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ABSTRACT

The 8-tetrahedra longest-edge (8T-LE) partition of any tetrahedron is defined in terms of three consecutive edge
bisections, the first one performed by the longest-edge. The associated local refinement algorithm can be described
in terms of the polyhedron skeleton concept using either a set of precomputed partition patterns or by a simple edge-
midpoint tetrahedron bisection procedure. An effective 3D derefinement algorithm can be also simply stated. In this
paper we discuss the 8-tetrahedra partition, the refinement algorithm and its properties, including a non-degeneracy
fractal property. Empirical experiments show that the 3D partition has analogous behavior to the 2D case in the
sense that after the first refinement level, a clear monotonic improvement behavior holds. For some tetrahedra a
limited decreasing of the tetrahedron quality can be observed in the first partition due to the introduction of a new
face which reflects a local feature size related with the tetrahedron thickness.
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1. INTRODUCTION

Skeleton algorithms for local mesh refinement /dere-
finement of triangular and tetrahedral meshes have
been proposed by Plaza and Carey [10, 11, 12]. In two
dimensions, the algorithm is an alternative formula-
tion of the 4-triangles longest-edge algorithm [14, 15].
The 2-dimensional skeleton algorithm [10, 11] works
over the edges wireframe mesh affected by the refine-
ment (target triangles and some neighbors to assure
the construction of a conforming mesh) by perform-
ing midpoint bisection of the involved edges. Then
this information is used to select the appropriate tri-
angle partition pattern (between a set of three pat-
terns) to refine each individual triangle. This idea
was then generalized to 3-dimensions [11, 12] by in-
troducing an 8-tetrahedra partition which induces the
4-triangles partition of its faces.

The 3-dimensional skeleton algorithm performs: (1)
the refinement of the 3-dimensional edges wireframe
mesh affected, (2) the refinement of the faces surface

mesh (by using the 4-triangles partition and associated
partial partitions), and (3) the volume refinement of
each tetrahedron either by using a simple edge bisec-
tion procedure or according to an appropriate pattern,
selected between a set of precomputed partition pat-
terns.

In this paper we study the properties of the 8-
tetrahedra partition showing that each full partition
pattern is equivalent to a sequence of seven tetrahe-
dron edge bisections by the midpoint of the tetrahe-
dron edges, the first one being performed by the tetra-
hedron longest-edge. Then we take advantage from the
improvement and fractal properties of the 4-triangles
longest-edge partition to show some non-degeneracy
properties in 3-dimensions. We also show that for the
meshes globally refined by using the 8-tetrahedra par-
tition, the asymptotic average number of tetrahedra
sharing a fixed vertex is equal to 24.

An empirical study about the behavior of the 8-
tetrahedra partition is also included. This shows that
consistently, from the second refinement level, both



the distribution of quality tetrahedra, and the volume
percentage covered by better tetrahedra tend to be
improved as the 8T-LE partition proceeds.

1.1 Previous and related work

Refinement algorithms based on longest-edge parti-
tions, including Lepp based algorithms, have been ex-
tensively discussed [14, 15, 18, 17, 16], as well as skele-
ton based algorithms [10, 11, 12, 13].

In two-dimensions it has been shown that these al-
gorithms improve the point distribution by maintain-
ing some small-angled triangles which depend on the
quality of the initial mesh, in the following senses: the
iterative global refinement of any triangle produces tri-
angles whose minimum angle is bounded as a function
of the quality of the initial triangle, the process pro-
duces a finite number of similarly distinct triangles,
and both the percentage of good-quality triangles and
the area covered by these triangles increases as the
refinement proceeds.

In [18] a pure three dimensional longest-edge refine-
ment method was considered. Empirical experimenta-
tion showing that the solid angle decreases slowly with
the refinement iterations and that a quality-element
improvement behavior, analogous to the 2-dimensional
case holds in practice, were provided. However, there
has not been mathematical results available guarantee-
ing the non-degeneracy properties of the 3-dimensional
mesh.

In the last 12 years other triangle-bisection and
tetrahedron-bisection refinement algorithms have been
proposed. Between them we can cite the newest-vertex
insertion method of Michell [9] in two dimensions, the
tetrahedron-bisection algorithm of Bänsch [2] and the
8-tetrahedra bisection algorithm of Liu and Joe [7].
These algorithms essentially consist on performing
edge based partitions in such a way that triangles or
tetrahedra similar to those of the first refinement lev-
els are obtained throughout the process. In particu-
lar, Liu and Joe have obtained a bound on the mesh
quality as a function of the initial geometry for their
algorithm [6].

