, such thatvp(x)[vp0 for
x.xmax. Therefore, the second boundary condition can
chosen atxmax asB̃81kp0B50. Equation~5! can be recast a

LS~v!By5
v2

c2

e8

e2 f̃ ~x,v!, ~6!

whereLS is a Sturm–Liouville operator, parametrically d
pendent on a~possibly complex! frequencyv:

LS~v!5
d

dx S 1

e~x,v!

d

dxD2
vp

2~x!

c2e~x,v!
. ~7!

A possible approach to solving Eq.~6! is to find the
normal modes of the operatorLS . As shown below for the
hollow plasma channel, such an approach is elucida
when the plasma density profile is a piecewise constant fu
tion. It is, however, problematic when applied to arbitra
density profiles. The deficiencies of the normal mod
method for a conceptually similar problem of two
dimensional motions of the inviscid incompressible flu
have been known for many years, ever since this method
first applied by Rayleigh.33 More recently, the major three
problems with this method were summarized by Briggs28

and we follow his account here. The first problem was no
by Kelvin34 in a paper titled ‘‘On a disturbing infinity in
Lord Rayleigh’s solution for waves in a plane vortex str
tum,’’ which, in the context of wake excitation, refers to th
resonant coupling of the electromagnetic eigenmode to
electrostatic plasma waves when its frequency matches
local plasma frequency. The second problem is that the
mal modes of a piecewise constant density profiledisappear
as soon as the profile is smoothed out. The third problem
that a finite number of the normal modes cannot form
mathematically complete set.

However, the method of normal modes proved usefu
analyzing the hollow plasma channel. It was shown21 that for
the plasma density profile

vp
2~x!5H 0 for uxu,b

vp0 for uxu.b
~8!

a single normal mode with frequencyvch5vp0 /
A11vp0b/c exists. This is a surface mode because it can
shown that the electron fluid is incompressible foruxu.b,
while there is a surface charge atuxu5b. Since 0,vch

,vp0 , it is very plausible that the normal mode may
strongly perturbed if the interface between vacuum a
plasma is not infinitely sharp, i.e., there exists a locationxr

wherevp(xr)5vch. At this locatione(xr ,vch)50, and the
operatorLS becomes singular. This is the essence of the fi
problem with the method of normal modes applied to a g
eral density profile. It was also shown in Refs. 22, 23 that
time evolution of the electromagnetic field inside the chan
is completely determined by the excitation of a single surf
mode. For example, the transversely homogeneous insid
channel accelerating fieldEz is given by

Ez~z!5
vp0

2

~11kpb!c E2`

z

dz8
sinvch~z2z8!

vch

d f~z8,x5b!

dz8
.

~9!
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A noteworthy consequence of Eq.~9! is that the amplitude of
the surface mode is driven by thelongitudinalrather than the
transverse gradient of the ponderomotive potentialf. Hence,
despite the significant transverse pressure, exerted by a
row laser pulse on the plasma, the pulse still has to be s
to excite a substantial wake inside the channel.

The situation dramatically changes when the transit
between vacuum and plasma occurs over a finite distancebd,
whered may be arbitrarily small. A continuum of modes
required to describe the fields over a continuous~albeit short!
transitional region, with each spatial location having its ow
local plasma frequency. This explains the third problem w
the normal mode expansion, which only produces a sin
normal mode. In the next section, to demonstrate the sec
problem with the normal mode method, we show that,
fact, no neutral or damped modes exist for smooth den
profiles.

III. EXISTENCE OF NORMAL MODES FOR SMOOTH
DENSITY PROFILES

To study the normal modes of a plasma channel, ass
that the plasma frequency varies monotonically fromvp1 to
vp2 betweenx50 andx5xmax. Allowing xmax to be finite or
infinite, further assume, without loss of generality, th
plasma density is constant and equal tovp2 for x.xmax. If c
is an eigenmode of the linear operatorLS(v), where
v5v re1 iv i is a complex frequency, it can be shown th
c(x)5Ce2kp(x2xmax) for x.xmax. Multiplying LSc50 by
c* and integrating betweenx50 andx5xmax yields

2kpuCu25E
0

xmax
dx

v22vp2
2

v22vp
2~x!

S vp
2~x!

c2 ucu21Udc

dxU
2D . ~10!

Considering damped or growing modes withv iÞ0, and as-
suming that bothc and c8 are continuous between 0 an
xmax, find that the imaginary part of the right-hand sid
~RHS! of Eq. ~10! does not vanish. Since the imaginary pa
of the left-hand side~LHS! of Eq. ~10! is equal to zero, the
existence of the damped or growing eigenmodes is ruled

Next we check for the existence of neutral modes w
v i50. As evident from Eq.~10!, there can be no modes wit
v.vp2 or v,vp1 since this would make the RHS of th
equation positive. Hence, if the neutral do exist, their f
quency satisfiesvp1,v,vp2 . Since the plasma frequenc
is monotonic betweenx50 andx5xmax, there exists a loca-
tion xr , wherev5vp(xr), and the singular integral in the
Eq. ~10! can be expressed as

RHS52~vp2
2 2v2!E

0

xmax
dxS vp

2~x!

c2 ucu21Udc

dxU
2D

3S P
1

v22vp
2~x!

7 ipd~x2xr !
1

uvp
28~xr !u

D , ~11!

where 6 corresponds tov approaching the real axis from
above or from below, respectively. Since the imaginary p
of the LHS of Eq.~10! vanishes, so should the imagina
part of Eq.~11!, implying that either~i! both c and its de-
rivative vanish atx5xr ~trivial solution!, or ~ii ! uvp

28(xr)u
5` ~infinitely sharp interface!.
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While the trivial solution is of no interest, infinitely
sharp interface is encountered, for example, in an ideal
low channel. This is in agreement with the calculation
Sec. II which demonstrated that an ideal hollow channel s
ports a neutral edge mode. However, if electron density
continuous, there are no continuous neutral normal mo
Therefore, the surface mode disappears as soon as the
function density profile of an ideal hollow channel
smoothed out. This conclusion disagrees with our ear
analytical and numerical findings, presented in Refs. 22,
which recovered weakly damped surface modes for t
channel walls. Section IV resolves this disagreement by
culating the Green’s function of Eq.~6! and recovering the
damped quasi-modes of a smooth plasma channel. As it t
out, these quasi-modes are discontinuous, so that there
contradiction with Eq.~10!.

