Accelerated aging and cancer in ERCC1-XPF-deficient mouse models

Laura Niedernhofer, M.D., Ph.D.

Department of Molecular Genetics and Biochemistry University of Pittsburgh Cancer Institute

Outline

- Deficiency of ERCC1-XPF DNA repair endonuclease causes accelerated aging.
- New mouse models of ERCC1-XPF deficiency.
- Strategies to identify types of DNA damage that promote cancer and aging, and their sources.

Nucleotide Excision Repair

xeroderma pigmentosum

- photosensitivity
- pigmentation abnormalities
- atrophic skin
- skin cancer (>2000x \uparrow)
- neurodegeneration
- 7 complementation groups
 XPA XPG

NER: Damage recognition

Global: genome wide

Transcription-coupled: transcribed strand

NER: Open complex formation

NER: Damage excision

NER: Gap filling DNA synthesis

Ercc1^{-/-} phenotype

ERCC1 has function(s) distinct from NER

Progeroid syndrome due to a mutation in *XPF*

3 yrs old

16 yrs old

Nature (2006) 444:1038-43

ERCC1 and XPF function exclusively as a heterodimer

Mutations in *XPF* lead to two diseases

Genome-wide expression profiling

1) *Ercc1^{-/-}* mice vs. wild type littermates

2) Old wild type mice vs. young wild type mice

Liver:

- 1) life limiting
- 2) age-associated changes
- 3) p53 stabilization

Pathways significantly altered in *Ercc1^{-/-}* mice

DNA repair apoptosis GH / IGF1 hormonal axis oxidative metabolism glycogen synthesis fatty acid synthesis anti-oxidant defenses

Confirmation by qRT-PCR

Gene expression changes in *Ercc1^{-/-}* mice are progressive and systemic

Confirmation of biological endpoints

TUNEL assay to measure apoptosis

Confirmation of biological endpoints

Similarity between progeria due to ERCC1-deficiency and aging:

all genes:

32% (p<0.05)

all pathways: 86%

growth hormone axis: >95%

Histologic comparison of *Ercc1*-/mice and aged mice

Ercc1^{-/-}

wt 24 mths

anti-BrdU to identify proliferating nuclei

Histologic comparison of *Ercc1-/*mice and aged mice

Ercc1 -/-

wt littermate

wt 24 mths

IGFBP-1 expression

Histologic comparison of *Ercc1*-/mice and aged mice

Ercc1-/wt littermate
wt 24 months

Oil Red O stain for liver triglycerides

Does genotoxic stress induce a similar response in a normal host?

0.1 mg/kg MMC (100X below LD) intraperitoneal weekly x 5 wks

A common response to stress mediated by the somatotroph axis

Biological process: E GH / IGF1 hormonal axis oxidative metabolism glycogen synthesis fatty acid synthesis peroxisome biogenesis anti-oxidant defenses

<u>Ercc1 -/-</u>	<u>old age</u>	<u>Ghr'-; lgf1+/-</u>	<u>CR</u>
\downarrow	\downarrow	\checkmark	\downarrow
\downarrow	\downarrow	\downarrow	\downarrow
\uparrow	\uparrow	\uparrow	\uparrow
\uparrow	\uparrow	\uparrow	\uparrow
\uparrow	\uparrow	\uparrow	\uparrow
\uparrow	-	\uparrow	\uparrow

A. Bartke R. Miller

Implications:

- 1. Prevention of DNA damage (or improving DNA repair) may delay aging.
- 2. Cancer therapy with genotoxins may cause accelerated aging in cancer survivors.
- 3. Progeria caused by defects in the DNA damage response is accelerated aging.
- 4. Mouse models of human progerias are a valid and rapid system for studying aging.

Acknowledgments

Dr. Anwaar Ahmad Andria Robinson Nikhil Bhagwat Brooke McClendon Hillary Shane

<u>Jan Hoeijmakers</u>: George Garinis Ellen van Drunen

<u>University of Pittsburgh Cancer Institute</u>: Rick Wood, Rob Sobol, Chris Bakkenist, Yong Wan, Vesna Rapic-Otrin