Other studies report somewhat equivalent algorithms.
A recursive approach which imposes certain restric-
tions and pre-processing in the initial mesh is proposed
by Kossaczký [4]. Maubach [8] has developed and al-
gorithm for n-simplicial grids generated by reflection.
Although the algorithm is valid in any dimension and
the number of similarity classes is bounded, this can-
not be applied to a general tetrahedral grid, since an
additional closure refinement is needed to avoid in-
compatibilities. Arnold et al. [1] have presented an
algorithm equivalent to those discussed in [2, 4] prov-

ing its equivalence with [8].

All these algorithms however, do not take practical ad-
vantage of the element-quality improvement properties
of longest-edge and skeleton algorithms. These algo-
rithms, in exchange, can be applied to any valid initial
triangulation without any restriction on the shape of
the tetrahedra.

In what follows we specifically discuss the skeleton
algorithms of Plaza and Carey [10, 11, 12]. This
three dimensional approach is based on the ap-
plication of the 2-dimensional algorithm over the
skeleton of the 3D triangulation, that is to the set
of the triangular faces of the tetrahedra. Being
this a longest-edge based algorithm we expect for
it analogous behavior to that reported in [18] for
pure 3-dimensional longest-edge refinement algorithm.

2. THE 4-TRIANGLES ALGORITHM
AND PREVIOUS RESULTS

The 4-Triangles algorithm can be described in terms
of the three refinement patterns of Figure 1, where P
is the midpoint of the longest-edge. The algorithm
consists on two basic steps: (1) refinement of target
triangles by using the partition pattern (a) of Figure 1,
and (2) a local propagation step to assure a conforming
mesh which uses the partition patterns of (b) and (c)
of Figure 1.
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Figure 1: 4-Triangles-refinement patterns.

4-Triangles-Refinement-Algorithm(τ, t)
/* Perform the 4-Triangles partition of t
for each edge e of t, of associated neighbor t∗ do

neighbor-refinement(t∗, e)
t← t∗

while t is non-conforming do
find the unique non-conforming edge e ∈ t

with associated neighbor t∗

neighbor-refinement(t∗, e)
t← t∗

end while
end for



neighbor-refinement(t∗, e)
if e is longest-edge of t∗ perform LE bisection of t∗

else perform 3-Triangles partition of t∗ by edge e

For an illustration see Figure 2. Note that in the gen-
eral case, the refinement should propagate to neighbor
triangles by the edges AC and CB.
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Figure 2: Example of 4-Triangles-Refinement-Algorithm.

The 4-Triangles-Algorithm produces a subset of the
triangles obtained by longest-edge bisection and the
following theorem holds [14, 15]:

Theorem 2.1 Over any conforming triangulation
τ0, the iterative application of the 4-Triangles-
Algorithm: (1) produces nested triangulations in the
sense that each new triangle is embedded in its par-
ent; (2) every triangle t generated in the process has

smallest angle greater or equal to
α0

2
, where α0 is the

smallest angle of the triangle t0 in τ which embeds
t; (3) produces a finite number of similarity distinct
triangles; (4) the triangulations obtained tend to be
improved in the sense that both the percentage of the
good-quality triangles and the area covered by these tri-
angles increases as the refinement proceeds.

Furthermore, for obtuse triangles the following mono-
tone improvement behavior holds [17]:

Theorem 2.2 For any obtuse triangle t0 of smallest
angle α0 and largest angle γ0, the 4-Triangles parti-
tion of t0 produces a unique similarly distinct triangle
t1, whose 4-Triangles partition in turn produces a new
similarly distinct triangle t2, and so on, until a last

non-obtuse triangle tn is obtained. Furthermore, the
smallest angles αi and the largest angles γi of each
triangle ti satisfy the following improvement relations:

α0 < α1 < α2 < . . . < αn

γ0 > γ1 > γ2 > . . . > γn

where γi = γi−1 − αi.

