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Abstract 
Body:

Background: The Acorn Cardiac Support Device (CSD), a preformed knitted polyester device designed to 
provide ventricular support, has been shown to reduce wall stress/stretch, limit left ventricular (LV) remodeling, 
and improve LV function in heart failure (HF) animal models. We previously reported 18-24 month safety and 
efficacy results for pts in an initial safety study, and now extend these observations to 3 years. Methods:
Patients (n=29) received the Cardiac Support Device (CSD) with (Group 1; n=17), or without (Group 2; n=12) 
valve surgery. Most pts. (26/29) had idiopathic cardiomyopathy, and 3 were in NYHA class IV, 15 in class III, 
and 11 in class II. All pts. were on standard medical treatment, that included beta-blockers and ACE inhibitors 
for most pts. Results: There were no intraoperative complications, and no adverse events or deaths were 
considered device-related. Sixteen patients were alive at 34-49 months post-implant. Latest follow-up included 
8 pts. at 36 months and 4 more pts at 48 months. Although patient numbers were small, improvements in LV 
end-diastolic dimension (EDD), LV ejection fraction (EF), NYHA class, and quality of life index (Uniscale) were 
evident at each follow-up. Similar trends were observed for Group 1 and Group 2 pts. Mitral regurgitation (MR) 
was reduced from 2.5 ± 0.9 to 1.0 ± 1.0 in Group 1 pts. and from 1.4 ± 0.8 to 0.3 ± 0.8 in Group 2 pts. 
Reductions in MR severity may reflect a change in sphericity index. Conclusions: Results indicate that the 
device is safe, and demonstrated decreases in LVEDD and NYHA class, with increases in LVEF and quality of life 
index. These beneficial changes were maintained through 36 months follow-up. Randomized clinical trials are in 
progress to evaluate CSD efficacy in heart failure patients.

Pre-Implant 6 Months 12 Months 24 Months
36-48 
Months

LVEDD(mm)1 74.2 ± 6.4
(27)

66.9 ± 10.4
(21)*

66.1 ± 7.2
(18)*

64.4 ± 10.6
(15)*

63.6 ± 11.9
(12)*

LVEF%1 21.0 ± 8.8
(29)

29.4 ± 11.9
(22)*

31.4 ± 12.6
(18)*

30.8 ± 13.0
(15)*

31.8 ± 11.3
(12)*

NYHA Class2 2.8 ± 0.7 (29)
1.8 ± 0.7
(22)*

1.6 ± 0.7
(18)*

1.6 ± 0.8
(15)*

1.5 ± 0.7
(12)*

Uniscale2 4.0 ± 2.4 (27)
6.4 ± 2.4
(19)*

6.7 ± 2.3
(13)*

6.0 ± 2.2
(11)*

6.3 ± 3.5
(8)*

Mean ± (s.d.), *p≤0.05, 1t-test, 2Wilcoxon signed-rank test
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FAILING HEART—SURGICAL ASPECTS

Effects of Passive Cardiac
Containment on Left Ventricular
Structure and Function: Verification
by Volume and Flow Measurements
Alexander Lembcke, MD,a Till H. Wiese, MD,a Simon Dushe, MD,b

Holger Hotz, MD,b Christian N. H. Enzweiler, MD,a Bernd Hamm, MD,a

and Wolfgang F. Konertz, MD, PhDb

Background: The cardiac support device (CSD, Acorn) is a compliant, textile-mesh
graft placed around the ventricles to prevent further dilatation and to improve function
in congestive heart failure. The aim of this study was to verify post-operative changes in
left ventricular volumes, ejection fraction, blood flow, and myocardial mass.

Methods: Fourteen patients underwent contrast-enhanced, electrocardiography-
triggered electron-beam computerized tomography before and 6 to 9 months after CSD
implantation. We measured volume and flow using the slice-summation method and the
indicator-dilution technique.

Results: We found significant changes for the following parameters: end-diastolic
volume decreased from 382.9 � 140.2 ml to 311.3 � 138.7 ml, end-systolic volume from
310.4 � 132.4 ml to 237.4 � 133.8 ml, end-diastolic diameter from 75.3 � 7.8 mm to
70.7 � 11.6 mm, end-systolic diameter from 65.8 � 7.8 mm to 60.0 � 14.0 mm, and
myocardial mass from 298.6 � 79.6 g to 263.1 � 76.8 g. Ejection fraction increased
from 20.3% � 6.4% to 27.8% � 13.1%. We found no significant differences for stroke
volume (from 72.5 � 24.6 ml to 73.8 � 23.6 ml), heart rate (from 80.5 � 11.0 beats per
minute to 76.5 � 6.8 beats per minute), and total cardiac output (from 5.8 � 1.9 liter/
min to 5.6 � 1.8 liter/min). Mitral regurgitation fraction decreased from 30.5% �
15.5% to 15.6% � 12.8%, increasing antegrade cardiac output from 3.8 � 0.9 liter/min
to 4.7�1.5 liter/min. For most parameters, pre- and post-operative values in these
patients differed significantly from those in an age- and gender-matched control group.
In each patient, we observed a small hyperdense stripe along the pericardium after
surgery, but we observed no local complications.

Conclusion: Three-dimensional structural and functional data obtained by
computerized tomography volume and flow measurements confirm the safety and
efficacy of CSD implantation. J Heart Lung Transplant 2004;23:11–19.
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Congestive heart failure, based on ischemic or
primary dilated cardiomyopathy and characterized by
left ventricular dilatation, wall motion abnormality,
and decreased ejection fraction, remains one of the
most common diseases and has poor long-term clinical
outcome. Between 1990 and 1999, patients with heart
failure in the Framingham Study cohort had 1-year
and 5-year, age-adjusted mortality rates of 24% to
28% and 45% to 59%, respectively.1 In the Hillingdon
Heart Failure Study, individuals with poorer func-
tional status (New York Heart Association [NYHA]
Classes III–IV) had a 1-year mortality rate of 38%.2

Several clinical trials report the positive effects of
drug treatment (primarily angiotensin-converting
enzyme inhibitors, possibly combined with beta
blockers or spironolactone) on survival in patients in
Classes III to IV.3 Although heart transplantation is
the treatment of choice in patients with refractory,
advanced cardiac failure, it is limited by the shortage
of donor organs, decreased long-term survival be-
cause of rejection risks, graft vasculopathy, non-
specific graft failure, infection, malignancy, and the
high cost of transplantation.4,5 The surgical treat-
ment options available as alternatives to transplan-
tation (artificial hearts, mechanical cardiac assist
devices, dynamic and adynamic cardiomyoplasty,
partial left ventriculectomy) continue to be contro-
versial. A new technique, implantation of a cardiac
support device (CSD; Acorn Cardiovascular, St.
Paul, MN) recently has been added to the range of
surgical options. In this new procedure, a compliant
polyester-mesh device is implanted around the ven-
tricles to limit cardiac dilatation and thus to improve
cardiac function. Currently, the method is undergo-
ing evaluation in a worldwide, randomized, prospec-
tive clinical trial.6 Preliminary results suggest that
the technique can be performed safely and has a
tendency to improve clinical and hemodynamic pa-
rameters.6–8 Nevertheless, available data remain
insufficient for a definitive assessment of this proce-
dure.

The aim of the current study is to supplement
initial echocardiographic and angiocardiographic
data already published about CSD implantation
with precise volumetric measurements obtained us-
ing computerized tomography (CT) for comparison.
In addition, we present new information pertaining
to the behavior of the myocardial mass and individ-
ual hemodynamic parameters.

METHODS

The cardiac support device was implanted in 30
patients with advanced congestive heart failure.

Among them, a series of 14 consecutive male pa-
tients (aged 35–71 years; mean, 56.7 � 9.9 years;
median, 61.0 years) underwent electron-beam CT
before and after CSD implantation. These patients
form the population for this report. We evaluated
patients 1 to 2 weeks before surgery and 6 to 9
months after surgery.

Patients enrolled in the study had NYHA Class
III disease or had history of at least 1 Class III
episode. All patients were receiving stable drug
therapy at the time of surgery (all 14 patients
received angiotensin-converting enzyme inhibitors,
diuretics, and digoxin; 10 patients received addi-
tional beta blockers, and 8 patients also received
other cardiac medication) and had no additional
systemic disease (no pulmonary, renal, or hepatic
dysfunction). Estimated survival of �1 year was an
exclusion criterion for surgery.

The surgical procedure was performed as previ-
ously described:6–8 After median sternotomy and
opening the pericardium, we measured the diameter
and length of the heart to select a CSD of proper
size. We placed the appropriate CSD over the
ventricles and attached it close to the atrioventricu-
lar groove while the heart was beating on cardiopul-
monary bypass. With the ventricles fully loaded, the
anterior part of the CSD was fitted, trimmed to size,
and secured, with the aim of producing a short-term
decrease of up to 10% in end-diastolic dimension,
based on transesophageal echocardiographic mea-
surements.

