
A Point-Placement Strategy for Conforming Delaunay

Tetrahedralization

Michael Murphy� David M. Mounty Carl W. Gablez

Abstract

A strategy is presented to �nd a set of points which yields

a Conforming Delaunay tetrahedralization of a Piecewise-

Linear Complex (PLC). This algorithm is novel because

it imposes no angle restrictions on the input PLC. In the

process, an algorithm is described that computes a planar

conforming Delaunay triangulation of a PSLG such that

each triangle has a bounded circumradius, which may be

of independent interest.

1 Introduction

In many two- and three-dimensional geometric model-
ing problems, notably the numerical approximation of
the solution to a Partial Di�erential Equation with a
Finite-Element type method [SF73], it is very desirable
to obtain a triangulation (tetrahedralization) that re-
spects the domain of interest. The task of forming such
decompositions, along with ensuring that the elements
of the decompositions satisfy application-speci�c qual-
ity requirements, is sometimes referred to as unstruc-
tured mesh generation. See [BE92] for a survey. The
Delaunay triangulation, a celebrated structure in Com-
putational Geometry, can play a central role in this pro-
cess [GB98] [She98b] due to many important geometric
properties and the existence of e�cient algorithms to
compute and maintain one with a dynamic set of points.
(We shall assume the reader is familiar with the Delau-
nay triangulation and its basic properties, notably the
\empty-circle" characterization; see [PS85] for a def-
inition, a discussion of its properties, and algorithms
for computing and maintaining the Delaunay triangu-
lation.) Adapting the Delaunay triangulation, de�ned
over point sets, to more complicated geometric domains
such as arbitrary polygons or polyhedra, has proven to

�Department of Computer Science, University of Maryland|

College Park and Los Alamos National Laboratory. Email:

murphy@cs.umd.edu.
yDepartment of Computer Science and Inst. for Advanced

Computer Studies, University of Maryland|CollegePark. Email:

mount@cs.umd.edu. This author was supported by the National

Science Foundation under grant CCR{9712379.
zGeoanalysis Group, Earth and Environmental Science Divi-

sion, Los Alamos National Laboratory. Email: gable@lanl.gov.

a major challenge of unstructured mesh generation. To
cope, researchers have developed the Constrained De-
launay triangulation, which changes the \empty-circle"
criterion based on the domain. Another adaptation is
the Conforming Delaunay triangulation, which is ob-
tained when the domain is respected by the Delaunay
triangulation of a set of representative points. Thus,
to obtain a conforming Delaunay triangulation of a do-
main, the resolution typicallymust be increased through
the addition of points, often called Steiner points. In
the plane, these structures are well-understood and e�-
cient algorithms to work with them exist. However, the
analogs of these structures in three and higher dimen-
sions pose many algorithmic challenges. In this paper,
we address part of the challenges of three-dimensional
unstructured mesh generation by giving a provably cor-
rect algorithm to construct a Conforming Delaunay
tetrahedralization.

1.1 Piecewise-linear representations
We start by elaborating upon what we mean by a do-
main. We shall concentrate on piecewise-linear repre-
sentations. Polygons and polyhedra fall into this class.
However, for problems involving multiply-connected
boundaries, they are not expressive enough. For exam-
ple, in a geological application, one may need to repre-
sent several layers of rocks, each having unique material
properties that need to be distinguished in the simu-
lation. The boundaries between rock layers, the ma-
terial interfaces, may be very complicated, especially
if there are cracks and faults present. For such de-
manding applications, the most general class of two-
dimensional piecewise-linear representations, the Pla-
nar Straight Line Graph (PSLG), (see e.g. [PS85])
which encompasses polygons, polygons with holes, and
all other planar, piecewise-linear, multi-material repre-
sentations, is needed. PSLGs consist of vertices and
line segments, also referred to as edges. Vertices are
speci�ed by providing the coordinates. Line segments
are speci�ed by giving the connections between vertices;
the line segments must be non-overlapping, except when
meeting at a common vertex. In three dimensions the
Piecewise-Linear Complex (PLC) class (using the no-



tation of [MTT+96] and [She98b]) is the most general
representation. In the PLC model, the objects consist of
vertices, line segments, and planar faces, possibly with
holes and slits. An equivalent formulation of a PLC as
well as the \Radial-Edge" data structure to represent
one are given in [Wei87].