IV. SOLUTION OF THE DRIVEN EQUATION

A. Construction of the Green’s function

The magnetic field in thez-domain is then obtained b
inverse Laplace transformingB̃y(x,v) along any contourG
in the upper half plane of complexv, as shown in Fig. 1:

By~x,z!5E
G

dv

2p
e2 ivz B̃y~x,v!. ~12!

Magnetic fieldB̃y is computed by constructing the Green
function G(x,x8,v) of the operatorLS , satisfying the
boundary conditions atx50 andx5xmax, and a differential
equationLS G(x,x8,v)5d(x2x8). Such an approach wa
originally used by Briggset al. to study the eigenmodes of
strongly magnetized non-neutral plasma.28 By causality, we
require thatG(x,x8,v) has no singularities in the upper ha
v-plane. The Green’s function ofLS is

G~x,x8,v!5H 1

D~v!
f1~x,v!f2~x8,v! for x8,x

1

D~v!
f2~x,v!f1~x8,v! for x8.x,

~13!

wheref2 andf1 are linearly independent solutions of

FIG. 1. G is the integration path for Eq.~12!. Integral along the contourG
can be reduced to a sum of two integrals along branch cuts~contoursG1!.
l-
f
p-
is
s.

tep-

r
3,
n
l-

ns
no

LSf650, ~14!

satisfying their respective boundary conditions:f2(x
50,v)50 and f18 (x5xmax,v)/f1(x5xmax,v)52vp2 /c.
ConstantD(v) is the Wronskian off6 , given by D(v)
5@f18 f22f28 f1#/e. D(v) will be referred to as the dis
persion function because its zeros correspond to the cha
eigenmodes. For example, for an ideal hollow chan
D(vch)50.

For any realx magnetic field can be calculated accordi
to

B̃y~x,v!5E
0

xmax
dx8G~x,x8,v!S v2

c2

e8

e2 f̃ ~x8,v! D . ~15!

Similar Green’s functions can be derived for the accelerat
and transverse components of the electric fieldẼz and Ẽx :

Gz~x,x8,v!5 i
c

ve~x,v!

]G~x,x8,v!

]x
, ~16!

Gx~x,x8,v!5
1

e~x,v!
G~x,x8,v!. ~17!

The linearly independent solutionsf2 and f1 can be
expressed in terms of the regular and singular solutionsf r

andfs in the vicinity of the complex singular pointxr . The
regular solution can be expanded in the vicinity ofxr :

f r~x!5~x2xr !
2@11kp

2~x2xr !
2/81¯#, ~18!

and the singular solution can be constructed in terms of
regular solution:

fs~x!5f r~x!E
0

x dx8

f r
2~x8!

e~x8!. ~19!

The singular solution has a branch point atx5xr . Since any
pair of linearly independent basis functions can be c
structed as a linear combination off r andfs , at least one of
the basis functions has a branch point atxr .

Choosingf r andfs as the basis functions is convenie
for analysis but not at all necessary for practical compu
tions. Forv i.0 the eigenfunctionsf2 andf1 can be ex-
pressed in terms of any pair of linearly independent soluti
of the homogeneous equationLSf50. One such example is
a set (f0 ,f1), satisfyingf0(0)50, f08(0)51, andf1(0)
5e(x50,v), f18(0)50. Integrating these solutions accor
ing to Eq. ~14! betweenx50 to x5xmax yields both the
dispersion function

D5
f08~xmax!1kp2f0~xmax!

f18~xmax!1kp2f1~xmax!
, ~20!

and the f6 basis functions: f25f0 and f15f0

2D(v)f1 . Integration of the homogeneous equation alo
the real axis is unambiguous forv i.0 since the singularities
of LS lie above the realx-axis. From the results of the pre
vious section,D(v)50 has no roots ifvp(x) is a monotonic
continuous function. Alternatively, one might obtainf2 di-
rectly by integrating Eq.~14! forward in x, starting fromx
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50 ~where the boundary conditions forf2 are set!. Simi-
larly, f1 is obtained by integrating Eq.~14! backwardsin x,
starting fromx5xmax.

B. Analytic continuation of the Green’s function

Singularities ofLS are encountered whenv assumes a
real value from the interval@vp1 ,vp2#. The dispersion func-
tion D(v) thus has branch points atvp1 andvp2 . In addi-
tion, there is another branch point of the singular funct
fs(x,v) at v5vp(x). Hence, one can ensure thatBy(x,v)
is single-valued by making a single cut betweenvp1 and
vp2 . The integration contourG can then be wrapped aroun
the cut, as shown in Fig. 1. A similar cut must be ma
between2vp2 and2vp1 .

However, integration around the branch cut in Fig.
does not reveal any information about the damped qu
modes. A different cut, shown in Fig. 2, can be used
recover the quasi-modes. Following Ref. 28, the integrat
contour is pushed into the lower half plane. To do th
D(v), f2(x,v), andf1(x,v) have to be analytically con
tinued for v i,0. Although D(v) has no zeros above o
below the realv axis, its analytic continuationD* (v) may
have zerosvD and2vD* in the lower half-plane, as shown i
Fig. 2. This phenomenon is analogous to the collisionl
Landau damping of electrostatic plasma waves. The die
tric constant of the warm plasma does not vanish for a
complex frequency, but its analytic continuation does, res
ing in Landau-damped quasi-modes.