In 7 patients, implantation of the CSD was the
only surgical procedure, and the other 7 patients
underwent concomitant mitral valve repair.

Because CT examination of healthy volunteers is
precluded, a control group consisting of 22 retro-
spectively selected male patients of the same age
(aged 46–72 years; mean, 58.8 � 7.5 years; median,
58.5 years) served for comparison. These control
patients had undergone evaluation of left ventricu-
lar morphology and function for various established
clinical indications but were found retrospectively to
have no abnormalities based on echocardiography
and electron-beam CT. No patient in the control
group had a history of myocardial infarction or of
congestive or valvular heart disease. Fourteen of the
22 control patients had mild systemic hypertension
controlled with drug treatment.

All patients in the study gave written, informed
consent after absolute or relative contraindications
to electron-beam CT had been excluded. All pa-
tients receiving the CSDs participated in a clinical
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feasibility and safety study that the institutional
review board had approved previously.

For data acquisition, we followed an established,
standardized protocol using an electron-beam CT
scanner (Evolution C-150 XP, software version
12.4/GE Imatron, South San Francisco, CA) in the
multi-slice mode at 625 mA and 130 kV with an
acquisition time of 50 msec, a slice thickness of 8
mm, and a matrix of 256 � 256.

Patients underwent scanning in the supine posi-
tion in a section orientation along the approximated
short heart axis (table tilt was 17°, table slew was
25°).

For flow measurements, we administered 15 ml
contrast medium (iodine content 370 mg/ml; Ultra-
vist, Schering, Berlin, Germany) at a flow of 4
ml/sec, followed by electrocardiography-triggered
acquisition of 15 scans in 2 slices each (so-called
flow protocol) in the ascending aorta at the level of
the pulmonary bifurcation. Using the system’s stan-
dard software, we calculated time-density curves
(Hounsfield units per unit time), the time of maxi-
mal contrast medium concentration (transit time),
and antegrade cardiac output according to the indi-
cator dilution method.9,10

We injected another 90 ml contrast medium at a
flow of 3 ml/sec for the subsequent functional study,
consisting of acquiring 156 scans at the time of
maximum contrast-medium concentration. These
electrocardiography-triggered scans were per-
formed in 12 slices each with 13 scans per cardiac
cycle (so-called cine protocol) during a single
breath-hold period in maximal expiration.

We performed post-processing in the imple-
mented evaluation mode by manually drawing the
epicardial and endocardial contours during end-
diastole and end-systole on the reconstructed im-
ages. The implemented software then calculated
ventricular volumes and myocardial mass by multi-
plying the areas with the slice thickness followed by
addition of all slices (slice-summation method) tak-
ing into account the 4-mm gaps between adjacent
pairs of sections by interpolation (modified Simpson
rule). Figures 1 A and B show how the functional
electron-beam CT studies were analyzed.

Furthermore, we estimated the mitral regurgita-
tion fraction based on the difference between total
and antegrade cardiac output. We also measured
the maximal end-diastolic and end-systolic cross-
sectional diameters (parallel to the mitral valve) of
the left ventricle in a basal section.

Finally, we visually assessed wall motion of all
myocardial segments using the workstation in the

cine mode, we evaluated for potential areas of
decreased opacification or wall thinning, and we
inspected for the presence of intracardiac thrombus
and pericardial effusion or pericardial adhesion.

Statistical Analysis

We compared the pre- and post-operative values of
the patient group using Student’s 2-tailed t-test for
paired samples. In addition, we compared separately
the pre- and post-operative values for the controls
using Student’s 2-tailed t-test for independent sam-
ples. All statistical calculations were performed us-
ing a commercially available software package
(SPSS version 9.0.1, SPSS; Chicago, IL). The results
were given as mean � standard deviation. Signifi-
cance was assumed at p � 0.05.

RESULTS

None of the 30 patients who received the CSDs had
intra-operative complications, and we observed no
device-related adverse events after surgery. Three
patients died of non-CSD–related causes within 9
months of surgery, and 1 patient required an addi-
tional left ventricular assist device. No patient un-
derwent transplantation.

The 14 patients included in the current study
recovered smoothly from surgery, were released
from the hospital, and showed improved functional
status from NYHA Class 2.8 � 0.6 before surgery to
NYHA Class 1.6 � 0.6 after surgery. Electron-beam
CT examinations of all patients yielded adequate
data for volumetric and flow measurements. Despite
markedly prolonged transit times of the contrast
medium, because of severely decreased cardiac
function in some cases, we observed good opacifi-
cation of the left ventricle, whose endocardial and
epicardial borders were visible and could be drawn
manually in all patients. Despite arrhythmia and
occasional ventricular pre-mature beats in several
patients without pacemakers, we observed no mis-
triggering during functional study in any of these
patients.

The results presented in Table I show that most
left ventricular parameters (both the absolute values
and the values indexed for body surface area) differ
significantly between the patients and the age- and
gender-matched controls. At baseline, patients had
considerably greater end-diastolic volume (382.9 �
140.2 ml vs 132.0 � 20.2 ml, p � 0.05) and end-
systolic volume (310.4 � 132.4 ml vs 50.6 � 13.2 ml,
p � 0.05), decreased ejection fraction (20.3% �
6.4% vs 62.4% � 6.6%, p � 0.05), and decreased
antegrade cardiac output (3.8 � 0.9 liter/min vs 5.1
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� 1.5 liter/min, p � 0.05) compared with the
controls.

The CSD significantly altered morphologic and
functional parameters of the left ventricle by de-
creasing chamber size, improving ejection fraction,
and increasing antegrade cardiac output. In detail,
the end-diastolic diameter decreased from 75.3 �

7.8 mm before surgery to 70.7 � 11.6 mm after
surgery, the end-diastolic diameter decreased from
65.8 � 7.8 mm to 60.0 � 14.0 mm, the end-diastolic
volume decreased from 382.9 � 140.2 ml to 311.3 �
138.7 ml, and the end-systolic volume decreased
from 310.4 � 132.4 ml to 237.4 � 133.8 ml (each
with p � 0.05). The total stoke volume remained

FIGURE 1 A 56-year-old patient with dilated cardiomyopathy. Status before and after
implantation of the cardiac support device: section at the same mid-ventricular level along
the approximated short heart axis with the manually drawn endocardial and epicardial
contours during end-diastole (left) and end-systole (right). Cine protocol: acquisition time,
50 msec; slice thickness, 8 mm; matrix, 256 � 256; FOV 21 cm; contrast agent dose, 90 ml;
flow, 3 ml/sec. (A) Two weeks before surgery: EDD � 61 mm, ESD � 50 mm, EDV �
210 ml, SV � 66 ml; EF � 31%, MM � 166 g. (B) Nine months after surgery: EDD � 48
mm, ESD � 30 mm, EDV � 188 ml; ESV � 59 ml, SV � 59 ml, EF � 50%, MM �
148 g. Note the hyperdense stripe along the pericardium after implantation of the cardiac
support device (arrows). EDD, end-diastolic diameter; EDV, end-diastolic volume; EF,
ejection fraction; ESD, end-systolic diameter; ESV, end-systolic volume; FOV, field of
view; MM, myocardial mass; SV, stroke volume.
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nearly constant (72.5 � 24.6 ml vs 73.8 � 23.6 ml, p
� 0.05), and we found a corresponding increase in
the left ventricular ejection fraction from 20.3% �
6.4% before surgery to 27.8% � 13.1% after surgery
(p � 0.05). Although, we saw no significant change
in total cardiac output (5.8 � 1.9 liter/min vs 5.6 �
1.8 liter/min, p � 0.05), we found that antegrade
cardiac output increased from 3.8 � 0.9 liter/min
before surgery to 4.7 � 1.5 liter/min after surgery,
resulting in decreased calculated mitral regurgita-
tion volume from 1.9 � 1.4 liter/min to 0.9 � 1.0
liter/min as well as decreased estimated mitral re-
gurgitation fraction from 30.5% � 15.5% to 15.6%
� 12.8% (each with p � 0.05). We saw almost no
change in heart rate (from 80.5 � 11.0/min to 76.5 �
6.8/min, p � 0.05).

Furthermore, the left ventricular myocardial mass
decreased slightly but significantly by approximately
10%, from 298.6 � 79.6 g before surgery to 263.1 �
76.8 g after surgery (p � 0.05).

Although, we noted a tendency toward normal-
ization of morphologic and functional parameters
after CSD implantation in the patient group, com-

parison with the age- and gender-matched control
group showed that the significant differences exist-
ing between patients and controls in end-diastolic
volume index (EDVI), end-systolic volume index
(ESVI), end-diastolic diameter index (EDDI), end-
systolic diameter index (ESDI), ejection fraction,
mitral regurgitation fraction, heart rate, myocardial
mass, and myocardial mass index (MMI) persisted
after surgery. In contrast, post-operative antegrade
cardiac output (4.7 � 1.5 vs 5.1 � 1.5 liter/min, p �
0.05) and cardiac index (2.2 � 0.6 vs 2.6 � 0.7, p �
0.05) did not differ significantly between patients
and controls.