1.2 Conforming Delaunay triangulations
We return to the problem of adapting Delaunay tri-
angulations to piecewise-linear domains. One adap-
tation, the Constrained Delaunay triangulation, re-
laxes the \empty-circle" property. A formal de�ni-
tion, and a �(n logn) algorithm to compute one in the
plane is given in [Che89a]. Although in three dimen-
sions, there is no immediate generalization of the Con-
strained Delaunay triangulation, a structure known as
the \Conforming-Constrained" Delaunay tetrahedral-
ization is de�ned in [She98a]. However, it should be
noted that Constrained and Conforming-constrained
Delaunay triangulations and tetrahedralizations are not
as helpful with some numerical schemes because the
quality requirements imposed on internal boundaries
(material interfaces) imply that triangles incident upon
these edges are \locally Delaunay." Speci�cally, for an
internal edge in a PSLG, P , some schemes require that
the two angles opposite that edge in the triangulation
of P be nonobtuse.

Therefore, although the Constrained Delaunay tri-
angulation requires no Steiner points to obtain and the
Constrained-Conforming Delaunay tetrahedralization
may require fewer Steiner points, algorithms to com-
pute Conforming Delaunay triangulations and tetrahe-
dralizations are of great interest in unstructured mesh
generation. To obtain a Conforming Delaunay triangu-
lation of a PSLG, P , one places Steiner points to ensure
that all of the edges of P are represented in the De-
launay triangulation of the original point set together
with the Steiner points. For this purpose, Steiner points
never need to be placed anywhere but on the edges of
the PSLG; this is often referred to as edge re�nement.
The su�ciency of edge re�nement is a consequence of
the following standard lemma (see e.g. [She98a]):

Lemma 1.1. An edge e of a PSLG P with vertex set
V is an edge of the Delaunay triangulation of V if and
only if there exists a circle passing through the vertices
of e containing no points of V in its interior.

Saalfeld's algorithm [Saa91] for computing a Con-
forming Delaunay triangulation of a PSLG is based di-
rectly upon Lemma 1.1. To see the intuition, imagine
for the moment that we have a PSLG, P , that consists
of completely disjoint line segments. (That is, only one
line segment is incident upon a vertex.) One strategy to

satisfy Lemma 1.1 in this special case is to compute the
closest distance between two segments dmin > 0. Next,
pack a set of circles centered on every edge e with a ra-
dius no larger than dmin so that two adjacent circles in
the packing are tangent upon their points of intersection
with e. Steiner points can then be placed on e at these
points of tangency, as shown in Figure 1(b). This strat-
egy decomposes each edge of P into smaller edges, each
of which satis�es Lemma 1.1 because the disks covering
e cannot contain a point on another edge. Thus, we
have a conforming Delaunay triangulation. Of course,
many edges of a PSLG can be incident on a common
vertex. Hence, the �rst phase of Saalfeld's algorithm is
to guard every vertex v by placing a su�ciently small
disk centered around v so that the disk does not inter-
sect any edge not incident upon v. Steiner points are
placed at the intersection of this disk with the edges
of v. As shown in Figure 1(a), the minimum diameter
circle passing through the portion of each edge from v
to these Steiner points will be empty, satisfying Lemma
1.1. After this step, what remains is in essence a set of
disjoint edges that can be processed in the manner just
described.