For the 4T-LE algorithm, a fractal property analogous
to that proved for the LE-bisection algorithm [17] also
holds:

Theorem 2.3 After a finite number of iterative (lo-
cal) applications of the 4-triangles algorithm around
any vertex P of any conforming triangulation τ , a sta-
ble molecule around P is obtained, in the sense that the
next iteration of the algorithm do not divide the angles
of vertex P , but only introduce new vertices along the
edges of the stable molecule. Furthermore, each new
triangle of vertex P produced throughout the next iter-
ations will be similarly equal to a preceding triangle.
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Figure 3: Fractal behavior of 4-triangles partition and
stable molecule.

2.1 The skeleton algorithms in two and
three dimensions

The skeleton version of the 4-Triangles refinement al-
gorithm performs the refinement task by using two se-
quential steps: (1) Identifying and bisecting the edges
(not the triangles) involved throughout the overall re-
finement process; and (2) partitioning each individual
triangle involved in the refinement process by using
the triangles partitions of Figure 1 according to its
bisected edges.

The 3D-skeleton algorithm in exchange generalizes the
4-Triangles refinement algorithm to 3-dimensions by



t

(a) (b)

Figure 4: Example of the use of the 2D-skeleton algo-
rithm.

making use of the skeleton concept which in turn gen-
eralizes the graph usually associated with the polygo-
nal faces of any polyhedron [10, 11, 3]:

Definition 2.4 For any conforming 3D triangular
mesh τ (tetrahedral mesh), the 2D-Skeleton of τ is
the conforming surface mesh defined by the triangu-
lar faces of the elements of τ . In addition, the 1D-
Skeleton of τ is the conforming wire mesh defined by
the edges of the elements of τ .

By using the preceding concepts the algorithm can be
schematically described as follows:

3D-Skeleton Refinement-Algorithm(τ, t)
Find and Partition involved Edges over
1-skeleton mesh
Partition involved Faces over 2-skeleton mesh
Partition involved Tetrahedra according
appropriate partition patterns

Note that with minor changes, both procedures (over
the 1-skeleton mesh and the 2-skeleton mesh) together
correspond to the application of the 4-Triangles-
Skeleton-Refinement Algorithm to the surface triangu-
lation formed by the faces of the tetrahedra of the ini-
tial 3-dimensional triangulation. The Partition Tetra-
hedra procedure in exchange performs the volume par-
tition of the set of tetrahedra whose faces were refined
by the preceding procedures.

In the next Section we shall introduce and discuss
the 8-Tetrahedra-LE partition, proving the following
properties: the 8-tetrahedra LE partition of every
tetrahedron t in the mesh produces both a conforming
volume mesh and a conforming surface mesh where
the surface mesh is obtained by the 4-Triangles
partition of the faces of t.

3. THE 8-TETRAHEDRA PARTITION
AND PROPERTIES

At this point, some definitions are in order:

Definition 3.1 For any tetrahedron t of unique
longest-edge, the primary faces of t are the two faces
of t that share the longest-edge of t. In addition, the
two remaining faces of t are called secondary faces of t.
Furthermore, the secondary edges of t are the longest
edges of the secondary faces of t (1 or 2 secondary
longest edges). In addition, the 3 or 4 remaining edges
of t are called third-class edges of t.

Note that for any tetrahedron t of unique longest-edge,
the primary faces of t have a common longest-edge
equal to the longest-edge of t. In order to avoid am-
biguousness in the general case, we always suppose
that for each tetrahedron t having either a non-unique
longest-edge, or non-unique secondary edges, a unique
selection for each of such edges is performed a priori
in such a way that the longest-edge of the tetrahe-
dron coincides with the longest-edge of the primary
faces of t, and this selection is consistently maintained
throughout the overall refinement process.

The 8-Tetrahedra longest-edge partition can be de-
fined as follows:

Definition 3.2 For any tetrahedron t of unique
longest-edge and unique secondary edges, the 8-
Tetrahedra Longest-Edge (8T-LE) partition of t is de-
fined as follows:

(1) LE-bisection of t producing tetrahedra t1, t2;

(2) bisection of ti by the midpoint of the unique edge
of ti which is also a secondary edge of t, producing
tetrahedra tij for i, j = 1, 2.

(3) bisection of each tij by the midpoint of the unique
edge equal to a third-class edge of t, for i, j = 1, 2.

