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Outline
• Circular phenomena in computer science
• Coinduction: modeling circular phenonmenon
• Coinduction in logic programming (Co-LP)
• Applications of Co-LP:

– Model checking 
• Timed model checking 

– Planning
• Timed planning
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Circular Phenomena in Comp. Sci.
• Circularity has dogged Mathematics and Computer 

Science ever since Set Theory was first developed:
– The well known Russell’s Paradox: 

• R = { x | x is a set that does not contain itself}
Is R contained in R?  Yes and No

– Liar Paradox: I am a liar
– Hypergame paradox (Zwicker)

• All these paradoxes involve self-reference (through 
some type of negation)

• Russell put the blame squarely on circularity and 
sought to ban it from scientific discourse:

``Whatever involves all of the collection must not be one of 
the collection” -- Russell 1908
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Circular Phenomenon in Comp. Sci.
• All this changed with Kripke’s paper in 1975 who 

argued that circular phenomenon are far more 
common and circularity can’t simply be banned.

• Circularity has been banned from automated theorem 
proving and logic programming through the occurs 
check rule:

An unbound variable cannot be unified with a term  
containing that variable:   X = f(X) disallowed

• What if we allowed such unifications to proceed (as 
LP systems always did for efficiency reasons)?
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Circularity in Computer Science
• If occurs check is removed, we will generate circular 

(infinite) structures:
– X = [1,2,3 | X]

• Such structures, of course, arise in computing 
(circular linked lists), but banned in logic/LP.

• Subsequent LP systems did allow for such circular 
structures (rational terms), but they only exist as 
data-structures, there is no proof theory to go along 
with it. 
– One can hold the data-structure in memory within an LP 

execution, but one can’t reason about it.
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Coinduction
• Circular structures are infinite structures

X = [1, 2 | X]   is logically speaking X = [1, 2, 1, 2, ….] 
• Proofs about their properties are infinite-sized
• Coinduction is the technique for proving these 

properties [Aczel 1983; Moss & Barwise 1996]
“Vicious Circles” by Moss and Barwise (1996)

• Our focus: inclusion of coinductive reasoning 
techniques in LP and its application to model 
checking and planning.
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Induction vs Coinduction
• Induction is a mathematical technique for finitely 

reasoning about an infinite (countable) no. of things. 
– Naturals: 0, 1, 2, …
– Lists: [ ],   [X],    [X, X],     [X, X, X], …

• 3 components of an inductive definition: 
(1) Initiality, (2) iteration, (3) minimality
– for example, the set of lists is specified as follows:

[ ] – an empty list is a list (initialityinitialityinitialityinitiality)   ……(i) 
[H | T]  is a list if T is a list and H is an element (iterationiterationiterationiteration) ..(ii)
minimal set that satisfies (i) and (ii)  (minimalityminimalityminimalityminimality)
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Induction vs Coinduction
• Coinduction is a mathematical technique for 

(finitely) reasoning about infinite things.
– Mathematical dual of induction

• 2 components of a coinductive definition: 
(1) iteration, (2) maximality
– for example, for a list:

[ H | T ] is a list if T is a list and H is an element (iterationiterationiterationiteration).
MaximalMaximalMaximalMaximal set that satisfies the specification of a list.

– This coinductive defn. specifies all infinite sized lists
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Example: Natural Numbers
• ΓΝΝΝΝ (S) = { 0 } ∪ { succ(x) | x ∈ S }
• ΓΝΝΝΝ defines 2 sets.

– N = µΓΝΝΝΝ (least fixed-point)
– N’ = νΓΝΝΝΝ = N ∪ { ω }   (greatest fixed-point)

CorecursionCoinductionGreatest fixed point

RecursionInductionLeast fixed point
MappingMappingMappingMappingProofProofProofProofDefinitionDefinitionDefinitionDefinition

• Co-recursion: recursive definition without a base case
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Infinite Objects and Properties
• Traditional logic programming (based on LFP) is unable 

to reason about infinite objects and/or properties 
• (The glass is only half-full)
• Example: perpetual binary streams  

– traditional logic programming cannot handle

bit(0).
bit(1).
bitstream( [ H | T ] ) :- bit( H ), bitstream( T ).
|?- X = [ 0, 1, 1, 0 | X ], bitstream( X ).