Not only the dispersion functionD(v), but also the ba-
sis functionsf6(x,v) need to be analytically continued
Analytic continuation involves integrating the basis fun
tions @i.e., solving the homogeneous differential equati
~14!# along a contour which is no longer a straight line alo
the real axis. To illustrate the considerations that go i
choosing the appropriate integration path, assume thatv be-
longs to the original contourG, i.e., v5v r1 iv i , wherev i

.0. The complex resonant pointxr is then located in the
upper half of thex-plane.35 For example,f2(x,v) is com-
puted by integrating Eq.~14! along any contour, which con
nects the origin andx ~including the straight line, of course!,
provided that the contour always stays below the reson

FIG. 2. A different cut which recovers the quasi-modesvD andvD* -zeros of
the analytic continuation of the dispersion functionD* (v).
n

e

i-
o
n
,

s
c-
y
t-
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nt

point xr(v). The analyticity off2(x,v) in the complex
x-plane is ensured by making a branch cut, as shown in
3~a!.

Whenv is moved into the lower half-plane, the resona
point x5xr(v) is also lowered below the real axis, makin
the integration of the homogeneous equation~14! along the
real axis impossible as soon asxr crosses the real axis. T
ensure the analyticity off6(x,v) as a function ofv, the
integration contour in the complexx-plane must be deformed
to stay below the branch pointx5xr(v). Such a contour
avoids the branch cut in the complexx-plane, as shown in
Fig. 3~b!.

To illustrate the choice of the appropriate branch cut
the x-plane, we first calculatexd(v), the intersection of the
branch cut with the real axis. Basis functions undergo a ju
when x moves fromxd(v)2« to xd(v)1«. To calculate

FIG. 3. Integration paths in the complexx plane of the differential equation
LS(v)f0,150 for the basis functionsf0 and f1 , whose boundary condi-
tions are set atx50. xr is the resonance point, defined bye(xr ,v)50. ~a! v
in the upper half plane, Imv.0. C1 andC-possible integration paths. Basi
functions are continuous on the real axis.~b! v in the lower half plane,
Im v,0. Integration contour remains below the resonance pointxr to ensure
analytic continuation of the Green’s function. Basis functions are disc
tinuous on the real axis atx5xd , wheree(xd ,Rev)50.
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xd(v), note that the cuts in thev plane are vertical for any
fixed x. Basis functions undergo a discontinuous chan
whenv crosses the vertical cut which runs downward fro
vp(xd). Therefore, the discontinuity pointxd(v) is found by
solvingvp(xd)5Rev. Note thatxd(v) does not correspond
to any physical discontinuity. As was earlier pointed out
the literature,28,27 the discontinuity of the field is not ‘‘real’’
in the sense that it only exists in the frequency domain. T
field discontinuity disappears after the integration overv.
Moreover,xd(v) depends on the choice of the branch cuts
the v plane. The prescription for calculatingxd , given
above, is consistent with vertical cuts in the complex f
quency plane.

This analysis can now be generalized to construct
entire branch cut in the complexx plane, connecting the
xd(v) and xr(v) endpoints. The cut consists of a set
points xc , such thatvp(xc)5Rev1igc , where Imv,gc

,0. It is, essentially, the mapping of the branch cut 2 of
complex v plane onto the complexx plane according to
vp(xc)5vc , wherevc belongs to the branch cut 2. Ther
fore, the shape of the cut in the complexx plane is entirely
determined by the choice of the cut in the complexv-plane.
In other words, choosing a different cut 2 in Fig. 2 wou
result in a different cut in thex plane for the same value ofv.

Basis functionsf6(x,v) undergo a discontinuity on th
real axis atx5xd(v) for any v in the lower half plane with
vp1,Rev,vp2. The particularly important frequencies a
the poles of the analytically continued Green’s function
v5vD . They correspond to the zeros of the analytica
continued dispersion function:D* (vD)50. It can be shown
that zeros ofD* come in pairs (vD ,2vD* ), as illustrated in
Fig. 2. As explained in Sec. V, these poles define the co
sionlessly damped quasi-modes of the plasma chan
Quasi-modes are the generalizations of the true eigenm
of the channels with discontinuous density profiles, such
the hollow channels. Real frequencies and damping rate
these quasi-modes are independent of the choice of br
cuts in thev plane. The existence of the quasi-modes d
not contradict the findings of Sec. III, where it was demo
strated thatD(v) does not have zeros for anyv. The ana-
lytical proof of Sec. III relied on the continuity and differen
tiability of the hypothetic eigenfunctionc of the
homogeneous equation~14!. Since the analytically continue
basis functionsf6(x,vD) are discontinuous atxd(vD), this
proof is no longer valid.

With the procedures for the analytic continuation of t
basis functions and the dispersion functionD(v) estab-
lished, the inverse Laplace transform integration, given
Eq. ~12!, can be carried out along the branch cuts and aro
the poles of the analytically continued Green’s function,
shown in Fig. 2. Contributions of the quasi-modes are
portant for the short-time evolution of the plasma wak
z,1/Im(vD). For longer times quasi-modes damp out, a
branch cut contributions dominate. This is because the fie
associated with the branch cuts,algebraically decay in z.
Moreover, for very wide plasma channels quasi-modes
important in a very small part of the channel, and the bra
cut 2 dominates throughout the rest of the channel. In the
of the paper we separately consider the global quasi-mo
e
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and the local plasma excitations, associated with the bra
cut 2.