Because it can place an excessive number of Steiner
points, Saalfeld's algorithm should be viewed more as
a simple existence proof of a Conforming Delaunay
triangulation than as a practical algorithm. There are
at least two noteworthy provably correct algorithms to
�nd a Conforming Delaunay triangulation of a PSLG
that are sensitive to the number of Steiner points. The
�rst is Edelsbrunner and Tan's algorithm [ET93], which
gives a striking O(n3) combinatorial upper bound on
the number of Steiner points placed, where n is the
input size. The other is Ruppert's Delaunay-Re�nement
algorithm [Rup95] using \the Quitter" given in [She97]
to resolve small input angles. Although the latter
algorithm does not admit combinatorial bounds on the
number of Steiner points placed { the bounds come from
the local-feature-size, an intrinsic geometric property of
the domain { Ruppert's algorithm is quite practical and
can be used to construct a no-small-angle triangulation,
useful in bounding discretization error in the Finite-
Element method.

1.3 A strategy for conforming Delaunay tetra-
hedralization
Many heuristic algorithms can be found in the litera-
ture to compute a Conforming Delaunay tetrahedraliza-
tion; a very successful one is the \Delaunay Advancing
Front."[GB98]. However, a provably correct algorithm
for computing a Conforming Delaunay tetrahedraliza-
tion of a general PLC is apparently an open problem
[BP97] [CDE+99] [CM99] [Geo99]. Some provably cor-



(a) (b)

Figure 1: Key steps in Saalfeld's Conforming Delaunay triangulation algorithm. (a): Protecting the vertices.
(b): Covering the edges with empty tangent circles.

rect algorithms to �nd a conforming Delaunay tetra-
hedralization make stringent angle restrictions on the
input PLC [She98b] [MTT+96]. To be sure, these al-
gorithms were designed to provide \quality" Delaunay
tetrahedralizations, where a bounded ratio of circumra-
dius to shortest edge of each tetrahedron is the measure
of interest, rather than any Delaunay tetrahedralization.
However, unlike Ruppert's planar algorithm, which has
a similarmotivationand makes similar angle restrictions
that can be side-stepped, these restrictions are not as
readily resolved. Our purpose is to give an algorithm
to �nd a Conforming Delaunay triangulation of a PLC
with no angle restrictions, a step towards both practical
and provably correct Delaunay-based mesh generation
in three dimensions.

The problem in three dimensions is more involved
because both edges and faces of a PLC must be re�ned
until they are part of the Delaunay tetrahedralization of
the augmented point set. The three-dimensional analog
of Lemma 1.1 for edges in a PLC not part of any face
remains the same except that we require empty spheres
rather than circles. A straightforward generalization of
Saalfeld's algorithm can be used to process these edges.
Therefore, such hanging edges are considered no further.
Rather, we are concerned with re�ning the faces. The
analog of Lemma 1.1 becomes:

Lemma 1.2. A triangular face f (or a face with four or
more cocircular vertices) of a PLC P with vertex set V
is a face in the Delaunay tetrahedralization of V if and
only if there exists a sphere passing through the vertices
of f containing no points of V in its interior.

If the face is not triangular, then the planar Delaunay
triangulation of the vertices of the face must be conform-
ing with each triangle (face with four or more cocircular
vertices) must satisfy Lemma 1.2.

The algorithm we describe is motivated by the
following simple observation: Suppose we are given a set
of disjoint faces inR3which we wish to re�ne so that the
Delaunay tetrahedralization of the augmented point set
conforms to these faces. A su�cient but not necessary

condition is to �nd a planar Delaunay triangulation of
each face with the property that for each triangle, t,
the circumscribing sphere of radius equal to the radius
of the (planar) circumcircle of t does not intersect any
other face. (Note that this sphere is the one of minimum
radius circumscribing t.) A planar conformingDelaunay
triangulation of each face where each triangle has a
radius bounded by the distance to the nearest face in the
PLC will satisfy this condition. We give an adaptation
of Chew's guaranteed-quality Delaunay triangulation
algorithm [Che89b] for this purpose in Section 2.