To eliminate the effects of concomitant mitral
valve repair as a potential confounding variable,
Table II presents separately the sub-population of
patients who underwent CSD implantation as the
only surgical procedure (without mitral valve re-
pair). The results from this sub-population confirm
that CSD implantation alone significantly altered
left ventricular size and myocardial mass as well as
left ventricular function in a similar way as described
above for the total patient population.

TABLE I Left ventricular parameters (mean � SD) in 14 male patients before and 6 to 9 months after
CSD implantation compared with 22 age- and gender-matched controls

Parameter Patients pre-operative Patients post-operative Control group

EDV (ml) 382.9 � 140.2† 311.3 � 138.7*† 132.0 � 20.2
EDVI (ml/m2) 183.1 � 65.7† 149.3 � 66.0*† 70.6 � 20.5
ESV (ml) 310.4 � 132.4† 237.4 � 133.8*† 50.6 � 13.2
ESVI (ml/m2) 152.1 � 60.2† 113.9 � 63.7*† 25.8 � 7.0
SV (ml) 72.5 � 24.6 73.8 � 23.6 81.6 � 16.9
SVI (ml/ml2) 34.6 � 11.1 35.2 � 10.6 35.1 � 12.7
EF (%) 20.3 � 6.4† 27.8 � 13.1*† 62.4 � 6.6
HR (beats/min) 80.5 � 11.0† 76.5 � 6.8† 65.1 � 13.1
CO (liter/min) 5.8 � 1.9 5.6 � 1.8 5.3 � 1.4
CI (liter/min/m2) 2.8 � 0.9 2.7 � 0.8 2.7 � 0.7
aCO (liter/min) 3.8 � 0.9† 4.7 � 1.5* 5.1 � 1.5
aCI (liter/min/m2) 1.8 � 0.4† 2.2 � 0.6* 2.6 � 0.7
CO-aCO (liter/min) 1.9 � 1.4† 0.9 � 1.0*† 0.2 � 0.4
MRF (%) 30.5 � 15.5† 15.6 � 12.8*† 2.5 � 4.6
EDD (mm) 75.3 � 7.8† 70.7 � 11.6*† 53.0 � 3.9
EDDI (mm/m2) 36.1 � 3.8† 33.8 � 5.6*† 27.0 � 2.7
ESD (mm) 65.8 � 7.8† 60.0 � 14.0*† 33.9 � 3.2
ESDI (mm/m2) 31.6 � 3.8† 29.2 � 7.2*† 17.3 � 1.8
MM (g) 298.6 � 79.6† 263.1 � 76.8*† 166.4 � 28.5
MMI (g/m2) 142.3 � 37.2† 130.2 � 29.6*† 84.6 � 14.2

Difference statistically significant (p � 0.05) between *post-operative against pre-operative values and †between patients versus controls.
aCI, antegrade cardiac index measured in the aorta; aCO, antegrade cardiac output measured in the aorta; CI, (total) cardiac index; CO
(total) cardiac output; CO-aCO, difference between total and antegrade cardiac output (yielded the mitral regurgitation volume); EDD,
end-diastolic diameter; EDV, end-diastolic volume; EF, ejection fraction; ESD, end-systolic diameter, ESV, end-systolic volume; HR,
heart rate; MRF, estimated mitral regurgitation fraction; MM, myocardial mass; SV, (total) stroke volume; I, index related to M2 body
surface area.
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Nevertheless, in the patients who received only
the CSDs, dilatation of the left ventricle and impair-
ment of left ventricular ejection fraction were less
pronounced before and after surgery when com-
pared with the patients who underwent CSD im-
plantation with concomitant mitral valve repair.
Additionally, patients who received only the CSDs
showed a more distinct increase in left ventricular
ejection fraction after device implantation (Tables
II and III).

After surgery, we observed a small hyperdense
stripe along the ventricular pericardium in each
patient (Figure 1B). Apart from this pericardial
stripe and the pleuromediastinal adhesions typically
observed in patients who have undergone median
sternotomy, none of the patients showed excessive
cardiac scar formation or major, potentially harm-
ful, pericardial adhesions.

Moreover, electron-beam CT demonstrated no
local post-operative complications such as pericar-
dial effusion or intracardiac thrombus in any of the
patients.

Before surgery, all 14 patients had global hypoki-
nesia of the left ventricular myocardia. Six patients
additionally had regional akinesia of the anterior,
anteroseptal, or septal ventricular wall. Hypokinetic
myocardial segments showed a tendency toward
improved contractility after CSD implantation,
whereas akinetic segments remained unchanged.
We observed no new akinetic or dyskinetic myocar-
dial segments after CSD implantation. Nor did
follow-up demonstrate any new areas of decreased

opacification, wall thinning, or bulging secondary to
disturbed myocardial perfusion.

DISCUSSION

Progressive ventricular dilatation and dysfunction
characterize myocardial remodeling in chronic heart
failure. All forms of treatment aim at slowing down
or preventing this process. The CSD, representing
an adaptation of dynamic cardiomyoplasty, has been
undergoing clinical testing for approximately 2
years. In this new procedure, a compliant polyester-
mesh device is implanted around the heart (Acorn
CSD), instead of using an actively stimulated muscle
flap. Preliminary early results achieved with the
CSD have been published primarily by a small
number of study groups investigating this procedure
in a Phase I clinical trial.6–8 These study groups
reported that the cardiac support device effectively
improves clinical, morphologic, and functional pa-
rameters. Initial results show decreased internal left
ventricular diameters in association with increased
left ventricular ejection fraction.

Imaging Methods and Comparison With Previous
Studies

In most studies, echocardiography is the method of
first choice for post-implant monitoring because of
its wide availability, easy use, and non-invasiveness.
However, measurements obtained with this method,
in particular with regard to determining ventricular
volumes and ejection fraction, may be distorted by
the limited accessibility of some patients for ultra-

TABLE II Left ventricular parameters (mean � SD) in 7 male patients before and 6 to 9 months after
CSD implantation without additional surgical procedure (no concomitant mitral valve repair)

Parameter Patients pre-operative Patients post-operative

EDV (ml) 281.8 � 89.2 217.1 � 112.6*
ESV (ml) 216.7 � 83.4 148.3 � 103.7*
SV (ml) 63.1 � 9.3 68.9 � 15.2
EF (%) 23.6 � 4.9 35.7 � 12.4*
HR (beats/min) 77.9 � 11.9 73.4 � 5.2
CO (liter/min) 4.9 � 1.0 5.1 � 1.3
aCO (liter/min) 3.9 � 0.9 4.5 � 1.3*
CO-aCO (liter/min) 1.0 � 0.7 0.6 � 0.6*
MRF (%) 19.6 � 9.5 11.3 � 10.5*
EDD (mm) 70.4 � 5.8 63.4 � 10.3*
ESD (mm) 60.9 � 7.3 52.7 � 14.9*
MM (g) 276.4 � 56.4 243.7 � 51.5*

*Difference statistically significant (p � 0.05) between post-operative against pre-operative values. aCO, antegrade cardiac output
measured in the aorta; CO (total) cardiac output; CO-aCO, difference between total and antegrade cardiac output (yielded the mitral
regurgitation volume); EDD, end-diastolic diameter; EDV, end-diastolic volume; EF, ejection fraction; ESD, end-systolic diameter; ESV,
end-systolic volume; HR, heart rate; MRF, estimated mitral regurgitation fraction; MM, myocardial mass; SV, (total) stroke volume.
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sound and the fact that the examination crucially
relies on the examiner’s training and experience.
Left ventriculography is occasionally used as an
(invasive) alternative, but volumetric measurement
by this method is likewise prone to errors because
measuring is performed in only 2 planes. This
procedure is based on the assumption that the shape
of the ventricle corresponds to an ideal ellipsoid,
which is rarely the case in patients with abnormal or
post-operative changes in heart configuration. The
conductance catheter technique is an important
clinical tool that allows measurement of pressure-
volume loops. However, the accuracy of this method
may be limited by electric field homogeneity and
parallel conductance, especially at larger volumes.
In contrast, sectional imaging modalities, such as
electron-beam CT using the so-called slice-summa-
tion method, are relatively precise in determining
left ventricular volumes and myocardial mass and
are characterized by low intra- and inter-observer
variation.11–13 Although currently, magnetic reso-
nance imaging is the accepted gold standard,14–15 its
use in peri-operative monitoring of the patients
examined here is limited: In 6 patients from our
group, implanted pacemakers were a contraindica-
tion for magnetic resonance imaging. In addition,
with magnetic resonance imaging, the longer dura-
tion in the flat supine position and the repeated
breath-hold periods not only are stressful for pa-
tients with advanced heart failure and increased
dyspnea, but also may cause considerably impaired
image quality.