• Goal: Combine traditional LP with coinductive LP
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Extending LP with Co-induction
• What is needed?: an operational semantics for 

incorporating coinduction into SLD resolution
• Declarative Semantics: across the board dual of 

traditional LP [Lloyd 87]:
– greatest fixed-points
– terms: co-Herbrand universe Ucocococo(P)
– atoms: co-Herbrand base Bcocococo(P)
– program semantics: maximal co-Herbrand model Mcocococo(P).
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Operational Semantics: co-SLD
• nondeterministic state transition system
• states are pairs of

– a finite list of goals [resolvent] (as in Prolog)
– a set of syntactic term equations of the form x = f(x) or x = t

• Given program  p :- p.  Then the query |?- p.  will succeed.
• Given p( [ 1 | T ] ) :- p( T ).  |?- p(X)  to succeed with X= [ 1 | X ].

• transition rules
– definite clause rule
– “coinductive hypothesis rule”

• if a coinductive goal Q is called, 
and Q unifies with an ancetor call made earlier 

then Q succeeds. 
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Example: Number Stream
:- coinductive stream/1.
stream( [ H | T ] ) :- num( H ), stream( T ).
num( 0 ).
num( s( N ) ) :- num( N ).

|?- stream( [ 0, s( 0 ), s( s ( 0 ) )   |   T ] ).
1. MEMO: stream( [ 0, s( 0 ), s( s ( 0 ) ) | T ] )
2. MEMO: stream( [ s( 0 ), s( s ( 0 ) ) | T ] )
3. MEMO: stream( [ s( s ( 0 ) ) | T ] )
4. stream(T)

Answers:
T = [ 0, s(0), s(s(0)) | T ]
T = [ 0, s(0), s(s(0)), s(0), s(s(0)) | T ]
T = [ 0, s(0), s(s(0)) | T ]   . . .. . .. . .. . .
T = [ 0, s(0), s(s(0)) | X ]     (where X is any rational list of numbers.)(where X is any rational list of numbers.)(where X is any rational list of numbers.)(where X is any rational list of numbers.)
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Other Examples
• Append:

:- coinductive append/3.
append( [ ], X, X ).
append( [ H | T ], Y, [ H | Z ] ) :- append( T, Y, Z ).
|?- X = [ 1, 2, 3  | X ], Y = [ 3, 4 | Y ], append( X, Y, Z).

Answer: Z = [ 1, 2, 3 | Z ].

|?- Z = [ 1, 2 | Z ], append( X, Y, Z ).
Answer: X = [ ], Y = [ 1, 2 | Z ] ;        X = [1, 2 | X], Y = _

X = [ 1 ], Y = [ 2 | Z ] ;
X = [ 1, 2 ], Y = Z;  …. ad infinitum

• Co-member(X, L): is X a member of infinite list L?
• Sieve of Eratosthenes (lazy evaluation)
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Co-Logic Programming
• combines both halves of logic programming:

– traditional logic programming
– coinductive logic programming

• syntactically identical to traditional logic 
programming, except predicates are labeled: 
– Inductive, or 
– coinductive

• and stratification restriction enforced where:
– inductive and coinductive predicates cannot be mutually 

recursive. e.g.,
p :- q.
q :- p.

Program rejected, if p coinductive & q inductive
• Preliminary implementation on top of YAP available.
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Applications of Co-LP
• With Co-LP one can perform LFP as well as 

GFP computations elegantly
• Declarative power of LP can be harnessed for 

more sophisticated applications
• Two major application domains:

– Model checking: Need to compute LFPs & GFPs
– Planning: rules describing domain may be circular

• Using LP brings other LP-specific techniques 
to bear on the problem:
– Constraints  (continuous time easily included)
– Parallelism (verification/planning done in parallel)
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Application: Model Checking
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Finite Automata
automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).
automata([ ], St) :- final(St).

trans(s0, a, s1).     trans(s1, b, s2).         trans(s2, c, s3). 
trans(s3, d, s0).     trans(s2, 3, s0).         final(s2).

?- automata(X,s0).
X=[ a, b];
X=[ a, b, e, a, b];
X=[ a, b, e, a, b, e, a, b];
……
……
……
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Infinite Automata
automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).

trans(s0,a,s1).     trans(s1,b,s2).         trans(s2,c,s3). 
trans(s3,d,s0).     trans(s2,3,s0).         final(s2).