Of course, the faces need not be disjoint. As a con-
sequence, the above strategy fails because the distance
between two incident faces is zero. However, methods
used in our adaptation of Chew's algorithm to protect
vertices and edges extend to three dimensions. What
remains after these protection phases is a set of disjoint
subfaces upon which we can use our bounded circumra-
dius conforming Delaunay triangulation algorithm. We
show that the results of the protection phases and the
planar triangulation phases do not interfere. Thus, we
have a re�nement of the PLC such that a Conforming
Delaunay tetrahedralization can be obtained from its
vertices.

2 Delaunay triangulations with bounded
circumradii

We proceed by �nding a conforming Delaunay triangu-
lation of a PSLG such that the circumradius of each
triangle is bounded from above by a pre-speci�ed con-
stant. One early guaranteed-quality Delaunay triangu-
lation algorithm due to Chew [Che89b] shows promise.
Although the intention of his algorithm is to produce
a Constrained Delaunay triangulation such that the an-
gles in the triangulation are between 30 and 120 degrees,
it also generates triangles with bounded circumradii.
However, before applying his algorithm to our task, two
problems need to be addressed. First, the precondition
of his algorithm requires that no input angle can be
less than 30 degrees. Second, his algorithm does not



guarantee a Conforming Delaunay triangulation, only a
Constrained Delaunay triangulation. We present modi-
�cations that address both issues while maintaining the
user-speci�ed upper bound on the largest circumradius.

2.1 Review of Chew's algorithm
Chew's algorithm takes as input a PSLG P such that
no angle incident upon a vertex is less than 30 degrees
and a parameter rmax from the user. The output is
a Constrained Delaunay triangulation such that the
circumradius of each triangle does not exceed rmax.
The �rst step of his algorithm re�nes the edges of
P into subsegments whose lengths are in the range
[h;
p
3h] for some h � rmax. The parameter h must

be chosen small enough so that such a re�nement is
possible and so that h is no larger than the closest
distance between any two (Steiner or input) vertices.
Because of the precondition on the smallest angle,
such a value always exists. (A general strategy for
�nding such an edge partition is given below.) After
computing the Constrained Delaunay triangulation of
the modi�ed PSLG, circumcenters of triangles whose
radii are larger than h are inserted, one at a time. The
Constrained Delaunay triangulation can be restored
after each such Steiner point insertion using Lawson's
algorithm [Law77]. The process continues until no
triangles with circumradii exceeding h exist, which
Chew demonstrates always occurs eventually.

2.2 Treating the small angles
If the input PSLG contains angles less than 30 degrees,
�nding a value for h so that the PSLG is decomposed
into edges of length in the range [h;

p
3h] and so that

no two vertices are of distance less than h is impossible.
However, such a decomposition is motivated more by
the desire to avoid small angles than to prevent triangles
with large circumradii. Although we use these length
bounds in our proof, we can tolerate small angles
by transforming small-angled PSLGs to ones Chew's
algorithm can process by adding a vertex-protection
phase, resembling Saalfeld's, prior to invoking Chew's
algorithm. We describe this phase in conjunction with
the initial edge-re�nement process.

Consider a PSLG P . Let � be the minimumdistance
either between any two vertices or between a vertex and
any non-incident edge. Let � be the minimum of �=4
and the angle between two edges that share a vertex.
Let r = �=3, and let h be any quantity that is no
greater than the length of a chord of a circle of radius
r subtending an angle of �=2. (By the law of cosines,
h � r

p
2(1� cos(�=2)).) Because � � �=4, it is easy to

verify that h � r=2.
As in Saalfeld's vertex-protection phase, each vertex

is surrounded by a protecting circle of radius r. Steiner
points are placed at the intersection of each circle with
the edges of P . This subdivides each circle into a
collection of arcs of angular sizes at least �. Each arc
of angle � is further subdivided into k = b2�=�c subarcs
of equal sizes. Of course, if the subarc is outside the
external boundary, we do no need to re�ne it. Steiner
points are placed at the endpoints of these intervals. By
connecting consecutive Steiner points, we form a convex
polygon surrounding each input vertex. We connect
the central vertex to these points by a set of \spokes,"
forming a set of isosceles triangles. This is illustrated in
Figure 2 for an internal vertex in the domain.