V. WEAKLY DAMPED QUASI-MODES

The origin of the weakly damped quasi-modes in inh
mogeneous plasma can be best understood by consider
plasma channel with an infinitely sharp interface between
two regions of different plasma density. An example of su
a channel—hollow plasma channel—was recently cons
ered as a possible candidate for a plasma-based particle
celerator due to the attractive properties of the accelera
and focusing fields inside the evacuated channel.20–23 Hol-
low plasma channel supports a surface mode which peak
the vacuum-plasma interface and exists both inside the c
nel and in the plasma~within a collisionless skin-depth from
the vacuum-plasma interface!. This electromagnetic surfac
mode is a true eigenmode of the plasma channel, wit
vanishing damping coefficient and frequencyvch

5vp0 /A11kp0b. The surface mode is decoupled from th
bulk plasma modes because its frequency is different fr
the bulk plasma frequencyvp0 . Simply put, there are no
electrostatic plasma modes with frequencyvch that could
strongly couple to the surface mode.

As the plasma-vacuum interface is smoothed out,
surface mode couples to the continuum of the electrost
plasma waves. Now there exists a resonant locationxr , such
that vp(xr)5vch, and coupling between the electrosta
plasma wave, localized atxr , and the surface mode leads
the damping and frequency shift of the latter. Similarly to t
surface modes of infinitely sharp plasma channels, qu
modes are peaked in the neighborhood ofxr and decay ex-
ponentially away fromxr . Quasi-modes are distinct from th
localized electrostatic plasma waves in that they are glo
~i.e., exist throughout the plasma!, yet possess a well-define
frequency which is independent of the transverse locationx.
The difference between the weakly damped quasi-modes
the ‘‘true’’ surface modes is that the latter ones are the r
undamped eigenmodes, whereas the former ones belon
the continuum of the plasma waves. Weakly damped qu
modes are important only for short times of order the dam
ing time, after which the coherent, single-frequency mot
of the plasma electrons is destroyed, and the local fie
oscillating with the local plasma frequenciesvp(x), prevail.

Frequencies of the quasi-modes are defined by the z
of the analytic continuation of the dispersion functio
D* (vD)50. The numerical procedure for calculatin
D* (v) consists of several steps. First, for a givenv in the
lower half-plane, the resonant pointxr(v) is calculated. A
contour, which passes belowxr and connects the endpoin
x50 andx5xmax @as shown in Fig. 3~b!# is then chosen in
the complexx-plane. Next, two linearly independent solu
tions~e.g.,f0 andf1! are integrated along this contour from
x50 to x5xmax. The dispersion function is then given b
Eq. ~20!. Complex frequencyv can now be scanned to fin
zeros ofD* .

The contribution of the quasi-mode to the magnetic fie
at the transverse locationx is given by
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B~p!~x,z!5
i

D
*
8 ~vD!

e2 ivDzf2~x,vD!E
0

`

dx8f2~x8,vD!

3S 2
vD

2

c2

e8~x8,vD!

e2~x8,vD!
f̃ ~x8,vD! D . ~21!

Equation ~21! loses validity in the immediate vicinity o
x5xd(vD). The contribution of the branch cut 2, shown
Fig. 2, generates fields at the frequency of the quasi-mo
and needs to be taken into account. This could be anticip
since the pole contribution to the magnetic fieldB(p)(x,z) is
discontinuous atx5xd(vD), whereas the total magnetic fiel
must be continuous.

As an example, consider parabolic plasma channels

vp
2~x!5vp1

2 1
~vp0

2 2vp1
2 !x2

x21b2 , ~22!

of two types:~a! hollow on axis (vp150), or ~b! with finite
on-axis density (vp1Þ0). Such locally parabolic densit
profiles have been experimentally generated10 to guide laser
pulses through the plasma. For such channelsD* (v) is
found from Eq.~20!, where the basis functionsf0,1 are nu-
merically integrated fromx50 to x5xmax along the contour
shown in Fig. 2~b!. Parabolic channels are the easiest fro
the standpoint of the numerical integration: only one co
plex resonant pointxr(v) exists in the lower half of the
complexx-plane. This simplifies the choice of the integratio
contour, which was taken as a sum of two straight lines
the complex plane: one, connectingx50 and x5xr(v)
2 in ~wheren is an arbitrary positive number! and the other,
connectingx5xr(v)2 in andxmax ~chosen atxmax53b!. The
real frequency and the damping rate of the quasi-mode
are plotted as functions of the dimensionless channel w
kp0b in Figs. 3~a! and 3~b!. We observe that for both types o
plasma channels, with and without plasma on axis, there
ists a single quasi-mode which becomes localized near
origin as the channel widens. Note that even for the w
(kp0b.1) plasma channels the damping rate of the qu
mode is much smaller than the real frequency.

For a hollow channel the only contribution to the acc
erating gradientEz(x50) comes from the quasi-mode.
fluid code, which calculates all the electromagnetic fields a
plasma fluid quantities as a function ofz, was recently
developed.36 To extract the damping coefficient and the fr
quency from the fluid code, we fittedEz(x50,z) by
E0 cos(vrz1f0) exp(2gz), whereE0 and f0 are constants
We then comparedv r andg, the fit parameters of the fluid
simulation, with the complex frequencyvD from Fig. 3~a!.
For a wide range of the channel widthskp0b we found an
exact agreement between the two approaches: the ana
continuation of the Green’s function in the frequency dom
and the numerical simulation in time domain.36

In Sec. VII we demonstrate thatD* (v) does not vanish,
provided that the plasma is almost homogeneouskpL@1,
where L5vp(x)/vp8(x) is the inhomogeneity scale of th
plasma density, evaluated at the ‘‘resonant’’x such that
e(v,x)50. As Fig. 4~a! indicates, the quasi-modes of th
plasma channel, described by Eq.~22!, persist even for
kp0b@1. If the inhomogeneity lengthL of the channel is
e,
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proportional tob ~which would be the case if the resona
point always remained somewhere aroundx5b!, the exis-
tence of the quasi-modes would contradict the earlier st
ment aboutD* (v) in almost homogeneous plasma. Th
contradiction is resolved by noticing that the real frequen
of the quasi-mode decreases with increasingkp0b. Thus, the
resonant locationxr shifts towards the origin with increasin
channel size. In fact, forxr!b the channel density can b
assumed as given by

vp
2~x!5vp0

2 x2/b2. ~23!