In order to study the 8-tetrahedra partition, we need
to consider an intermediate 4-tetrahedra partition
characterized by the following proposition:

Proposition 3.3 Let t be any tetrahedron of unique
longest-edge AB and associated midpoint P (see Fig-
ure 5. Then the 4-tetrahedra partition described by
the two ordered steps (1) and (2) of Definition (3.2)
produces a 4-tetrahedra volume triangulation of t sat-
isfying the following properties:

a) The volume triangulation induces the longestedge
bisection of each triangular face of t.

b) The volume triangulation of t will be a conform-
ing triangulation if and only if the distribution
of the longest-edge and secondary edges of t cor-
responds to either the cases (a), (b), or (c) in
Figure 5.

c) The volume triangulation will not be a conform-
ing triangulation if and only if the secondary
edges share a vertex and one of these edges is op-
posite to the longest-edge of t (Figure 5 (d)).
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Figure 5: Relative position of the longest-edge (num-
bered 1) and secondary longest-edges (numbered 2) for
t.

The proof of part a) follows directly from the defini-
tion of the 4-tetrahedra partition, while the proof of
parts b) and c) are based on the study of the possi-
ble relative positions of the longest-edge of t and the
secondary edges of t. Clearly, only 4 relative configura-
tions, invariant under translation, rotation, reflection
and uniform scaling are possible:

i) longest-edge of t opposite to the unique (com-
mon) secondary edge of the two secondary faces
of t (Figure 5 (a)).

ii) the secondary longest-edges and longest-edge of t
form a triangular face of t (Figure 5 (b)).

iii) opposite secondary edges, where each of such
edges shares a vertex with the longest-edge of t
(Figure 5 (c)).

iv) the secondary edges share a vertex and one of the
secondary edges is opposite to the longest-edge of
t (Figure 5 (d)).

Corollary 3.4 The 4-tetrahedra partition of Theo-
rem 3.3 produces four tetrahedra tij for i, j = 1, 2 such
that each tij has a unique edge equal to a third-class
edge of t.

The next proposition proves that, for the 4 cases of
Proposition 3.3 (Figure 6), the midpoint edge bisection
of the new tetrahedra (by the non-bisected edge of t)
produces a conforming volume triangulation of t.

Proposition 3.5 Let t be any tetrahedron having a
unique longest-edge and unique secondary edges. Then
if after applying the 4-tetrahedra partition defined in
Proposition 3.3, each of the tetrahedra tij produced by

(a)

A B

(c) (d)

A B A
B

(b)

A B
1

2 1

2

2
2

2

2

1 1

2

D

C

D

C

C

D

C

D

Figure 6: 4-Tetrahedron partition obtained according to
the relative positions of the longest-edge and secondary
longest-edges of t.

this partition is in turn bisected by the midpoint of the
(unique) edge equal to a third-class edge of t, a con-
forming volume triangulation is obtained having the
following properties:

a) The volume triangulation induces the 4-triangles
partition of each face of t.

b) Only an interior edge P ∗P is produced, where
P and P ∗ are respectively the midpoint of the
longest-edge of t, and the midpoint of the edge
opposite to the longest-edge of t.

c) Eight new internal faces appear inside the tetra-
hedron t.

The results of previous proposition allow us to state
Theorem 3.6:

Theorem 3.6 The 8-tetrahedra longest-edge parti-
tion of any tetrahedron t produces both a conforming
volume triangulation of t and a conforming surface tri-
angulation of t such that:

(1) The conforming surface triangulation of t is iden-
tical to the surface triangulation obtained by the
4-triangles partition of the faces of t.

(2) Four different triangulation patterns are obtained
(Figure 7) according with the relative position of
the longest-edge and the secondary edges of t.
Each one of these 4 patterns produces only one
new internal edge P ∗P (where P is the midpoint
of the longest-edge of t, and P ∗ is the midpoint of
the edge opposite to the longest-edge) and 8 new
internal faces.

Note that under the assumption that the longest-edge
and the secondary edges are unique, there is a univo-
cal correspondence between the four volume partition
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Figure 7: Different possible 8-Tetrahedra Longest-Edge
partitions.

patterns produced by the 8-tetrahedra partition of any
tetrahedron t and the four surface partition patterns
obtained by the 4-triangles partition of the faces of t.