We assert that the distances between consecutive
Steiner points on the circle are in the interval [h;

p
3h].

This is true because � � � implies that k � 2.
Combining this and the de�nition of k we have

k�

2
� � <

(k + 1)�

2
�

2
� �

k
<

(k + 1)�

2k
�

2
� �

k
<

3�

4
<

p
3
�

2
:

Each subarc is of angular size �=k. Two points subtend-
ing a subarc of angle �=2 are at distance h apart and
two points subtending a subarc of

p
3�=2 are at most

distance h
p
3 apart, as desired.

As we have just seen, the angles between consec-
utive spokes is less than 3�=4 < �=3. Consider any
isosceles triangle whose base is of length b and whose
opposite angle at most �=3. It is straightforward to
show that its circumcircle extends a distance at most
b=(2

p
3) beyond the base. Since b � p

3h, the circum-
circles from this part of the construction do not extend
a distance more than h=2 outside of the surrounding
convex polygon. We use this fact later.

Observe that no two non-incident pairs (vertex-
vertex or vertex-edge) can be closer than distance 3r,
implying that even after adding the surrounding circles
of radius r, all non-incident entities are separated by a
distance of at least r > 2h.

We create a new PSLG P 0 to be supplied to Chew's
algorithm by adding the convex polygon surrounding
each vertex to the PSLG and throwing out everything
in its interior. The remaining edges are of length at
least r (the minimum distance between circles). Each
such edge of length l is subdivided into j = bl=hc
subsegments of equal lengths and Steiner points are
placed at the endpoints of each subsegment. As noted
earlier, h=2 � r � l, implying that j � 2. By the
same argument above, it follows that the length of each
subsegment is in the interval [h; h

p
3]. Because no two



Figure 2: A vertex of a PSLG is protected by a circle of appropriate radius. Intersection points are added, and
Steiner points are placed on the circle to satisfy Chew's point-spacing criteria.

consecutive vertices are closer than h, and no two non-
incident entities are closer than 2h, it follows that no two
vertices of this construction are closer than h. Thus, we
can apply Chew's algorithm to the result.

We claim that after applying Chew's algorithm, the
spokes joining each vertex of P to its surrounding con-
vex polygon and the triangles created by Chew's algo-
rithm with edges incident upon this polygon are \locally
Delaunay." The reason is that Chew's algorithm does
not place any vertices within distance h=2 of the bound-
ary of the protecting polygons. By the observation made
earlier, the circumcircles de�ned by these isosceles tri-
angles do not extend outside of the convex polygon by a
distance more than h=2. Thus Chew's triangles are pro-
tected from the circumcircles of the \spoke triangles."
As a check, the circumcircles generated by Chew's al-
gorithm do not penetrate the protecting polygon by a
distance of more than 3h=2 and therefore cannot con-
tain the vertex that is being protected by the polygon.
Thus, the spokes and Chew's triangles do not interfere
with each other.

2.3 Protecting the input edges
Running the above vertex-protection scheme followed
by Chew's algorithm on the modi�ed PSLG P 0 will not
necessarily yield a Conforming Delaunay triangulation.
This is because for a segment of an edge e of P outside
the vertex-protectors, the two angles of the triangles op-
posite to e can be obtuse, violating the \empty-circle"
condition (although they are \Constrained Delaunay.")
To remedy this, we shield each edge e from the circum-
circles of triangles generated by Chew's algorithm. The
bu�er-zones are formed by extruding parallel edges from
e a distance de. This distance can be computed in the
same manner h is computed in Section 2.2. If e is an in-
ternal edge, we extrude protectors on both sides of e. If
e is a boundary edge, we only extrude into the domain.
The intuition is that we will run Chew's algorithm on
the extruded edges rather than on e, leaving the space
between e and its protectors as a bu�er-zone to be tri-
angulated separately. Although triangles generated by
Chew's algorithm can have circumcircles that intersect

e, we can ensure that e is re�ned so that no Steiner point
falls in the interior of these circles. To accomplish this,
when re�ning these edges to satisfy Chew's length con-
ditions, it is important to obtain a sequence of identical
intervals. We then re�ne e in exactly the same manner
as its protectors. This alignment of Steiner points is
shown in Figure 3.