However, because of the close correlation be-
tween the results of magnetic resonance imaging
and electron-beam CT, despite slight differences in
absolute measuring values,16 the latter is used as an
alternative reference procedure to evaluate cardiac
function after surgery. Because of their greater
precision and detailed anatomic information, the
results obtained with electron-beam CT are pre-
ferred to echocardiographic measures.17

The results obtained by electron-beam CT pre-
sented here confirm preliminary positive trends
observed after CSD implantation in terms of de-
creased end-diastolic and end-systolic diameters and
increased ejection fraction (Table I). However, the
usual measurement of internal diameters alone pro-
vides an inadequate description of ventricle size and
3-dimensional ventricular geometry.

This holds true especially in evaluating patients
who have undergone cardiac surgery, which may
considerably alter ventricular geometry in terms of
size and shape. For this reason, changes in volume

may not necessarily correlate with proportional
changes in diameter and vice versa. Before this
report, data reliably reflecting the true extent of
such volumetric changes after cardiac support de-
vice therapy were lacking.

The presented results confirm earlier animal ex-
periments that demonstrated beneficial effects of
the CSD on hemodynamic parameters in experi-
mentally induced dilated cardiomyopathy.18,19

Mechanism of Passive Cardiac Containment

The major mechanism on which implantation of a
compliant mesh device around the ventricles is
based is the so-called girdling effect, which goes
back to experience gained with dynamic cardiomy-
oplasty. Long-term follow-up studies have demon-
strated that the patients undergoing dynamic cardio-
myoplasty do not seem to benefit from active muscle
stimulation, but that passive stabilization alone is
responsible for the beneficial therapeutic effect.20–22

In addition to constraining ventricular dilatation,
the girdling effect also is assumed to decrease
myocardial wall tension and myocyte overextension,
resulting in a decreased myocardial oxygen require-
ment with a persisting left shift in the pressure-
volume relationship. With these effects, ceasing or
even reversing cardiac remodeling may be achieved,
a therapeutic effect of cardiomyoplasty also known
as reverse remodeling.6

Alterations in Left Ventricular Muscle Mass

These effects also may underlie the slight but signif-
icant decrease in left ventricular muscle mass after
implantation of the CSD that we observed in the
current study (Tables I, II, and III). Inadequate
examination procedures may have prevented mak-
ing this observation in earlier follow-up studies; we
know of no publication that reports such a finding
after CSD implantation. The muscle-mass decrease
may be a direct result of the decreased ventricular
wall tension produced by the CSD implant or may
be the result of an indirect effect of the observed
decrease in ventricular volume. In our opinion, this
observation is consistent with a true reverse-remod-
eling process, and not just an acute volume decrease
that may occur at the time of the CSD implantation.
Similar effects have been found in patients receiving
effective drug treatment for chronic heart fail-
ure23,24 and in patients after valve replacement and
repair for aortic or mitral regurgitation who have
not only decreased ventricular blood volume but
also regression of ventricular muscle mass as a result
of reverse remodeling process.25,26 Nevertheless, the
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decreased myocardial muscle mass after implanta-
tion of the CSD that we observed must be confirmed
by additional data.

Severity of Mitral Valve Insufficiency

Furthermore, the fact that total cardiac output
differed significantly from antegrade cardiac output
remains to be explained; this discrepancy was much
more pronounced before than after surgery. In this
study, our patients with dilated heart disease typi-
cally had accompanying (relative) mitral insuffi-
ciency, resulting in decreased antegrade cardiac
output compared with total cardiac output. Hence,
the extent of the difference between total and
antegrade cardiac output is an indirect measure of
the degree of mitral insufficiency, unless additional
aortic valve insufficiency or intracardiac shunting is
present.9 Thus, the fact that total cardiac output did
not change after CSD implantation, whereas ante-
grade stroke volume tended to increase, is obviously
because of decreased mitral regurgitation volume.
This supports results reported by other authors6

who demonstrated post-operative improvement in
the degree of mitral insufficiency using color-coded
Doppler echocardiography.

Occurrence of Local Complications

Maintaining myocardial perfusion is a potential
concern associated with CSD implantation. Al-
though we did not directly measure perfusion in the
current study, none of the patients showed any
indirect signs of perfusion disturbance or loss. Com-

pared with the pre-operative findings, we saw nei-
ther newly occurring areas of decreased opacifica-
tion nor areas of circumscribed myocardial thinning,
nor did we see progression of disturbed myocardial
motion at post-operative follow-up. Other compli-
cations such as pericardial effusion, major pericar-
dial adhesions, scar formations, and intracardiac
thrombus likewise were absent. After surgery, we
observed a small hyperdense stripe along the ven-
tricular pericardium in each patient. This was prob-
ably the CSD itself or a result of harmless local
tissue densification directly around the CSD.

Study Limitations

Although the diagnostic potential of the electron-
beam CT has been discussed in detail, some general
limitations of the study warrant consideration in
drawing conclusions about CSD efficacy. First, this
study included a relatively small, select group of
patients enrolled as part of an initial non-random-
ized clinical safety and feasibility study. Second, as
part of a pilot study, this investigation lacked a
concurrent control group of patients with congestive
heart failure who were treated conservatively. Fi-
nally, many of the patients received concomitant
mitral valve repair, which may have been a con-
founding variable in interpreting the data of the
total patient population. However, the sub-popula-
tion of patients who received CSDs only (Table II)
also showed decreased left ventricular dimensions
and even superior improvement in left ventricular
function. (Table III)

TABLE III Left ventricular parameters (mean � SD) in 7 male patients before and 6 to 9 months after
CSD implantation and concomitant mitral valve repair

Parameter Patients pre-operative Patients post-operative

EDV (ml) 484.0 � 104.0 405.4 � 91.1*
ESV (ml) 402.1 � 106.8 326.6 � 97.5*
SV (ml) 81.9 � 31.9 78.9 � 30.3
EF (%) 17.0 � 6.3 19.9 � 8.7
HR (beats/min) 77.9 � 11.9 73.4 � 5.2
CO (liter/min) 6.6 � 2.2 6.2 � 2.1
aCO (liter/min) 3.8 � 1.1 4.9 � 1.8*
CO-aCO (liter/min) 2.8 � 1.4 1.3 � 1.2*
MRF (%) 40.9 � 12.8 19.8 � 14.2*
EDD (mm) 80.1 � 6.7 78.0 � 7.9
ESD (mm) 70.9 � 4.5 61.4 � 19.6
MM (g) 320.7 � 97.0 282.6 � 96.1†

*Difference statistically significant (p � 0.05) between post-operative against pre-operative values. aCO, antegrade cardiac output
measured in the aorta; CO (total) cardiac output; CO-aCO, difference between total and antegrade cardiac output (yielded the mitral
regurgitation volume); EDD, end-diastolic diameter; EDV, end-diastolic volume; EF, ejection fraction; ESD, end-systolic diameter; ESV,
end-systolic volume; HR, heart rate; MRF, estimated mitral regurgitation fraction; MM, myocardial mass; SV, (total) stroke volume.
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In summary, electron-beam CT with its well-
established measuring precision supplements other
diagnostic procedures by providing important addi-
tional information about the morphology, 3-dimen-
sional geometry, and function of the left ventricle;
about myocardial mass; and about hemodynamic
parameters before and after CSD implantation. The
results of electron-beam CT presented here corrob-
orate first reports in the literature on the safety as
well as the short- and mid-term efficacy of this new
surgical procedure. However, long-term results are
needed for definitively assessing the benefits of the
CSD.

The authors thank Christian Schmidt, GE Imatron, South
San Francisco, California, for technical support; Bettina
Herwig for translation of the text; and Dr. Kay-Geert
Hermann, Charité, for assistance in preparing the manu-
script.
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Abstract

Objective: Dilated cardiomyopathy (DCM) is associated with a progressive deterioration in cardiac function. We hypothesised that
some of the deleterious effects of DCM could be reduced by mechanically limiting the degree of cardiac dilatation. Methods: A
Transonic 20A cardiac output (CO) flow-probe was implanted in the pulmonary artery of 12 adult (5264 kg) sheep. Early heart failure
was created by rapid right ventricular (RV) pacing for 21 days at a rate which resulted in an initial 10% decrease in CO (to a maximum of
190 bpm). A custom polyester jacket (Acorn Cardiovascular, St Paul, MN) was then placed, via a partial lower sternotomy, on the
ventricular epicardium of all sheep. Animals were randomised either to jacket retention (wrap) or removal (sham). Pacing was
recommenced at a higher rate (that initiated a further 10% decrease in CO) for 28 days. Haemodynamic and echocardiographic parameters
were determined at baseline, implant and at termination. Results: At termination, the left ventricular fractional shortening was
significantly higher ( p50.03), the degree of mitral valve regurgitation lower (scaled 0–3) ( p50.03) and the left ventricular long axis area
smaller ( p50.02) in the wrap animals compared with sham. Conclusions: In this model of heart failure, ventricular constraint with a
polyester jacket diminished the deterioration in cardiac function associated with progressive dilated cardiomyopathy. These results suggest
that maintainance of a more normal cardiac size and shape may be beneficial in patients with dilated cardiomyopathy.  1999 Elsevier
Science B.V. All rights reserved.