?- automata(X,s0).
X=[ a, b, c, d | X ];
X=[ a, b, e | X ];

When the same goal is seen 
=> infinite cycle in the automata 
=> HALT
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Verifying Liveness Properties
• Verifying safety properties in LP is relatively easy: 

safety modeled by reachability
• Accomplished via tabled logic programming (an 

efficient engine for computing LFP)
• Verifying liveness is much harder: a counterexample 

to liveness is an infinite trace
• Verifying liveness is transformed into a safety check 

via use of negations in model checking and tabled LP
– Considerable overhead incurred

• Co-LP solves the problem more elegantly:
– Infinite traces that serve as counter-examples produced as 

answers
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Verifying Liveness Properties
• Consider Safety:

– Is an unsafe state Su (wrongly) considered safe?
i.e., is Su reachable?

– If answer is yes, the path to Su is the counter-ex
• Tabled LP will produce this path as an answer 

• Consider Liveness, then dually
– Is a dead state D (wrongly) considered live?
– If answer is yes, the infinite path containing D is the 

counter example
• Co-LP will produce this infinite path as an answer

• Liveness checking as easy as safety checking
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Nested Finite and Infinite Automata

:- coinductive state/2.
state(s0, [s0,s1 | T]):- enter, work,      

state(s1,T).
state(s1, [s1 | T]):- exit, state(s2,T).
state(s2, [s2 | T]):- repeat, state(s0,T).
state(s0, [s0 | T]):- error, state(s3,T).
state(s3, [s3 | T]):- repeat, state(s0,T).
work.       enter. repeat. exit. error.
work :- work.  
|?- state(s0,X), absent(s2,X).

X=[ s0, s3 | X ]
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Verification of Real-Time Systems
“Train, Controller, Gate”

• ω-automata w/ time constrained transitions & stopwatches
• straightforward encoding into CLP(R) + Co-LP

(clock to be reset in every cycle)

Timed Automata
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Verification of Real-Time Systems
“Train, Controller, Gate”

:- use_module(library(clpr)).
:- coinductive driver/9.

train(X, up, X, T1,T2,T2).        % up=idle
train(s0,approach,s1,T1,T2,T3) :- {T3=T1}.
train(s1,in,s2,T1,T2,T3):-{T1-T2>2,T3=T2}
train(s2,out,s3,T1,T2,T3).
train(s3,exit,s0,T1,T2,T3):-{T3=T2,T1-T2<5}.
train(X,lower,X,T1,T2,T2).
train(X,down,X,T1,T2,T2).
train(X,raise,X,T1,T2,T2).
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Verification of Real-Time Systems
“Train, Controller, Gate”

contr(s0,approach,s1,T1,T2,T1).
contr(s1,lower,s2,T1,T2,T3):- {T3=T2, T1-T2=1}.
contr(s2,exit,s3,T1,T2,T1).
contr(s3,raise,s0,T1,T2,T2):-{T1-T2<1}.
contr(X,in,X,T1,T2,T2).
contr(X,up,X,T1,T2,T2).
contr(X,out,X,T1,T2,T2).
contr(X,down,X,T1,T2,T2).
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Verification of Real-Time Systems
“Train, Controller, Gate”

gate(s0,lower,s1,T1,T2,T3):- {T3=T1}.
gate(s1,down,s2,T1,T2,T3):- {T3=T2,T1-T2<1}.
gate(s2,raise,s3,T1,T2,T3):- {T3=T1}.
gate(s3,up,s0,T1,T2,T3):- {T3=T2,T1-T2>1,T1-T2<2 }.
gate(X,approach,X,T1,T2,T2).
gate(X,in,X,T1,T2,T2).
gate(X,out,X,T1,T2,T2).
gate(X,exit,X,T1,T2,T2).
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Verification of Real-Time Systems
:- coinductive driver/9.
driver(S0,S1,S2, T,T0,T1,T2, [ X | Rest ], [ (X,T) | R ]) :-

train(S0,X,S00,T,T0,T00),  contr(S1,X,S10,T,T1,T10),
gate(S2,X,S20,T,T2,T20), {TA > T}, 
driver(S00,S10,S20,TA,T00,T10,T20,Rest,R).

|?- driver(s0,s0,s0,T,Ta,Tb,Tc,X,R).
R=[(approach,A), (lower,B), (down,C), (in,D), (out,E), (exit,F),   