How do we incorporate these protecting edges with
the vertex-protection phase just described? Rather than
placing Steiner points at the intersection of the protect-
ing circle and e, we place a Steiner point on the circle
a vertical distance de above e, a Steiner point on the
circle a distance de below e, and a Steiner point at their
orthogonal projections onto e. We form the protecting
edges parallel to e by connecting these Steiner points
above and below e to their counterparts on the circle
protecting the adjacent vertex. We consider the bu�er-
zone of a face to be anything inside the protecting circle
or within a distance de of the edge on the face. The
arcs outside the bu�er-zone and the edge-protectors are
divided to satisfy the spacing requirements of Chew's al-
gorithm using a value of h derived from this new PSLG.
Note that the closest pair of points distance can now be
smaller than before. Thus, de � h.

The input to Chew's algorithm is the union of all
of the protecting edges, as illustrated in Figure 4(c).
Figure 4(d) shows what the triangulation of the bu�er-
zone looks like. As explained above, the spoke triangles
are locally Delaunay as their circumcenters do not
extend far. The circumcenters of triangles incident upon
Steiner points placed on e can only extend a distance
h=2, outside of the protected region. This is because of
the spacing constraints imposed by Chew's algorithm.
Speci�cally, the circumcircle of a

p
3h by de box can

only bulge a distance h=2 outside of the the bu�er-zone.
(This occurs when de = h). Thus, �ve co-circular points
could exist in the worst case when Chew's algorithm
places a point a distance of h=2 of an edge of lengthp
3h.
We now have the following theorem:

Theorem 2.1. A PSLG can be re�ned so that a Con-
forming Delaunay triangulation is obtained with the



extruded
edges

edge e

Figure 3: Two parallel edges are extruded from e and are re�ned with the same point distribution.

property that the circumradii of each Delaunay triangle
is bounded from above by a pre-speci�ed constant using
a �nite number of Steiner points.

3 Extending to three dimensions

3.1 Overview
We extend the above algorithm to �nd a Conforming
Delaunay tetrahedralization of a PLC, P . Like the two-
dimensional algorithm, we create bu�er-zones around
the shared vertices and edges of faces. We then use
Chew's algorithm to create a (planar) conforming De-
launay triangulation of the portions of the faces outside
the bu�er-zones such that the minimumdiameter sphere
of every triangle in these triangulations cannot intersect
another planar face outside a bu�er-zone. This is illus-
trated in Figure 5. This satis�es Lemma 2 for each
triangle if the bu�er zones do not contain points where
these spheres intersect. Again, the crux is to de�ne the
bu�er-zones and re�ne them into triangles so that they
do not interfere with the triangles produced by Chew's
algorithm. Fortunately, the vertex and edge protection
methods of our planar bounded radius conforming De-
launay triangulation algorithm given above extend eas-
ily into three dimensions. The intuition behind the ex-
tensions is that when we protect shared vertices of P , we
use protecting spheres centered at these vertices rather
than protecting circles. To protect edges, we place pro-
tecting cylinders around them. However, the phrases
\protecting spheres"and \protecting cylinders" are not
entirely accurate because it is acceptable for a Delaunay
edge to pierce these spheres and cylinders in the �nal
tetrahedralization of the point set, if the piercing edge
does not cross a face of P .

3.2 Creating the bu�er-zones
The �rst step is to compute the size of the bu�er-
zones. The values of de and r de�ned above can be
used for this purpose. The only di�erence in their
computation is that we use as our � the minimum
distance between any two adjacent vertices or any two
non-incident entities (vertex-vertex vertex-edge, vertex-
face, edge-edge, edge-face, face-face). To avoid problems
with ambiguities caused by two incident faces that pass
close to each other far from the points of incidence (as
can occur with non-convex faces), assume all faces are

triangulated arbitrarily. We do not take into account
dihedral angles at this point.