Keywords: Heart failure; Cardiomyopathy; Ventricular function; Remodelling

This article is referred to in the Editorial by S. Goldstein failure [1]. Initial interest in this hypothesis emanated from
(pages 468 –469) in this issue. investigations of the mechanisms of the apparent improve-

ment in functional status observed in HF patients who have
undergone dynamic cardiomyoplasty [2]. Some results

1. Introduction have assigned a dominant role for this outcome to the
augmentation of the contractile function of the heart by the

Despite advances in pharmacological therapy, heart paced muscle wrap [3,4], while others have suggested that
failure (HF) remains an unresolved problem in a large it is the constraining effect of the wrap on the dilating
patient population. It has been suggested that preventing ventricles that is important [5,6]. The latter hypothesis has
further ventricular dilatation may impede the progressive been examined in several studies in animal models of heart
deterioration in cardiac function associated with heart failure and all have found, in varying degrees and formats,

that passive ventricular constraint alone improves outcome
in comparison to control [1,7,8]. In one, using a canine*Corresponding author. Tel.: 161-3-9496-4090; fax: 161-3-9496-

4099.
E-mail address: jmp@austin.unimelb.edu.au (J.M. Power) Time for primary review 26 days.

0008-6363/99/$ – see front matter  1999 Elsevier Science B.V. All rights reserved.
PI I : S0008-6363( 99 )00255-2

298



550 J.M. Power et al. / Cardiovascular Research 44 (1999) 549 –555

model of rapid pacing induced heart failure, a functionally proximal lead end was connected to a modified ‘data
static cardiomyoplasty wrap procedure performed on failed block’, which allowed the right ventricle to be paced from
hearts prevented the further remodelling that would nor- wires exiting at the animals dorsum with modified external
mally be expected with continued rapid pacing [1]. This pacemakers (Medtronic model 5880A).
finding complemented other studies in which cardiomyo- Antibiotics (1 g ampicillin and 80 mg gentamicin
plasty was performed prospectively in normal hearts, later sulphate, both i.v.) were given prophylactically immedi-
paced into failure. In the other two studies the heart was ately after surgery and for 3 days following. Flunixin
wrapped prior to induction of heart failure [7,8]. meglumine, 50 mg i.m., was given prior to surgery and

If indeed passive ventricular constraint can significantly post-operatively once daily for two days as an analgesic
slow or stabilise the usual remodelling process associated and anti-inflammatory agent.
with HF, then a synthetic wrap will considerably simplify
the procedure in comparison with the major surgical 2.2. Data collection
procedure of cardiomyoplasty. Two recent studies have
looked at this proposal. In both, the ventricles of normal 2.2.1. Echocardiography
animal hearts were bound with synthetic membranes and Images of the left ventricle (LV) and the left atria (LA)
heart failure was induced. In one study, failure was were obtained by right-sided trans-thoracic echocardiog-
induced by rapid pacing [8] and in the other, by intracoron- raphy under intravenous anaesthesia (propofol 0.1 mg/kg/
ary artery doxorubicin [7]. In both studies, passive ven- min1ketamine 0.2 mg/kg/min) using a 3-MHz probe and
tricular constraint prevented most of the subsequent ven- a Sonos 1000 unit (Hewlett-Packard). The planimetered
tricular dilatation and preserved much of the left ventricu- LA and LV cross-sectional areas were obtained from a
lar function compared with nonwrapped animals. uniform long axis view in diastole and were calculated

The purpose of this study was to examine the concept of automatically from a scrolled endocardial outline. Left
passive ventricular constraint as a treatment for HF in ventricular fractional shortening was determined in M
animals that were already in HF at the time of implanta- mode from a short axis view of the LV just below the
tion. insertion of the papillary muscles. The degree of mitral

We utilised an ovine model of tachycardia-induced valve regurgitation was assessed by colour Doppler and
progressive heart failure and a purpose designed biocom- scored, (0–3), in degrees of increasing severity. The
patible fabric jacket and compared cardiovascular function images were measured independently by two experienced
and structural remodelling in sham operated animals with observers and the mean determined.
animals that had undergone a wrap procedure.

2.2.2. Haemodynamic parameters
The animals were anaesthetised (propofol 0.1 mg/kg/

2. Methods min1ketamine 0.2 /kg/min) and ventilated with room air
supplemented with oxygen. A catheter introducer sheath

The protocol for this study was approved by the Animal was placed in a carotid artery and a 5F micro manometer-
Ethics Committee of the Austin Hospital under the guide- tipped catheter (Millar Instruments) was introduced into
lines published by the National Health and Medical the LV. Haemodynamic signals from these catheters and
Research Council of Australia and conforms with the from the cardiac output (CO) flow-probe together with an
Guide for the Care and Use of Laboratory Animals ECG recording were processed, digitised and recorded
published by the US National Institutes of Health (NIH using a MacLab system (MacLab 8, ADI Instruments) and
Publication No. 85-23, revised 1996). a Macintosh computer. Derived parameters were computed

online using this system.
2.1. Initial surgical preparation

2.2.3. The model of dilated cardiomyopathy and heart
Twelve adult merino sheep (mean weight 5264 kg) failure

were anaesthetised with propofol 2 mg/kg and ventilated The rapid ventricular paced animal model of HF has
with halothane and oxygen. A single 3-cm incision was been widely used and is considered to display many of the
made in a left intercostal space and a Transonic (Transonic features of HF in patients [9]. In our derivative of this
Systems, Ithaca, NY) 20A cardiac output flow-probe was model we, as have others [10], utilised the relationship
positioned around the pulmonary artery. Permanent in- between the rate and duration of pacing initially to create a
dwelling polyethylene catheters were implanted in a model of early HF and later to intensify the severity of
carotid artery and a jugular vein. The flow-probe leads and cardiac dysfunction. In previous pilot studies we found that
catheters were tunnelled subcutaneously to the dorsum of the response of individual animals to rapid ventricular
the animals. A steroid-tipped bipolar ventricular pacing pacing varies i.e. the relationship between the level of
lead (Capsure SP, Model 4024, Medtronic, MN) was tachycardia induced HF and the pacing rate differs par-
placed transvenously in the apex of the right ventricle. The ticularly when the desired outcome is not severe endstage
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HF. In order to standardise the degree amongst the animals the ventricular apex and with a longitudinal opening for
at each stage of the study, we utilised the values from the size adjustment, was placed around both ventricles from
continuous CO measurement to modify the pacing rates the apex to the atrio-ventricular junction. The jacket was
according to the individuals acute response to rapid pacing. retained in six (wrap) animals and removed in the other six

The initial pacing rate was determined as follows. After (sham) animals.
a post surgical 10–14 day recovery period the CO in The animals were induced with intravenous propofol (2
normal sinus rhythm (NSR) over a period of 2 min was mg/kg), intubated and ventilated with 100% oxygen.
measured on a minimum of ten different occasions and the General anaesthesia was maintained with intravenous
mean determined. Pacing was commenced (at twice pacing propofol (6 mg/kg/h) plus ketamine (3 mg/kg/h). The
threshold, range 2–6 ma) and the rate increased, to a animals were placed in dorsal recumbency. A lower partial
maximum value of 190 bpm, until the mean paced CO was sternotomy was performed, which extended from the
90% of the mean CO in NSR (Rate A). After 21 days of xiphoid process to approximately two-thirds of the way to
pacing at Rate A there were significant changes in car- the thoracic inlet. The pericardium was incised longitudi-
diovascular function (see below) indicative of moderate or nally and a pericardial cradle was formed (Fig. 1). The
early heart failure. myocardial jacket was guided over the heart and fixed

In order to intensify the degree of HF a second rate posteriorly with large titanium ligature clips (Ligaclips
(Rate B) was determined immediately prior to the wrap or Ethicon) to the parietal pericardium at the level of the
sham procedure in the same manner as Rate A was atrioventricular groove. The anterior surface of the jacket
previously determined. Twenty four hours after, the was sutured to the pericardium, also above the atrioven-

surgery pacing was recommenced at Rate B and continued tricular groove with 5/0 sutures (Prolene Ethicon). The
for 28 days. jacket was then wrapped firmly around the heart and the

cut edge sutured (2 /0 Prolene Ethicon) and trimmed of
2.2.4. Surgical procedure in early heart failure (wrap or excess material. At this stage, the jacket was removed from
sham procedure) the sham animals. The pericardium was closed in all

In this procedure a biocompatible polyester mesh fabric animals with 5 /0 sutures (Vicryl Davis and Geck). The
jacket (Acorn Cardiovascular, St Paul MN), shaped to cup sternotomy was closed in layers: initially with stainless

Fig. 1. Position and attachment of the jacket on the epicardial surface of the two ventricles. The Ligaclips are on the undersurface of the heart and
therefore not visible.
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Fig. 2. Schematic representation of the experimental protocol showing periods of pacing at Rate A and Rate B and the data collection points.

steel wire sutures, 2 /0 Dexon (Davis and Geck) in the wrap) were compared at baseline, wrap or sham procedure
sternal tissue pad and 1 Ethilon (Ethicon) skin sutures. and at termination, using the Wilcoxon rank-sum test.