The frequency of a quasi-mode of such a channel mus
expressed as a function ofvp0 /b and the speed of lightc.
The only dimensionally correct combination is

vD5PS vp0c

b D 1/2

, ~24!

whereP is a complex constant which has to be determin
numerically by solving the eigenvalue equation

FIG. 4. The quasi-mode’s real frequency Re(vD) ~solid line! and damping
rate Im(vD) ~dashed line! as a function of the channel widthkp0b for two
types of plasma channels:~a! zero plasma density on axis and~b! finite
plasma density on axis. Plasma frequency satisfiesvp

2(x)5vp1
2 1(vp0

2

2vp1
2 )x2/(x21b2).
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d

du S 1

P22u2

dc

duD5
u2

P22u2 c. ~25!

In Eq. ~25! u is the normalized transverse displaceme
u5Avp0 /cbx, and the usual boundary conditionsc(0)
5c(1`)50 are imposed. Equation~25! is integrated be-
tweenu50 andu51` along a contour in the complexu
plane which passes below the singularityu5P. This numeri-
cal procedure yields a single value ofP50.8520.20i . Thus,
the quasi-mode of a parabolic channel is heavily damp
decaying by a factore in less than one full oscillation.

VI. ASYMPTOTIC ANALYSIS OF WAKE EXCITATION

Contributions of the quasi-modes are not sufficient
describe the electromagnetic wakes for all times and a
transverse locations inside the plasma channel. The qu
mode contribution to the total electromagnetic fields a
given transverse point can be negligible if the quasi-mod
localized far away from that location. For example, the fie
components of the wide channel quasi-mode become e
nentially small sufficiently far away from the resonan
point. Consider the spatial profiles of the accelerating a
focusing electric fields, shown in Fig. 5, which correspond
the quasi-mode of the parabolic hollow channelvp

2(x)
5vp0

2 x2/(x21b2) with kp0b53. Both fields peak at
xd(vD)'1.5/kp0 , where vD5vp0(0.45– 0.077i ) is the
complex frequency of the quasi-mode. The values of b
fields at the edge of the channel (x52b) are negligible in
comparison with their peak values atx5xd . Note that the
accelerating field, corresponding to the quasi-mode, is
continuous atxd . As explained in Sec. V, this does not co
respond to a physical discontinuity. In addition to being
calized, quasi-modes exponentially decay withz, practically
disappearing several decay times 1/ImvD after the passage
of the laser pulse.

Under these circumstances the contributions from
branch cuts 1–3, shown in Fig. 2, can become very imp

FIG. 5. Spatial profiles of the focusing~solid line! and accelerating~black
circles! electric fields of the collisionlessly damped quasi-mode of a w
plasma channel. Plasma frequency satisfiesvp

2(x)5vp0
2 x2/(x21b2); chan-

nel widthkp0b53. Accelerating fieldEz of the quasi-mode is discontinuou
at xd'1.5kp0

21.
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tant. The contributions of the cuts 1 and 3 are very disti
from those of the cut 2. Mathematically, cuts 1 and 3 are
branch cuts of the dispersion functionD* (v). Basis func-
tions f6(x,v) are continuous across these cuts for
0,x,xmax. Physically, cuts 1 and 3 describe the elect
magnetic fields generated at the edges of the plasma~x50
and x5xmax!, which penetrate by about a collisionless sk
depth into the bulk of the plasma. These fields resemble
quasi-mode in that they too are highly localized. Howev
for z.tm , wheretm is the phase-mixing time

tm5
vp

cvp8
, ~26!

these contributions decay algebraically with time. For sho
times z!tm these fields are proportional to the powers
z/tm . Therefore, cuts 1 and 3 do not contribute if the plas
channel has vanishing density gradients at the edges, as
the case for the parabolic channels, described by Eq.~22!.
Since for the majority of smooth and symmetric plasm
channels cuts 1 and 3 are not important, they are not con
ered in this paper.

Basis functionsf6(x,v) are discontinuous across th
cut 2, the contribution from which describes the locally e
cited electromagnetic fields, oscillating with the the loc
plasma frequencyvp(x). The contribution from the cut 2 is
significant whenever the ponderomotive excitation exte
to x, or there is a nonvanishing initial perturbation atx. Since
the Green’s function of the magnetic fieldG(x,x8,v) does
not have a pole atv5vp(x), cut 2 provides the only con
tribution to the locally excited magnetic field. The local
excited electric fieldsEz andEx have three sources: the loc
electric field, described by the first term in the RHS of E
~3!, pole contributions atv5vp(x), and the cut 2 contribu-
tion.

Let us calculate the inverse Laplace transform
B̃y(x,v) along the branch cut 2 in the vicinity o
v5vp(x). For simplicity, assume thatx is removed from
the ‘‘discontinuity’’ point xd(vD). This is equivalent to as-
suming that the cut 2 does not cross the quasi-mode
quencyvD . Integrals along the two sides of the cut 2 do n
cancel because the Green’s function is discontinuous ac
the branch cut~although the dispersion functionD* (v) re-
mains continuous!. It is convenient to separate the integr
tion path in the complexx8 plane into three separate inte
vals:C2 between 0 andxr2 i«; C betweenxr2 i« andx; C1

betweenxr2 i« andxmax. The Laplace transformed magnet
field is thus separated into two contour integrals:I1 along
the contoursC2 andC1 , andI2 along the contourC. Assum-
ing that the ponderomotive potential is nearly homogene
in the vicinity of x, f can be brought outside of the integra

The separate contributions are then given by

I 15
vp

2 f̃ ~x,vp!

c2D* ~vp! Ff1~x!E
C2

dx8f2~x8!
e8

e2

1f2~x!E
C1

dx8f1~x8!
e8

e2G ~27!