For each vertex v, intersect each face incident upon
v with a protecting circle of radius r centered at v.
This could be viewed as forming a protecting sphere of
radius r around v. We also install the edge-protectors.
Consider an edge e. For every face incident upon e,
we place a Steiner point on the protecting arcs of that
face at both of the endpoints of e a distance de from
e and form the parallel protecting edges as before by
connecting these Steiner points. This can be imagined
by intersecting a cylinder with radius de and axis e with
the incident faces of e. We also place Steiner points at
the orthogonal projection of these Steiner points onto
e. As before, we do not consider the arcs on each face
inside the edge protector; we consider the bu�er-zone
of a face to be anything inside the protecting circle or
within a distance de of e on the face.

We now re�ne the boundaries of the bu�er-zones.
To do so, we compute a spacing value based upon the
closest-pair of features that can arise. This is a function
of the dihedral angles and the closest pair of Steiner
points placed in the vertex and edge protection steps
above. Speci�cally, let � be the smallest dihedral angle
of P . Let df be the length of the base of an isosceles
triangle with angle � and side lengths de. Compute an
appropriate value for h using the arcs on the boundary
of the bu�er-zones and the lengths of the protecting
edges, as in Section 2.2. Let h0 = min(h; df). Note
h0 is less than or equal to the distance between any
incident faces sharing an edge at a point outside the
bu�er-zone. We re�ne the arcs and the protecting edges
for some value h00 � h0 chosen so that Chew's spacing
requirements are satis�ed. We must also ensure that
the protecting edges are re�ned identically, as well as
the edges they are protecting. We can now run Chew's
algorithm on the portion of each face of P outside
of the bu�er-zones to create a conforming Delaunay
triangulation with h00 as the maximum radius.

We claim that every one of Chew's triangles satis�es
Lemma 2. Why? First, the circumradii of Chew's
triangles not incident upon an edge of the bu�er-zone
do not intersect any other entity in the PLC, due to the
bounds on the circumradii. Second, if a circumradius
of one of Chew's triangles intersects another face, it is



Figure 4: (a) A portion of a PSLG (b) Finding protecting circles and edges. (c) The PSLG passed to Chew's
algorithm to triangulate everything outside the bu�er-zones. (d) The triangulation of the interior of the bu�er-
zone.

i

j

Figure 5: (a) Edge (i; j) has three faces incident upon it. (b) The bu�er zones on each face formed by vertex-
protection and edge-extrusion. (c) The disjoint faces passed to passed to Chew's algorithm to triangulate.

because it is incident upon the bu�er-zone. We claim it
only intersects a portion of a bu�er-zone where no points
are placed. This follows from the alignment of Steiner
points of the protecting edges and the input edges and
the bounds on the circumradii. It is straightforward to
show the points inside the bu�er-zones do not interfere
with each other; their minimumdiameter circumspheres
cannot intersect because of the spherical and cylindrical
distributions, point alignment on the edges and edge-
protectors, and edge spacing. This gives our main
result:

Theorem 3.1. A PLC P can be re�ned so that the
Delaunay tetrahedralization of its augmented vertex set
conforms to P with a �nite number of Steiner points.

4 Conclusion

In essence, we have given a generalization of Saalfeld's
Conforming Delaunay triangulation algorithm to three
dimensions. Like its planar counterpart, our algorithm
places far too many points to be practical and should be
viewed more as an existence proof. Thus, it would be
interesting to know if an algorithm that runs in polyno-
mial time based on the input size (and therefore places
a polynomial number of Steiner points) exists, akin to
the two-dimensional result in [ET93]. It would also be
interesting to �nd a Conforming Delaunay tetrahedral-
ization algorithm sensitive to the local-feature-size that
could be coupled with standard \quality" measures of
tetrahedra with general PLCs. Algorithms to compute
Conforming Delaunay simplicial complexes of PLCs in
higher dimensions would also be of interest.