Antibiotics (1g ampicillin and 80 mg gentamicin sulphate, Differences within the wrap and sham treatment groups
both intravenously) were given prophylactically immedi- from control to wrap/sham procedure and from wrap/
ately after surgery and for 3 days following. Flunixin sham procedure to termination were compared using paired
meglumine, 50 mg i.m., was given prior to surgery and Student’s t-test. Results are expressed as mean6SD and a
post-operatively once daily for two days as an analgesic p value of ,0.05 was considered significant.
and anti-inflammatory agent.

2.3. Experimental protocol 4. Results

A schema of the experimental design is shown in Fig. 2. The hearts from the wrap animals were examined at post
Detailed descriptions of the procedures are given above. mortem at the end of the study. In all animals, the position
After the animals had recovered from an initial surgical of the jacket remained unchanged from implantation and
preparation they were rapid paced for 21 days to induce both ventricles were entirely enclosed. Mean data from
early heart failure. A wrap or sham procedure was then animals at baseline and after 21 days of pacing of pacing at
performed and pacing continued for an additional 28 days Rate (A) and after a further 28 days of pacing at Rate (B)
at a higher pacing rate. Animals were then euthanased. A are shown in Table 1. There was no significant differences
haemodynamic and echocardiographic examination was between the wrap and sham groups at baseline. Similarly,
performed at the end of the baseline period (approximately after 21 days of pacing at Rate A the parameters from both
14 days after the initial surgical preparation), after 21 days groups were not significantly different except for 2dP/
of pacing at rate (A) (immediately prior to the wrap or dt . There were, however, significant differences withinmax

sham procedure) and after 28 days of pacing at rate (B) groups with significant changes in cardiac function and
(termination). structure (Table 2). Left ventricular contractility, expressed

as LV fractional shortening (LVFS) decreased by approxi-
mately one third in both groups while the LV long axis

3. Statistical analysis area more than doubled.
After 28 days of pacing at Rate B there were significant

Data was analysed using a computerised statistical changes both between and within the groups (Table 1).
package (SAS Inst, Gary NC). The two groups (sham and Over this pacing period cardiac function deteriorated

Table 1
Between group comparisons of haemodynamic and echo cardiographic parameters

Parameter Baseline Paced 21 days at Rate A Paced 28 days at Rate B

Pros. sham Pros. wrap p Pre-sham Pre-wrap p Sham Wrap p

RV pacing rate (bpm) N/A N/A 18864 19060 NS 20665 21364 NS
Normal sinus rhythm (bpm) 75618 87618 NS 77615 93620 NS 104624 101622 NS
Arterial pressure (mm Hg) 9468 85614 NS 9569 87620 NS 8866 89618 NS
Mitral valve regurgitation (0–3) 0 0 0.3360.05 0 NS 2.760.52 0.760.82 0.03
1dP/dt (mm Hg/s) 10606265 11026487 NS 6776160 8636181 0.02 5956115 6766276 NSmax

2dP/dt (mm Hg/s) 212266239 216046432 NS 2839673 212976336 NS 29976296 29156197 NSmax

Cardiac output (l /min) 661.3 661.2 NS 4.260.78 4.161.2 NS 3.5361.3 3.3360.81 NS
Stroke volume (ml) 75614 6565 NS 55616 46614 NS 36615 34610 NS
Minimum LV pressure (mm Hg) 362.48 263.48 NS 962.93 664.62 NS 1665.53 963.69 0.027

a 25SVR (dynes /s /cm ) 14376346 12566285 NS 18276364 18536881 NS 21676810 22326657 NS
a SVR5Systemic vascular resistance.
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Table 2
aWithin group comparisons of haemodynamic and echo cardiographic parameters

Parameter A B A B

LVFS (%) p50.03 p50.03 p50.02 NS
2LV Area (cm ) p50.02 p50.008 p50.02 NS

RV pacing rate (bpm) N/A p50.004 N/A p50.001
Normal sinus rhythm (bpm) NS NS NS NS
Arterial pressure (mm Hg) NS NS NS NS
Mitral valve regurgitation (0–3) N/A p50.02 N/A NS
1dP/dt (mm Hg/s) p50.01 NS NS NSmax

2dP/dt (mm Hg/s) p50.007 NS p50.04 NSmax

Cardiac output (l /min) NS NS NS NS
Stroke volume (ml) p50.03 p50.002 p50.02 NS
Minimum LV pressure (mm Hg) p50.03 p50.03 p50.04 NS

25Systemic vas. resist. (dynes /s /cm ) NS NS NS NS
a Columns A are the results of a comparison within the respective groups between values for baseline and after 21 days of pacing at Rate (A). Columns B

are the results of a comparison within the respective groups between values after 21 days of pacing at Rate (A) and after 28 days of pacing at Rate (B).

significantly in the sham group compared with the wrap 5. Discussion
group. At termination LVFS was halved (Fig. 3) and LV
long axis area increased by one third in the sham animals Progressive ventricular remodelling, especially dilatation
(Fig. 4). A significant degree of mitral regurgitation of the left or both ventricles, is a fundamental finding in
developed in these animals and minimum LV pressure was heart failure and many of the mechanisms of terminal
higher. In contrast, in those animals who underwent the failure are directly related to ventricular enlargement. For
wrap procedure, no significant differences in measured the ultimate therapeutic goal of reversing remodelling to
parameters occurred during this second pacing period and occur, cardiac enlargement must first be halted. There are
very little mitral regurgitation was evident. Overall, there two broad ways this can occur: either indirectly by
were no significant differences in CO between the two reversing the remodelling pattern, or directly by surgical
groups. reduction. The surgical options currently in use for the

The two RV pacing rates (Rates A and B) were similar treatment of heart failure are based on one or both of these
for both groups, however, Rate (B) was significantly pathways. Direct intervention by surgical reduction of the
higher than Rate (A) in both. Therefore, the effects of a left ventricle has produced inconclusive results with a
similar mechanism for the intensification of the level of HF decline in cardiac function and resumption of left ventricu-
produced very different results, which was dependent on lar dilatation following initial post surgical improvement
the presence of passive ventricular constraint from the [11,12]. There are a number of procedures which are based
fabric wrap. on indirect intervention in the remodelling process. Mitral

Fig. 3. Mean (6SD) left ventricular fractional shortening at baseline, Fig. 4. Mean (6SD) left ventricular long axis area at baseline, after 21
after 21 days pf pacing at Rate A and following an additional 28 days of days of pacing at Rate A and following an additional 28 days of pacing at
pacing at Rate B. Rate B.
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valve regurgitation is a common finding and is associated dilated cardiomyopathy and heart failure. The specific
with a poor prognosis in advanced heart failure. Radical advantages of this technique, no invasion of the circulatory
mitral valve annuloplasty has been shown to stabilise space and minimal surgical trauma, may result in a degree
cardiac function in some of patients [13]. A broader of general acceptance that has alluded other surgical
hypothesis is that if some of the workload of a compro- treatments for heart failure.
mised heart could be relieved, this would allow for reverse
remodelling to occur. There is evidence that the chronic
implantation of ventricular assist devices may initiate

Acknowledgementsreverse remodelling, although the technology is complex
and restricted to relatively few centres [14]. A number of
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EXPERIMENTAL STUDY

Reverse Remodeling and Enhanced
Adrenergic Reserve From Passive External
Support in Experimental Dilated Heart Failure
W. Federico Saavedra, MD,* Richard S. Tunin, MS,* Nazareno Paolocci, MD, PHD,*
Takayuki Mishima, MD,† George Suzuki, MD,† Charles W. Emala, MD,‡ Pervaiz A. Chaudhry, MD,†
Petros Anagnostopoulos, MD,† Ramesh C. Gupta, PHD,† Hani N. Sabbah, PHD, FACC,†
David A. Kass, MD, FAHA*
Baltimore, Maryland; Detroit, Michigan; and New York, New York

OBJECTIVES We sought to test the efficacy of a passive elastic containment device to reverse chronic
chamber remodeling and adrenergic down-regulation in the failing heart, yet still maintaining
preload reserve.

BACKGROUND Progressive cardiac remodeling due to heart failure is thought to exacerbate underlying
myocardial dysfunction. In a pressure–volume analysis, we tested the impact of limiting
progressive cardiac dilation by an externally applied passive containment device on both basal
and adrenergic-stimulated function in failing canine hearts.

METHODS Ischemic dilated cardiomyopathy was induced by repeated intracoronary microembolizations
in six dogs. The animals were studied before and three to six months after surgical
implantation of a thin polyester mesh (cardiac support device [CSD]) that surrounded both
cardiac ventricles. Pressure–volume relations were measured by a conductance micromanom-
eter catheter.