The careful study of the possible n-point partition
patterns produced for the different relative positions
of the longest-edge and secondary edges of t, for
n = 1, 2, . . . , 6 (which includes the four global
8-tetrahedra partition patterns) allows us to obtain
the set of partial partition patterns involved in the
mesh refinement algorithm. It can be proved that the
are exactly 30 different partition patterns (invariant
under translation, rotation, reflection, and uniform
scaling) associated to the 8-tetrahedra partition of
any tetrahedron.

4. THE 3D-SKELETON
REFINEMENT/DEREFINEMENT

ALGORITHM

The refinement algorithm for refining any tetrahedron
t in any conforming tetrahedral mesh τ can be formu-
lated as follows:

3D-Skeleton-Refinement-Algorithm(τ, t)
/* Find involved edges, faces, and tetrahedra */
Initialize SE , SF , and ST , respectively sets of
involved edges, faces, and tetrahedra
Initialize PE set of processing edges
for each edge E of t do

add edge E to set SE

add edge E to set PE

endfor
While PE �= ∅, do

pick E from PE

for each tetrahedron t� sharing edge E do

for each face F of t� having an edge in SE do
find longest-edge E� of F
if E� is not in SE do

add E� to SE

add E� to PE

add F to SF

endif
endfor
add t� to ST

endfor
Endwhile
/* Partition involved edges */
for each edge E in SE do

create vertex P midpoint of E
bisect E

endfor
/* Partition involved faces */
for each edge F in SF do

partition F according its bisected edges
endfor
/* Partition involved tetrahedra */
for each tetrahedron T in ST do

partition T according to the partition of its faces
end for

The 3-dimensional skeleton refinement algorithm gen-
eralizes the 2-dimensional 4T-LE algorithm in the fol-
lowing sense:

Theorem 4.1 The refined volume mesh obtained by
the use of the 3D-Skeleton-Refinement-Algorithm in-
duces the surface refinement of the associated 2D-
Skeleton mesh and viceversa. Furthermore, the sur-
face refined mesh is identical to the mesh obtained by
applying the 4-triangles mesh refinement to the faces
of t.

Corollary 4.2 The 3-dimensional skeleton refine-
ment algorithm is finite.

Note that the tetrahedra partition step can be im-
plemented either by successive application of a basic
tetrahedron bisection operation by an edge midpoint,
or by precomputing a set of partition patterns. Also,
an alternative algorithm working directly with the vol-
ume mesh (without using the mesh-skeleton concept)
can be developed.

The derefinement algorithm works on the finite
sequence of nested meshes obtained by the refinement
algorithm application T = {τ1 < . . . < τn} to
obtain another sequence of meshes. The algorithm
essentially comprises two main steps: the application
of the 4T-LE derefinement algorithm to the skeleton
(working firstly both over the wireframe mesh and
the triangular surface mesh), then followed by the



redefinition of the interior of the tetrahedra, for which
a slight variation of the 3D refinement algorithm
is used. For a further discussion see Plaza et al. in [12].

5. ON THE NON-DEGENERACY
PROPERTIES OF THE 8T-LE
REFINEMENT ALGORITHMS

Theorem 5.1 Let τ0 be any initial conforming tetra-
hedral mesh having a number of vertices, edges, faces,
and tetrahedra respectively equal to N0, E0, F0, and
T0; and consider the global use of the 3D-Skeleton
Mesh Refinement algorithm producing a sequence of
globally refined meshes τ1, τ2, . . . , τn, . . . Then the av-
erage number of tetrahedra sharing a vertex in the
mesh is asymptotically equal to 24, the average num-
ber of faces sharing a vertex is asymptotically equal to
24, and the average number of edges per vertex tends
to 14.

The proof is based on the resolution of the recurrence
equations associated to the 8-tetrahedra longest-edge
partition. Note that the global refinement of each
mesh τn−1 reduces to the 8-tetrahedra longest-edge
partition of all the tetrahedra of τn−1 which directly
produces a conforming mesh τn. By Theorem 3.6, the
number of vertices, edges, faces, and tetrahedra of the
mesh τn, respectively equal to Nn, En, Fn, and Tn,
satisfy the following recurrence relations as a function
of the values Nn−1, En−1, Fn−1, and Tn−1 of the pre-
vious mesh:

Nn = Nn−1 + En−1 + Tn−1

En = 2 · En−1 + 3 · Fn−1 + Tn−1

Fn = 4 · Fn−1 + 8 · Tn−1

Tn = 8 · Tn−1

(1)

where N0, E0, F0, and T0 are given from the initial
mesh τ0.

