

Establishment of JaCVAM

Date Affiliation	November, 2005 National Institute of Health Sciences (NIHS), National Center for Biological Safety and Research (NCBSR), Div. of Pharmacology
Founder	Dr. Yasuo Ohno (NIHS)
Director	Dr. Hajime Kojima

Mission of Peer Review Panel

- Peer review of new or revised test method based on the report of oversight committee
- Propose further validation, if necessary
- Prepare report and statement on the test method for regulatory agencies

Peer Review Panel

Toru Inoue (NIHS) Makoto Hayashi (NIHS) Noriho Tanaka (JSAAE) Takemi Yoshida (JST) Isao Yoshimura (Biostatistician) Masako Mizoguchi (Dermatologist) Fumio Sagami (JPMA) TBD(JCIA) Hiroshi Onodera (PMDA) Hajime Kojima (JaCVAM)

Test method	Material Current activities			
Photoxicity	Yeast-RBC	Peer Review in progress		
Skin sensitization	LLNA-DA	Validation in progress		
	LLNA-BrdU	Validation in progress		
	h-CLAT	Pre-validation in progress		
Corrosivity	Culture model	Peer Review in progress		
Skin irritation	Culture model	Planning on Peer Review		
Endocrine disrupter	Lumi-cell, CER-estrogen reporter assay	Planning on Validation		
Mutagenicity	Comet assay (in vivo or in vitro)	Planning on Validation		

Results and Discussion

The results for the 3 chemicals examined by all laboratories and 5 of the other 9 chemicals were consistent and have small variances in the SI. There were 4 chemicals which produced inconsistent results between 3 laboratories. 2 chemicals showed the clearly dose response relationships. On the other hand, for the other 2 chemicals it seemed that the type of solvent in these chemicals caused the large variations. Sensitivity, specificity and concordance of the LLNA-DA compared to the GPMT/BT were 87.5% (7/8), 100% (3/3) and 90.9% (10/11), respectively. We conclude that, considering the published data of the LLNA, the results from this study are acceptable as a catch-up validation study, at least within the range of examined chemicals.

Validation Plan of LLNA-BrdU

Date:October-December/2006 Participated lab.9, 2-3 tests/Lab. Chemical used: Total 12, 4-6substances/Lab. Director: Dr. Hajime Kojima (JaCVAM) Organizer: Validation Committee in JSAAE Support: JaCVAM (Selection, coding & supply of chemical and materials)

Comparison with results obtained from alternative methods in GPMT

lass in GPN	Chemicals	DEREK	торкат	Peptide- binding assay	h- CLAT	LLNA-Brd U	LLNA- DA	LLNA
	Cinnamic aldehyde	Positive	Positive	Positive	Positive	Positive	Positive	Positive
Positive	2,4- Dinitrochlorobenzene	Positive	Positive	Positive	Positive	Positive	Positive	Positive
(5 chamica	α - Hexylcinnamic aldehyde	Positive	Positive	Positive	Positive	Positive	Positive	Positive
ls)	Formaldehyde	Positive	Positive	Positive	Positive	Positive	Positive	Positive
	p- Phenylenediamine	Positive	Positive	Positive	Positive	Positive	Positive	Positive
Negativ	Lactic acid	Negative	Negative	Negative	Negative		Negative	Negativ
e(3 chemica	Resorcinol	Positive	Positive	Negative	Positive		Positive	Negativ
ls)	Sodium lauryl sulfate	Negative	Positive	Negative	Negative		Negati ve	Positive