RESULTS Long-term use of the CSD lowered end-diastolic and end-systolic volumes by �19 � 4% and
�22 � 8%, respectively (both p � 0.0001) and shifted the end-systolic pressure–volume
relation to the left (p � 0.01), compatible with reverse remodeling. End-diastolic pressure
and chamber diastolic stiffness did not significantly change. The systolic response to
dobutamine markedly improved after CSD implantation (55 � 8% rise in ejection fraction
after CSD vs. �10 � 8% before CSD, p � 0.05), in conjunction with a heightened adenylyl
cyclase response to isoproterenol. There was no change in the density or affinity of
beta-adrenergic receptors. Diastolic compliance was not adversely affected, and preload-
recruitable function was preserved with the CSD, consistent with a lack of constriction.

CONCLUSIONS Reverse remodeling with reduced systolic wall stress and improved adrenergic signaling can
be achieved by passive external support that does not generate diastolic constriction. This
approach may prove useful in the treatment of chronic heart failure. (J Am Coll Cardiol
2002;39:2069–76) © 2002 by the American College of Cardiology Foundation

Chronic cardiac remodeling is a major hallmark of dilated
cardiomyopathy and is thought to play a central role in
disease progression (1–4). Chamber dilation and wall thin-
ning elevate wall stress, triggering the local release of
neurohormones and adversely affecting myocardial molecu-
lar biology and physiology (3). Both beta-adrenergic block-
ade and angiotensin-converting enzyme inhibition enhance
heart failure survival and inhibit or reverse remodeling
(5–8). Further evidence supporting a pathophysiologic role
of remodeling stems from studies of left ventricular assist
devices (LVADs). This intervention profoundly unloads the
left heart, leading to reverse remodeling (9,10) and improv-

ing myocyte and muscle function (11,12), molecular and
calcium signaling (11,13,14) and adrenergic responsiveness
(15). However, LVAD studies cannot determine the ther-
apeutic effect of limiting chronic remodeling on the working
heart, nor can they easily differentiate unloading influences
from changes due to systolic assist and neurohormonal
de-activation.

The impact of limiting remodeling on heart failure
progression has been directly tested by the application of
external containment. An example of this approach is
cardiomyoplasty (16,17), in which a flat sheet of skeletal
muscle is wrapped around the heart and then stimulated to
assist systolic contraction. Intriguingly, both clinical (18)
and animal studies (19) have identified a passive girdling
effect of the wrap as a dominant mechanism responsible for
reverse remodeling and improved function. Such observa-
tions have led to the development of a passive polymer
jacket that surrounds the heart (cardiac support device
[CSD]; Acorn Cardiovascular Inc., St. Paul, Minnesota). In
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recent studies, the CSD has been shown to limit progressive
dilation in heart failure (20), enhance fractional shortening
and reduce myocyte hypertrophy and interstitial fibrosis
(21,22). However, it remains unknown whether this reflects
true remodeling or an influence of diastolic constraint, and
whether the CSD favorably alters stimulated functional
reserve.

Accordingly, the present study tested the following hy-
potheses: 1) that the CSD induces reverse remodeling, as
reflected by a leftward shift in the end-systolic pressure–
volume relation (ESPVR); 2) that this is accompanied by
enhanced beta-adrenergic signaling; and 3) that both effects
are achieved without limiting preload-recruitable reserve or
compromising diastolic compliance.

METHODS

Animal model. Heart failure was induced in six adult
mongrel dogs (25 to 30 kg) by multiple sequential intra-
coronary embolizations with polystyrene latex microspheres
(70 to 100 �m outer diameter). This model includes many
features of human cardiac failure at the chamber, myocar-
dial, cellular and molecular levels (23–25). An average of six
microembolizations were performed one to three weeks
apart in each animal, until the ejection fraction declined to
�35%, a level associated with a 20% to 30% increase in
chamber volume. The procedure was performed under
sterile conditions and general anesthesia (see next para-
graph), and the study approved by the Henry Ford Hospi-
tal’s Animal Care and Use Committee, in accordance with
the guidelines of the National Institutes of Health.
Experimental protocol. After establishing heart failure,
the animals underwent cardiac catheterization with a dual-
sensor, pressure–volume catheter (SPC 562 Millar Instru-
ments, Houston, Texas) to assess ventricular function.
Right and left heart recordings and a contrast ventriculo-
gram were obtained under general anesthesia (0.22 mg/kg
oxymorphone; 0.17 mg/kg diazepam; 150 to 250 mg pen-
tobarbital). Left ventricular pressure–volume relations were
then measured at rest and during a transient preload
reduction induced by inferior vena caval occlusion (NuMed,
New York, New York), in accordance with reported proto-
cols (26). Each animal subsequently underwent dobutamine
challenge (5 to 10 �g/kg per min), with data recorded at

steady-state. Dobutamine was then discontinued and base-
line was re-established (after 10 to 15 min), and then the
dogs were given four sequential bolus injections of 100 ml of
dextran to test for preload reserve. All catheters were then
removed, and the insertion sites were closed.

The CSD was implanted after completion of the baseline
study. Details of the surgical procedure have been reported
(20,21,27). After induction with diazepam (0.2 mg/kg
intravenously) and oxymorphone (0.1 mg/kg), the animals
were intubated, and anesthesia was maintained with 0.5% to
1% isoflurane and supplemental oxygen. The heart was
exposed by a median sternotomy, and the parachute tech-
nique was used to implant the CSD, by slipping it over the
apex of the heart with the full-length seam at the center of
the anterior surface. The CSD was placed around both
ventricles and anchored with approximately eight sutures at
the atrioventricular groove (Fig. 1). The fit was made so that
the material was nonwrinkled, thus providing contact with
the epicardium throughout the cycle. There was only a
small, early volume change with CSD placement (�2.1%),
as determined by echocardiography. The chest was closed,
and the animals fully recovered from the operation. Once in
use, the CSD becomes encased in a thin fibrous sheath
without inflammation or progressive fibrosis (21).
Follow-up study was performed three to six months after
CSD implantation. The dogs were then sacrificed with a
barbiturate overdose, and tissues were obtained for bio-
chemical analyses.
Adenylyl cyclase activity. Frozen left ventricular (LV)
tissue (300 to 400 mg) was thawed in 5 mmol/l Tris (pH
7.4), 0.25 mol/l sucrose, 1 mmol/l MgCl2, 1 mmol/l EDTA

Figure 1. The cardiac support device wrap placed around the heart. The
polyester mesh material is sutured along an anterior wall seam to achieve
containment around both the right and left ventricles. The material is snug
to the surface to remove surface wrinkling, but not to constrict diastolic
filling.

Abbreviations and Acronyms
ATP � adenosine triphosphate
cAMP � cyclic adenosine monophosphate
CSD � cardiac support device
DHA � 3H-dihydroalprenelol
ESPVR � end-systolic pressure–volume relation
LV � left ventricle
LVAD � left ventricular assist device
PMSF � phenylmethylsulfonyl fluoride
RV � right ventricle
SDS � sodium dodecyl sulfate
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and 10 �mol/l phenylmethylsulfonyl fluoride (PMSF) and
homogenized for 45 s. The homogenates were filtered and
centrifuged at 1,000 g (10 min, 4°C); the supernatant was
recovered and centrifuged at 45,000 g (25 min, 4°C); and
the pellets were resuspended in 25 ml of 50 mmol/l Tris
(pH 7.4), 10 mmol/l MgCl2, 1 mmol/l EDTA and
10 �mol/l PMSF and centrifuged at 45,000 g (25 min,
4°C). After rewashing in the same solution, the pellet was
resuspended in 0.5 ml of buffer and analyzed immediately.
Triplicate samples were incubated for 10 min at 37°C and
contained the indicated effector, along with 10 to 20 �g of
membrane protein: 25 mmol/l Tris (pH 7.5), 5 mmol/l
MgCl2, 0.5 mmol/l EDTA, 1 mmol/l cyclic adenosine
monophosphate (cAMP), 1 mmol/l adenosine triphosphate
(ATP), [�-32P]ATP (0.5 to 1.5 �Ci/tube, 800 Ci/mmol),
5 �mol/l PMSF, 7 mmol/l creatine phosphate, 50 �n/ml
creatine kinase and 0.25 mg/ml bovine serum albumin in a
final volume of 100 �l. Adenylyl cyclase activity was
measured under basal conditions, with 10 �mol/l guanosine
triphosphate (GTP) plus 1 nmol/l to 100 �mol/l isoproter-
enol or 10 �mol/l forskolin. The reactions were terminated
by the addition of 100 �l of buffer: 50 mmol/l HEPES (pH
7.5), 2 mmol/l ATP, 0.5 mmol/l cAMP, 2% sodium
dodecyl sulfate (SDS) and 1 �Ci/ml 3H-cAMP (37 Ci/
mmol). Newly synthesized 32P-cAMP was separated from
the precursor [�-32P]ATP by sequential column chroma-
tography with Dowex and aluminum oxide, using recovery
of 3H-cAMP to monitor the individual column’s efficiency.
Eluted radioactivity was quantitated by liquid scintillation.