Furthermore, since each tetrahedron has exactly four
vertices, the average number of tetrahedra sharing a
given vertex in the mesh τn reduces to:

Av#(tetrahedra per node) =
4 · Tn

Nn

And, in a similar way, the rest of the non-constant
adjacency relations are:

Av#(tet per edge) =
6 · Tn

En

Av#(faces per edge) =
3 · Fn

En

Av#(faces per node) =
3 · Fn

Nn

Av#(edges per node) =
2 · En

Nn
.

Once the recurrence relations (1) are solved, the
asymptotic values are obtained taking limits when n
tends to infinity. See reference [13] for details.

The following theorem summarizes geometrical and
fractal properties of the 8T-LE refinement algorithm.

Theorem 5.2 Both for the 8T-LE partition and for
the 3D-Skeleton Refinement algorithm the following
mesh quality properties hold:

a) The 8T-LE partition of any tetrahedron t always
partitions the largest planar angles of the two
faces sharing the longest-edge of t.

b) The 8T-LE partition never partitions a solid an-
gle such that, each one of the three associated pla-
nar angles is non-obtuse and different from the
largest angle of the corresponding triangular face.

c) Over each triangular obtuse face F of any tetrahe-
dron t, the iterative 8T-LE partition of t produces
a finite number of different faces, such that each
new face produced is better than the preceding one
in the sense that the smallest angle and the largest
angle of the new face are respectively greater than
and less than those corresponding to the preceding
face generated in the preceding iteration.

d) Property c) extends to each new obtuse face pro-
duced throughout the 8T-LE refinement process
(self corrective behavior).

The theorem proof is essentially based on the 2-
dimensional properties of the 4T-LE refinement (The-
orem 2.2).

Theorem 5.3 (Fractal behavior) For any conform-
ing tetrahedral mesh τ0, after a finite number of local
3D-Skeleton refinements around any vertex P , a fi-
nite number of tetrahedra sharing vertex P is obtained
whose associated solid angles are never refined again
as the refinement around P proceeds.

At this point some remarks are in order:

1. Part (b) of Theorem 5.2 implies that whenever a
solid angle having non-obtuse planar angles (each
one not opposite to the longest-edge of the corre-
sponding triangular face) is obtained throughout
the process, this solid angle remains untouched
forever in the mesh. In other words, only new
vertices along the edges of this solid angle are
added as the refinement proceeds.



2. Parts (c) and (d) of Theorem 5.2 together state
that the strong quality improvement properties of
the 2-dimensional 4-Triangles partition hold over
each triangular face of the 2D-Skeleton mesh, in-
cluding the new faces.

3. Theorems 5.2 and 5.3 together do not certainly
guarantee that the size of the molecules (set of
tetrahedra sharing a given vertex of the mesh)
do not increase as new vertices are added in the
refinement process. However, empirical experi-
mentation shows that a rather constant standard
deviation around the average size of the molecules
is obtained through the refinement steps, while
the maximum size of them remains rather con-
stant (equal to 64) in the last three levels.

6. EMPIRICAL RESULTS

In this section we report empirical evidence that sup-
ports the conjecture on the non-degeneracy property
of both the 8T-LE partition and the mesh refinement
algorithms based on this partition.

Here three numerical examples are presented. In ev-
ery case the 8T-LE partition has been applied 7 times
to an initial tetrahedron and its descendants, so the
last level of division (τ8) contains 366, 145 vertices and
2, 097, 152 tetrahedra. For each test tetrahedron a set
of 3 tables have been produced: the first one contains
the coordinates of the vertices, while that the second
and third ones summarize statistical information for
the meshes obtained. The values ΦT , Φmin and Φmax

expressed in sexagesimal degrees, refer to the solid an-
gle measure (ΦP = sin−1{(1 − cos2 αP − cos2 βP −
cos2 γP +2 cos αP cos βP cos γP )1/2}, where αP , βP , γP

are the planar angles associated to vertx P ) used by
Rivara and Levin [18], where ΦT is the minimum Φ-
value for the solid angles of tetrahedron T , and Φmin

and Φmax are respectively equal to the minimum and
maximum Φ-values attained for the mesh at level n.
Note that 0 � ΦT � 45◦ and Φ = 0 implies a totally
degenerate tetrahedron. For a discussion on tetrahe-
dron shape measures see [5].