References

[BE92] M. Bern and D. Eppstein. Mesh generation and
optimal triangulation. In D.-Z. Du and F. K. Hwang,
editors, Computing in Euclidean Geometry, volume 1
of Lecture Notes Series on Computing, pages 23{90.
World Scienti�c, Singapore, 1992.

[BP97] M. Bern and P. Plassmann. Mesh genera-
tion. Unpublished Manuscript, 1997. Available at
http://www.ics.uci.edu/�eppstein/280g.

[CDE+99] S.W. Cheng, T.K. Dey, H. Edelsbrunner, M.A.
Facello, and S.H. Teng. Sliver exudation. In Proc. 15th

Annu. ACM Sympos. Comput. Geom., 1999.
[Che89a] L. P. Chew. Constrained Delaunay triangulations.

Algorithmica, 4:97{108, 1989.
[Che89b] L. P. Chew. Guaranteed-quality triangular

meshes. Technical Report TR 89-983, Dept. Comput.
Sci., Cornell Univ., Ithaca, NY, 1989.

[CM99] P.R. Cavalcanti and U.T. Mello. Three-dimensional
constrained Delaunay triangulation: A minimalist ap-
proach. In Proc. 8th International Meshing Roundtable,
Albuquerque, NM, 1999. Sandia National Laboratories.

[ET93] H. Edelsbrunner and T.-S. Tan. An upper bound for
conforming Delaunay triangulations. Discrete Comput.
Geom., 10(2):197{213, 1993.

[GB98] P.L. George and H. Borouchaki. Delaunay Trian-

gulation and Meshing: Application to Finite-Elements.
Hermes, New York, NY, 1998.

[Geo99] P.L. George. Tet meshing: Construction, optimiza-
tion, and adaptation. In Proc. 8th International Mesh-

ing Roundtable, Albuquerque, NM, 1999. Sandia Na-
tional Laboratories.

[Law77] C. L. Lawson. Software for C1 surface interpola-
tion. In J. R. Rice, editor, Math. Software III, pages
161{194, New York, NY, 1977. Academic Press.

[MTT+96] G.L. Miller, D. Talmor, S.-H. Teng, N. Walk-
ington, and H. Wang. Control volume meshes using
sphere packing: Generation, re�nement, and coarsen-
ing. In Proc. 5th International Meshing Roundtable,
Albuquerque, NM, 1996. Sandia National Laboratories.

[PS85] F. P. Preparata and M. I. Shamos. Computational

Geometry: An Introduction. Springer-Verlag, New
York, NY, 1985.

[Rup95] J. Ruppert. A Delaunay re�nement algorithm for
quality 2-dimensional mesh generation. Journal of

Algorithms, 18(3):548{585, 1995.
[Saa91] A. Saalfeld. Delaunay edge re�nements. In Proc.

3rd Canadian Conf. Comp. Geometry, pages 33{36,
1991.

[SF73] G.J. Strang and G. Fix. An Analysis of the Finite-

Element Method. Prentice{Hall, 1973.
[She97] J. R. Shewchuk. Delaunay re�nement mesh gen-

eration. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1997. Available at
http://www.cs.berkeley.edu/�jrs.

[She98a] J. R. Shewchuk. A condition guaranteeing the
existence of higher-dimensional constrained Delaunay

triangulations. In Proc. 14th Annu. ACM Sympos.

Comput. Geom., 1998.
[She98b] J. R. Shewchuk. Tetrahedral mesh generation

by Delaunay re�nement. In Proc. 14th Annu. ACM

Sympos. Comput. Geom., 1998.
[Wei87] K. J. Weiler. The radial edge structure: A topo-

logical representation for non-manifold geometric mod-
eling. In J. Encarnacao M. Wozny, H. McLaugh-
lin, editor, Geometric Modeling for CAD Applications.
Springer Verlag, 1987.