and
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I 25
vp

2 f̃ ~x,vp!

c2D* ~vp! Ff1~x!E
C
dx8f2~x8!

e8

e2

2f2~x!E
C
dx8f1~x8!

e8

e2G , ~28!

where vp[vp(x). We are interested in the changes inI 1

and I 2 as the frequency moves across the cut 2. InI 1 this
change comes about from the jump inf6(x), yielding

dI 15
vp

2 f̃ ~x,vp!

c2D* ~vp!
dfs~x!E

C21C1

dx8f~6 !

e8

e2 , ~29!

where f (6)5f2 on C2 and f (6)5f1 on C1 . It can be
shown, using Eqs.~18!, ~19!, that the jump of the singula
solutionfs across thex2xr cut is given by

dfs~x!5
p i e8kp

2

2
f r~x!, ~30!

where bothe8 andkp are evaluated atx5xr .
Two factors contribute to the change inI 2: first, the

basis functionsf6(x) change~just as inI 1!, and, second, the
values of the integrals along the contourC also change. This
is because whenv is to the left ~right! of the cut 2, the
integration contourC lies to the left~right! of the x2xr cut.
The singular solutionfs is discontinuous across thex2xr

cut, and so are the basis functionsf6 . Using the expression
for the jump of the singular solutionfs across thex2xr cut,
given by Eq.~30!, it is a matter of straightforward~although
lengthy! algebra to demonstrate that the two factors can
so thatI 2 is continuous across the cut 2:dI 250.

Assuming thatv5vp(x)2 in, wheren!vp , the com-
plex resonant pointxr is determined by

~x2xr !5 i
2n

vp~x!e8~x,vp!
. ~31!

The small-argument expansion of thef r , given by Eq.~18!,
is valid if kp(x2xr)!1, which translates inton!ce8. Since
only the frequencies withn,1/z effectively contribute to the
integral along the cut 2, Eq.~18! is valid for
z@max@1/(ce8),1/vp#. Physically, this corresponds to th
times longer than than the longest of the plasma period
the phase-mixing timetm .

Substituting Eq. ~31! into Eq. ~27!, and integrating
B̃(x,v) over n yields

B~x,z!'e2 ivp~x!z
2kp

2ce82

D* ~vp! S 1

ce8z D 3

3E
C21C1

dx8f~6 !

e8

e2 f̃ ~x8,vp!. ~32!

In Eq. ~32! the powers ofe8 were combined to emphasiz
that the generated magnetic field is proportional to
plasma inhomogeneitye8. This is because the brackete
term is required to be much smaller than unity in order
the Eq. ~32! to be valid. The contour integral in Eq.~32!
cannot be analytically evaluated for a general plasma pro
l,

d

e

r

e.

However, when plasma inhomogeneity is weak,kpL@1, the
contour integral can be analytically calculated. Moreover,
restriction of the very large time can be removed, enabl
the calculation ofB(x,z) for arbitraryz@1/vp . The results
of this calculation are presented in Sec. VII.

Using Eqs.~16!, ~17!, the long-time behavior of the ac
celerating electric fields can be similarly evaluated by sp
ting the integration path into three contours,C, C2 , andC1 .
The important difference in the calculations of the elect
and magnetic fields is thatẼz(x,v) has a pole at
v5vp(x). One can demonstrate that the contribution of t
pole exactly cancels thez-component of the first term in the
RHS of the Eq.~3!. The remaining accelerating field deca
according to

Ez~x,z!'e2 ivp~x!z
kp

3ce8

2D* ~vp! S 1

ce8z D
3E

C21C1

dx8f~6 !

e8

e2 f̃ ~x8,vp!. ~33!

According to Eqs.~32!, ~33!, the accelerating field decay
slower than the magnetic field forz@tm .

Similarly, both the pole atv5vp(x) and the integral
along the branch cut contribute to the focusing electric fi
Ex . Since the locally excited electric field, given by th
x-component of first term in the RHS of the Eq.~3!, is pro-
portional to] f /]x, the ponderomotive potential in the inte
grand is expanded according tof (x8)' f (x)1 f 8(x)(x8
2x). Unlike the case of the longitudinal field, the pole co
tribution does not cancel the local field, so that there is
nondecaying oscillating wakefield left in the plasma. Sin
magnetic field decays faster than the electric field, we
that, over time, the wake becomes predominantly elec
static.

The time evolution of the electromagnetic wake in t
plasma channel can be described as follows. Initially, a g
bal quasi-mode is excited. Electromagnetic fields, associ
with the quasi-mode, oscillate with a fixed frequen
throughout the plasma. The oscillation amplitudes expon
tially decay in time with the damping rate equal to the ima
nary part of the quasi-mode frequencyvD . For longer times
local excitations prevail. At a given transverse positionx
these fields oscillate with the local plasma frequencyvp(x).
For the times longer than the phase-mixing time magn
and electric fields algebraically decay in time according
different power laws, with magnetic field decaying the fa
est,By}z23, and the transverse electric field retaining a co
stant oscillation amplitude. More quantitative stateme
about the time dependence of the fields are made in Sec
for wide plasma channels, whose density varies slowly
the scale of the collisionless skin depth:kpL@1.

VII. WAKE EXCITATION IN WIDE PLASMA CHANNELS

A. Time evolution of local excitations

In Sec. VI the long-time (z@tm) asymptotic behavior of
the electromagnetic wakes was evaluated. It turns out
the long-time restriction can be lifted, and the Green’s fun
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tion can be analytically integrated along the branch cu
~responsible for the local excitations! if simplifying assump-
tions are made about the plasma density and laser profile
this section we assume that the plasma is weakly inhomo
neous, so that the scale of the plasma inhomogeneity is m
longer than the plasma wavelength:kp8!kp

2 . The laser profile
is also assumed only weakly nonuniform on a scale 1/kp :
] lnufu/]x!kp . The closed form expressions for thef1 and
f2 can be obtained, enabling the analytic calculation of
dispersion functionD* (v) and the contour integral in Eq
~29!.