It should be pointed out here that the improvement
behavior of any tetrahedron T will be in general stud-
ied relative to the quality of the tetrahedra of the first
volume partition of T . This is due to the fact that the
quality measures ΦTi associated to the tetrahedra Ti

(i = 1, . . . , 8), of the first partition of a tetrahedron
T , in general describe better the local feature sizes of
T than the ΦT measure itself. Consider for instance a
cap (very flat) tetrahedron having four quality accept-
able faces which clearly do not reflect well the tetra-
hedron quality; the first 8-tetrahedra partition of T in

exchange, introduces at least a bad quality face that
describe well the thickness of T .

Table 1: Right-tetrahedron vertices

0.0 0.0 0.0
4.0 0.0 0.0
0.0 4.0 0.0
0.0 0.0 4.0

In the first test problem the initial tetrahedron is a
right-tetrahedron, with a vertex in the origin of the
coordinate system, and three vertices over the axes
of the coordinate system to equal distance from the
origin. The evolution of the shape for the tetrahedra
as the partition proceeds is shown in Table 5. Note
that, as expected, the minimum solid angle remains
constant since the second global partition, while the
percentage of volume covered by bad-shaped elements
decreases monotonically from the third global parti-
tion. Figures 8, 9, and 10 show the evolution of the
average number of tetrahedra per vertex as the global
refinement (partition) proceeds. Note that the distri-
bution seems to tend to a bimodal distribution, with
concentrations between 15 and 20, and between 45 and
50, with average around 24, which is the asymptotic
average number for this partition. Also the maximum
number of tetrahedra per vertex is included in the fig-
ures.

The second example considers a needle tetrahedron.
Table 6 shows the evolution of the minimum and max-
imum angles, and the % of volume covered by bad-
shaped elements, while Figure 9 shows the evolution of
tetrahedra per node for this needle tetrahedron where
the distribution also approaches the mean value 24.
Note that in this case, since the faces of T reflect well
the local feature sizes of this needle tetrahedron, the
worst solid angle remains constant throughout the pro-
cess.

Table 2: Needle tetrahedron vertices

-0.5 0.0 0.0
0.5 0.0 0.0
0.0 0.2 0.0
0.0 0.0 7.0

The third example corresponds to a flat tetrahedron.
Table 7 shows for this example the evolution of the
shape of the elements and meshes obtained at global
partitioning. Note that the minimum solid angle re-
mains constant from the second global refinement,
while the percentage of volume covered by bad-shaped
tetrahedra improves when the partitioning proceeds.



Table 3: Flat tetrahedron vertices

-2.0 0.0 0.0
4.0 0.0 0.0
1.3 3.5 0.0
1.0 1.3 0.5

Finally, Table 4 shows the evolution of the average
number of tetrahedra per vertex in the first 10 steps
of global iterative application of the 8T-LE partition
to any initial tetrahedron.

It should be pointed out here that the 3D partition
seems to have similar behavior to the 2D case in the
sense that for needle tetrahedra (equivalent to one
small-angled triangle), a clear monotonic improvement
behavior holds, while that for quality tetrahedra and
cap tetrahedra a limited decreasing of the tetrahedron
quality can be observed in the first partition. Note
that in 2-dimensions, the 4-triangles partition of an
equilateral triangle produces some 30 degrees trian-
gles, and this is the only case where the bound in part
(2) of Theorem 2.1 is attained. For the cap tetrahe-
dron in exchange, the first 3D partition introduces an
acute face that captures the thickness of this tetra-
hedron (a local feature size not described by its four
faces). Note that this is not the case of a needle tetra-
hedron where its faces fully describe its local feature
sizes.

Table 4: Statistical Measures

Level Num. Tets. Av#(tets per node)

4 512 12.41
5 4, 096 16.90
6 32, 768 20.03
7 262, 144 21.88
8 2, 097, 152 22.91
9 16, 777, 216 23.45
10 134, 217, 728 23.72
11 1, 073, 741, 824 23.86
12 8, 589, 934, 592 23.93
13 68, 719, 476, 736 23.96

7. CONCLUDING REMARKS

Although in the last 15 years the longest-edge refine-
ment algorithms have become well-known and useful
techniques which guarantee the construction of qual-
ity refined meshes in 2-dimensions, equivalent non-
degeneracy properties had not been proved yet in 3-
dimensions. The question was essentially centered be-
fore either on finding a lower bound on the minimum

solid angle or on looking for results on the number of
similarly distinct tetrahedra produced. This last ap-
proach is a rather difficult path to follow because of
the combinatorial issues involved in 3-dimensions.