(raise,G), (up,H) | R ],
X=[approach, lower, down, in, out, exit, raise, up | X] ;
R=[(approach,A),(lower,B),(down,C),(in,D),(out,E),(exit,F),(raise,G), 

(approach,H),(up,I)|R],
X=[approach,lower,down,in,out,exit,raise,approach,up | X] ;
%  where A, B, C, ... H, I are the corresponding wall clock time of events generated.
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DPP – Safety: Deadlock Free

• A solution
– Force one philosopher to pick forks 

in different order than others
• Checking for deadlock

– Bad state is not reachable
– Implemented using Tabled LP

:- table reach/2.
reach(Si, Sf) :- trans(_,Si,Sf).
reach(Si, Sf) :- trans(_,Si,Sfi), 

reach(Sfi,Sf).
?- reach([s,s,s,s,s],  

[w,w,w,w,w]).
no
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DPP – Liveness: Starvation Free

????---- starved(Xstarved(Xstarved(Xstarved(X).).).).
nononono

• Phil. waits forever on a fork
• One potential solution

– phil. waiting longest gets the access
– implemented using stop watches

• Checking for starvation
– once in bad state, is it possible to 

remain there forever?
– implemented using co-LP

starved(X) :-X = 1, driver([s, s, s, s, s], [w, _, _, _,_]);

X = 2, driver([s, s, s, s, s], [_, w, _, _,_]);

X = 3, driver([s, s, s, s, s], [_, _, w, _,_]);

X = 4, driver([s, s, s, s, s], [_, _, _, w,_]);

X = 5, driver([s, s, s, s, s], [_, _, _, _,w]).
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Observations
• Finite and infinite automata nested within each 

other:
– Not possible in standard methods for model checking?

• Continous quantities such as time can be  
introduced
– Hybrid systems can be modeled elegantly, as long as 

a solver/consistency-checker can be built for that 
domain  

• Liveness checking as easy as safety checking
• Parallelism can be implicitly exploited from logic 

programs; (timed) model checking can be readily 
performed in parallel
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Application: (Timed) Planning
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Application: (Timed) Planning
• Planning: Given (i) domain D, (ii) observations 

about initial state  O, (iii) a set of fluents g1,…, gn , 
find a set of actions a1,…, am , such that D will 
entail g1,…, gn.
– Action description languages (like A) describe domains 

(with actions and change) used for planning problems
• Planning may involve self referential rules:         

hasball if receivedpass & ~hasball
• Planning & verification: two sides of the same coin 
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Real-Time Soccer Playing Domain

¬
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Real-Time Soccer Playing Domain

• holds(clearShot,  res(passBall,S)) :-
not_holds(clearShot, S),  b_getval(clock, Clock),  {Clock =< 1},
{NewClock > 0},  b_setval(clock, NewClock).

• not_holds(hasBall, res(wait,S)) :-
holds(hasBall,S), b_getval(clock,Clock), {Clock > 1}, 
{NewClock > Clock}, b_setval(clock,NewClock).

If clearShot is false in the initial state, then the query 
?- holds(goal, S).                      % produces the solution

S = res(shotTaken, res(passBall, s0))
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Other Applications & Status
• Other Applications: 

– Non monotonic reasoning: Co-LP allows goal-directed 
execution of Answer Set Programs

– SAT Solvers: Goal-directed SAT solvers can be built
• Current Status:

– A high level implementation of Co-LP on top of YAP 
Prolog completed.

– Work in progress to build a low level implementation of 
Co-LP in an existing Prolog/CLP engine
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Parallel Unified Reasoning Engine

• Lots of research in LP resulting in advances:
– Constraints, Tabled LP, Parallelism, ASP, co-LP, coroutining

• Goal: build a system that combines them all 
build a system that run very large apps.

Unified

LP System Coroutining

ConstraintsOr-Parallelism

Tabled LP

COINDUCTION

Rule selection Goal selection
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Conclusion
• Introducing coinduction into logic prog. allows 

one to compute both LFP & GFP
• GFP/LFP computations can be combined with 

other advanced features of LP allowing highly 
complex problems to be solved elegantly
– Applications to (timed) model checking
– Applications to (timed) planning

• Large instances of these applications can be 
run in parallel on a parallel logic programming 
system running on multicores
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