In the vicinity of the resonant point,ux2xr u!L the
lowest-order Taylor expansion for the plasma dielectric fu
tion can be used:e5e8(x2xr). Therefore, in the vicinity of
xr the basis functionsf6 satisfy

]2f

]x2 2
1

x2xr

]f

]x
2kp

2f50. ~34!

Equation~34! has two independent solutions:

f5tI 1~ t ! and f5tK1~ t !, ~35!

wherekp[kp(x), t5kp(x2xr), andI 1(t) andK1(t) are the
modified Bessel functions.

Further assume thatx is at least 1/kp away from both the
origin and the discontinuity pointxd(vD). The origin can
now be treated as being infinitely far away, so that the in
gration in Eq.~28! can be carried out along the path whic
runs from2` to 1`, passing right under the resonant po
xr .

The next step is to construct the basis functionsf6 ,
satisfying their boundary conditions at6`. For example, the
second solution of the Eq.~34! tK1(t) vanishes ast→1`.
Of course, Eq.~34! is not valid for ux2xr u.L, and neither
are its solutions. However, sincekpL@1 ~wide channel!, the
true approximate solution becomes exponentially small
L.ux2xr u.1/kp , so that the difference between the exa
solutionf1 and the approximate solutiontK1(t) is exponen-
tially small. The linear combination of the Bessel functio
from Eq.~35!, decaying asx→2`, can also be constructed
Altogether, the basis functions are given by

f25tK1~ t !1 iptI 1~ t ! and f15tK1~ t !. ~36!

The dispersion function is then given by

D* 5
kp

2

e8 S f2df1 /dt2f1df2 /dt

t D52
ipkp

2

e8
. ~37!

Magnetic fieldBy(x,z) is found by substitutingf6 , D* ,
anddfs5df1 from Eqs.~36!, ~37! into Eq. ~29! and inte-
grating the result overn. The jump of the basis function
across the cut is given by37

df15t@K1~ tei2p!2K1~ t !#52iptI 1~ t !. ~38!

By noting thatf2(t)5f1(2t), Eq. ~29! can be integrated
by parts and simplified to

dI 1524te8E
xr

xr1`

dx8
f18

e
, ~39!
2

In
e-
ch

e

-

-

t

r
t

where the plasma quantities, such ase8, are evaluated atx
5xr .

Since the basis functionf1 is localized by ux2xr u
,1/kp , the dielectric function can be expanded in the vic
ity of xr as e(x8)5e8(x82xr). Substituting the expressio
for f18 /(x2xr) from Eq. ~34! into Eq. ~39!, obtain, after
integrating by parts,

By~x,v!54tI 1~ t !v/cE
0

`

dt tK1~ t !52ptI 1~ t !v/c.

~40!

For the times longer than the local plasma perio
z@1/vp(x), only the frequencies withn!vp(x) signifi-
cantly contribute to the inverse Laplace transform integ
tion, so thatt5k(x2xr)' i (vp /c)(n/vp8). Note, however,
that althoughv is always close tovp for weakly inhomoge-
neous plasmas,utu can be either small~for n!c/L!, or large
(n@c/L). These two limits correspond to the times longer
shorter than the phase-mixing timetm .

IntegratingBy(x,v) along the contour 2 yields

By~x,z!5e2 ivp~x!zE
0

`

dne2nzk f~x,v!tJ1~ i t !

.2 ie2 ivp~x!z
vp

2

c2vp8
f̃ ~x,vp!

3E
0

`

dne2nznJ1S vp

c

n

v8D . ~41!

The integral in Eq.~41! can be evaluated exactly,38 resulting
in

By~x,z!52 i
kp

tm
e2 ivpz f̃ ~x,vp!F11

z2

tm
2 G2~3/2!

. ~42!

Combining this contribution of the cutv5vp(x)2 in,
n.0 with the contribution from the symmetric cutv
52vp(x)2 in, n.0, yields the final expression fo
By(x,z) excited by a short laser pulse with a large spot s
in a wide plasma channel:

By~x,z!522 sin~vpz!
kp

tm
f̃ ~x,vp!F11

z2

tm
2 G2~3/2!

. ~43!

The inverse Laplace transform ofEx andEz can be done
in a similar way. The main difference is that in the case ofEz

there is a nonvanishing contribution to thex8 integral from a
pole atx85x, which exactly cancels the locally driven field
After some algebra we find

Ex~x,z!52sin~vpz!vp

] f̃ ~x,vp!

]x F11
z2

tm
2 G23/2

2cos~vpz!
vp

2

c
f̃ ~x,vp!

z/tm

A11z2/tm
2

, ~44!

Ez~x,z!5cos~vpz!
vp

2

c
f̃ ~x,vp!

1

A11z2/tm
2

, ~45!
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wherevp[vp(x) is the local plasma frequency at the tran
verse positionx. In deriving Eqs.~43!, ~44!, ~45! the second
and higher derivatives off are neglected. Although the firs
term in Eq.~44! is proportional to] f /]x and decays asz23

for large times, it was kept because it is larger than the s
ond term forz!tm .

In a homogeneous plasma the second term in Eq.~44!
identically vanishes. Interestingly, in a channel the loca
excited transverse electric field, described by the first te
rapidly decays with time, while the electromagnetic con
bution, described by the second term, reaches the stead
cillation amplitude. This amplitude isindependentof the
transverse gradient of the ponderomotive potential. Also n
that the nondecaying component of the focusing electric fi
is in phasewith the accelerating field. This is potentiall
important for plasma-based particle accelerators. In a s
dard laser wakefield accelerator, based on a transversely
form plasma, the accelerating and focusing electric fields
90 degrees out of phase. Therefore, the phase region, w
an injected particle is both accelerated and focused, is o
lp/4 long. In a channel this region can belp/2 long, as seen
from Eqs.~44!, ~45!. A qualitatively similar observation wa
made by Andreevet al.,25 who earlier studied wake excita
tion in wide plasma channels for very short timesz!tm .