In this paper we see that stronger improvement and
fractal properties proved for 2-dimensional longest-
edge based algorithms [17], also hold over the triangu-
lar faces of the volume meshes. The use of these prop-
erties seems to be a fruitful path for obtaining math-
ematical results on the 3-dimensional longest-edge al-
gorithms.

This paper include theoretical and empirical results on
this direction: We have discussed a longest-edge based
volume algorithm which induces the 4-Triangles parti-
tion of the faces of the tetrahedra. The improvement
and fractal properties of the 4-Triangles longest-edge
partition have been in turn used to prove statistical
and fractal properties over the 8-Tetrahedra longest-
edge refinement algorithm: (1) the asymptotic aver-
age number of tetrahedra surrounding each vertex is
equal to 24; (2) the number of tetrahedra surrounding
each fixed vertex remains constant, after a few local
iterative refinement around such a vertex; and (3) the
algorithm improves each triangular face produced as
the refinement proceeds.

Empirical study carried out here not only supports
these results but also shows that, consistently through-
out the refinement levels the distribution of quality
tetrahedra improve and the volume percentage cov-
ered by better tetrahedra increase as the refinement
proceeds.



Table 5: Shape evolution for a right-tetrahedron

Level Num. of Num. of Φmin Planar angles Φmax % bad elems.
Nodes Elems. associated to Φmin (ΦT < 10)

1 4 1 30.00 45.00 # 60.00 # 45.00 90 0.00
2 10 8 9.59 19.47 #35.26 # 30.00 90 25.00
3 35 64 9.59 30.00 #35.26 # 19.47 90 25.00
4 165 512 9.59 30.00 #35.26 # 19.47 90 20.31
5 969 4096 9.59 30.00 #35.26 # 19.47 90 15.62
6 6545 32768 9.59 30.00 #35.26 # 19.47 90 11.82
7 47905 262144 9.59 30.00 #35.26 # 19.47 90 8.89
8 366145 2097152 9.59 30.00 #35.26 # 19.47 90 6.67
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Figure 8: Distribution of vertices versus number of tetrahedra per vertex. Right-Shaped Tetrahedron.

Table 6: Shape evolution for a needle tetrahedron.

Level Num. of Num. of Φmin Planar angles Φmax % bad elems.
Nodes Elems. associated to Φmin (ΦT < 0.24)

1 4 1 0.23 8.00 # 4.36 # 4.28 43.58 100.00
2 10 8 0.23 8.00 # 4.26 # 4.28 67.84 75.00
3 35 64 0.22 4.26 # 4.36 # 8.00 68.14 68.75
4 165 512 0.22 4.28 # 4.36 # 8.01 68.14 67.19
5 969 4096 0.22 4.23 # 4.35 # 7.96 68.14 66.80
6 6545 32768 0.22 4.23 # 4.35 # 7.96 68.14 66.71
7 47905 262144 0.22 7.96 # 4.23 # 4.35 68.14 66.63
8 366145 2097152 0.22 7.96 # 4.23 # 4.35 68.14 66.63
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Figure 9: Distribution of vertices versus number of tetrahedra per vertex. Needle Tetrahedron.

Table 7: Shape evolution for a flat tetrahedron.

Level Num. of Num. of Φmin Planar angles Φmax % bad elems.
Nodes Elems. associated to Φmin (ΦT < 10)

1 4 1 6.31 24.90 # 24.74 # 46.78 24.94 100.00
2 10 8 3.68 40.11 # 6.08 # 38.42 33.30 62.50
3 35 64 3.12 46.68 # 27.74 # 19.70 75.29 45.31
4 165 512 3.12 46.68 # 27.74 # 19.70 75.29 37.50
5 969 4096 3.12 46.68 # 27.74 # 19.70 75.29 30.03
6 6545 32768 3.12 46.68 #27.74 #19.70 75.29 22.97
7 47905 262144 3.12 46.68 # 27.74# 19.70 75.29 17.13
8 366145 2097152 3.12 19.70#46.78# 27.74 74.85 12.57
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