Equations~43!, ~44!, ~45! constitute an important resu
of this paper. For the first time, to our knowledge, the clos
form expressions for the wake evolution in wide plasm
channels, valid for the arbitrary times, have been deriv
and the phase-mixing timetm introduced. The physica
meaning of the phase-mixing time, as well as the basic ph
ics of the collisionless field decay in plasma channels
explained below.

B. Phase-mixing in plasma channels

Damping of the electromagnetic fields in plasma ch
nels is reminiscent of the decay of two-dimensional plas
oscillation due to the trajectories crossing, as described
Dawson.39 To appreciate the differences of these two dam
ing mechanisms, consider the underlying basic physics.
cal plasma oscillations~and the corresponding electric field!
decay when different plasma fluid elements, oscillating w
their local plasma frequencies, get out of phase. Cons
two fluid elements, initially located atx5x0 and x5x0

1Dx and oscillating with their local plasma frequenci
vp(x0) and vp(x01Dx), respectively. These two elemen
get out of phase after

t5uvp8Dxu21. ~46!

Below we qualitatively argue for the appropriateDx, which
has to be substituted into Eq.~46!.

Electrostatic cold plasma oscillations, considered
Dawson, collapse when adjacent fluid elements collide w
each other. This is because there is no Pointing flux ass
ated with such oscillations, so that the energy can only
transported from one position to the next by the plasma e
trons. This results in the trajectory crossing, which can
interpreted as dephasing between the electrons separat
the distance equal to their oscillation amplitudeA. Therefore,
c-
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the nonlinear wave breaking timetWB5uAvp8u
21 is calcu-

lated by substitutingDx5A into Eq. ~46!. For very small
oscillation amplitudes the trajectory-crossing time becom
very long. This type of the transverse wave breaking, wh
takes place several plasma periods behind the laser p
was recently described by Bulanovet al.40

On the other hand, wakes in plasma channels are
purely electrostatic. There is a nonvanishing Pointing fl
associated with these wakes, which enables communica
between different transverse positions. Locally excit
plasma oscillations do not remain localized~and electro-
static! because of the finite magnetic field generated in
channel according to Eq.~43!. This magnetic field produce
a finite Pointing flux which spatially re-distributes the ele
tromagnetic energy. As a result, electromagnetic wakes
the inhomogeneous plasma become nonlocal: fields a
given spatial locationx are affected by the plasma curren
within a collisionless skin depthc/vp from x. Therefore,
wakes damp when, roughly, two fluid elements, separated
c/vp , get out of phase. SubstitutingDx5c/vp into Eq.~46!
results intm5vp /cvp8 . Below we demonstrate how this es
timate can be obtained in a more formal way.

As Eqs.~43!, ~44!, ~45! indicate, magnetic field decay
faster than both components of the electric field. This impl
that, by conservation of the total vorticity,32

¹3v5
eB

mc
, ~47!

so that for large times¹3v'0, and the plasma flow be
comes almost curl-free. This property of the flow helps u
derstand why the axial electric field is much smaller than
transverse electric field for large times. The curl-free flo
condition for z@tm implies ]vz /]x5]vx /]z, or vz

52vxtm /z. The same relationship exists between the ax
and transverse components of the electric field, as can
observed from Eqs.~44!, ~45!. Combining Maxwell’s equa-
tions with Eq.~47! yields

F ]2

]x2 2kp
2~x!GBy'

4pen0

c2z
v̂xe

2 ivp~x!z1c.c., ~48!

where we have used the curl-free flow assumption and
fact that, for largez, vx oscillates with a constant amplitud
2v̂x .

Assuming that the plasma density does not significan
change on a scale of the collisionless skin depth, Eq.~48! can
be solved in closed form by expandingvp(x8)'vp(x)
1vp8(x82x):

By~x,z!52
2pen0v̂x

kpc2z
e2 ivp~x!z

3E
2`

1`

dx8e2kpux2x8ueivp8z~x2x8!1c.c. ~49!

As illustrated by the integrand of Eq.~49!, fluid elements
within one collisionless skin depth fromx contribute to
By(x). For largez these contributions get out of phase, a
the integral in Eq.~49! decays as (11z2/tm

2 )21. Therefore,
magnetic field decays asz23, in agreement with Eq.~43!.
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This calculation illustrates how the electromagnetic nature
the channel wake results in the nonlocal excitation on ac/vp

scale, leading to phase-mixing of the plasma fluid and a
braic decay of the wake.

If the plasma oscillation amplitudeA is much smaller
than the collisionless skin depth, phase mixing occurs be
the wave breaking. Transverse wave breaking can still t
place aftertWB@tm , which can be estimated by requirin
that u]xExu54pen0 . Assuming a short laser driver with du
ration tL;1/vp and the nonrelativistic normalized vecto
potentialua2u!1, we estimate thattWB'2tm /ua2u.

VIII. CONCLUSIONS

In summary, an analytic theory of laser wake excitati
in an arbitrary plasma channel is developed. Althou
plasma channels with smooth monotonic density profiles
not support any true eigenmodes, the damped quasi-m
have been formally derived using the Laplace transform
the method of analytic continuation. A numerical procedu
for computing the frequencies and the damping rates of s
quasi-modes is developed. Excellent agreement of these
merical results and the explicit fluid simulation is found ov
a wide range of parameters. For wide plasma channels
lytical results, predicting the algebraic decay of the wa
field with time, are obtained. Wake fields decay because
the phase-mixing of the plasma currents at different tra
verse locations inside the channel. Physical interpretatio
this phase-mixing, based on the nonlocal nature of the e
tromagnetic wakes, is presented.
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