Beta-adrenergic receptor radioligand binding. Beta-
adrenreceptor density was measured using radioligand 3H-
dihydroalprenelol (DHA) (New England Nuclear, Boston,
Massachusetts), according to published procedures (28).
Specific binding to the beta-adrenoceptor population was
defined as the difference between the total amount of
radioactivity bound in the presence of 3H-DHA alone and
the nonspecific binding in the presence of 3H-DHA and
10 �mol/l alprenolol. Receptor density (Bmax) and the
equilibrium dissociation constant (Kd) for 3H-DHA bind-
ing to membrane preparations were assessed by Scatchard
analysis, using the ReceptorFit Saturation Two-Site Soft-
ware (Lundon Software, Inc., Cleveland Heights, Ohio).
Data analysis. Pressure–dimension data were recorded at
steady-state and during inferior vena caval occlusion; the
latter was used to derive pressure–volume relations. Details
of the hemodynamic analysis have been reported (29).
Systolic function was principally indexed by the ESPVR and
preload-recruitable stroke work (30). Preload was expressed
as the end-diastolic volume, and arterial load as the effective
arterial elastance. The volume signal was calibrated to match
the absolute ventricular volumes obtained by constrast
ventriculography. All hemodynamic signals were digitally
recorded at 200 Hz and analyzed using custom software.
Hemodynamic variables before and after CSD implantation
were compared by the Student paired t test. The differ-
ential effects of dobutamine stimulation before versus
after CSD placement were analyzed by three-way analysis
of variance (ANOVA), with drug, experimental condi-

Figure 2. Hemodynamic effects of the cardiac support device (CSD). (A) Left ventricular pressure–volume relations in one animal before and after
long-term CSD use. The darker loops for each condition reflect basal conditions, and the thinner loops were measured during transient load reduction.
There was a reduction in both end-diastolic and end-systolic chamber volumes, with preservation of cardiac stroke volume (loop width), and the end-systolic
pressure–volume relation shifted leftward, consistent with reversal of chamber remodeling. The diastolic pressure–volume boundary was not altered. (B)
Summary of hemodynamic variables before and after long-term CSD use. There was a consistent significant decline in chamber volumes (end-diastolic
volume [EDV] and end-systolic volume [ESV]), without a change in cardiac output (CO). End-diastolic pressure (EDP) and end-systolic pressure (ESP)
were not significantly changed. EF � ejection fraction.
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tion and dog as the categorical variables. A different
dobutamine response was defined by significance of the
cross-term (dobutamine � condition). Adenylate cyclase
data were analyzed by two-way ANOVA. Data are reported as
the mean value � SEM.

RESULTS

Induction of reverse remodeling in the heart by use of the
CSD. Figure 2A displays examples of pressure–volume
loops and relations before and after long-term CSD treat-
ment. Placement of the CSD resulted in a leftward shift in
the rest pressure–volume loop (thicker lines), as well as in
the ESPVR. The latter observation is consistent with
reversal of remodeling. In contrast, the diastolic pressure–
volume curve was changed only a little. The leftward
ESPVR shift was quantified by the end-systolic volume at a
matched end-systolic pressure measured in the physio-
logic range (110 mm Hg, or V110). The V110 fell from
44.7 � 5.2 to 33.9 � 3.9 ml by long-term CSD treatment
(p � 0.01). In contrast, the ESPVR slope was not
significantly altered (2.5 � 0.59 before CSD vs. 4.3 � 2.3
after CSD, p � NS).

The diastolic pressure–volume relation was more variably
affected, with some animals displaying a leftward shift and

others a downward shift, whereas others had no change.
Diastolic chamber elastic stiffness (�), as determined from a
monoexponential fit (P � P� � �[e�V � 1]) did not signif-
icantly change (0.09 � 0.03 before CSD vs. 0.11 �
0.02 ml�1 after CSD, p � 0.4).

Figure 2B provides a summary of the hemodynamic data.
Both end-systolic and end-diastolic volumes significantly
declined by �22.1 � 7.6 and �18.7 � 4.2%, respectively
(both p � 0.0001). In contrast, the EF, end-systolic
pressure, end-diastolic pressure, cardiac output (Fig. 2B),
maximal rate of rise in pressure (2,025 � 130 vs. 1,765 �
67 mm Hg/s), isovolumic relaxation (49.9 � 4.5 vs. 51.7 �
5.4 ms, using a non-zero decay asymptote) and preload-
recruitable stroke work (54.1 � 11.1 vs. 54.4 � 9.4 mm Hg)
were not altered. It should be noted that LV end-diastolic
pressure either declined or remained minimally changed.
Consistent with previous reports (21), we found no evidence
of functional constraint after CSD implantation. Right and
left heart diastolic pressures were not equalized (19 � 3 mm
Hg for LV end-diastolic pressure; 8 � 1 mm Hg for right
ventricular [RV] end-diastolic pressure) after long-term
CSD use.
Preload-recruitable systolic reserve. Because the CSD
imposed an external containment around the heart, one

Figure 3. Effects of an early preload increase in the failing heart after cardiac support device (CSD) implantation. (A) Example of pressure–volume relations
before and after infusion of 400 ml of dextran. (B) Summary of hemodyanmic variables in relation to incremental volume expansion. For a near 10 mm
Hg rise in end-diastolic pressure (EDP), cardiac output (CO) rose by nearly 100%, and there were significant changes in both the maximal and minimal
rates of pressure change. Thus, preload-dependent reserve function was not inhibited by CSD placement. dP/dtmx and dP/dtmn � rate of rise in left
ventricular pressure, maximal and minimal, respectively. *p � 0.05 versus baseline, e.g. 0 volume expansion.
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concern was that the observed reverse remodeling would be
accompanied by inhibition of cardiac preload reserve. Ad-
ministering dextran infusions in the CSD-treated animals
tested this hypothesis. As shown in Figure 3, the preload
increased the end-diastolic pressure, as anticipated, but this
was accompanied by substantial increases in systolic perfor-
mance. There was no square-root sign in LV pressure–time
tracings (Fig. 3A, bottom graph) before or after volume
infusion, supporting the lack of constrictive physiology.
Cardiac output rose nearly 100%, and both the maximal rates
of rise and decline in pressure were significantly enhanced.
Improved beta-adrenergic reserve and the CSD. Figure 4
shows an example of and summary data on beta-adrenergic
reserve before and after CSD placement. In the basal heart
failure state, early dobutamine infusion elicited a small
systolic response, although this was considerably enhanced
after long-term CSD treatment. Stroke volume, stroke
work, ejection fraction and cardiac output initially tended to
decline with dobutamine, yet each variable rose significantly
with the same dobutamine dose after CSD placement (all

p � 0.01 for interaction effect of dobutamine and CSD
status by ANOVA).

To further assess the mechanism(s) of the augmented
adrenergic response with long-term CSD treatment, LV
myocardial isoproterenol-stimulated adenylate cyclase activ-
ity was determined. This response was enhanced (Fig. 5A)
in CSD-treated animals, as compared with a parallel group
of animals (n � 5) with heart failure induced by the same
methods and for a similar duration, but without CSD place-
ment. In contrast, adenylate cyclase activity in response to
forskolin was similar between the groups (Fig. 5B), supporting
signaling changes proximal to the enzyme itself. Neither the
beta-adrenergic receptor density (76 � 4 vs. 81 � 5 fmol/mg
with the CSD) nor the binding affinity (1.31 � 0.1 vs. 1.3 �
0.1 nmol/l) was different between the two groups.

DISCUSSION

This study provides direct evidence that application of a
purely passive external containment to a chronically failing

Figure 4. Enhancement of the dobutamine (Dob) response with long-term cardiac support device (CSD) treatment. (A) Example of pressure–volume loops
and relations during early dobutamine infusion stimulation at baseline and after long-term CSD treatment. The pre-dobutamine end-systolic
pressure–volume relation (ESVPR) (control) is shown for baseline and CSD treatment. Before CSD placement, the dobutamine response was very small,
with only a slight leftward shift in the ESPVR. However, the magnitude of the response to this same dose was greatly augmented by long-term CSD
treatment. (B) Percent changes in systolic function in response to dobutamine, comparing baseline with CSD treatment. Substantial increases were observed
in response to multiple ejection variables: CO � cardiac output; EF � ejection fraction; SV � stroke volume; SW � stroke work; power index � maximal
power/end-diastolic volume (EDV)2. *p � 0.001 and †p � 0.02 compared with baseline response, by three-way analysis of variance of raw data.
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heart leads to reversal of chamber remodeling, as detected by
a leftward ESPVR shift and accompanied by augmented
post-receptor sensitivity and responsiveness to beta-
adrenergic stimulation. The CSD effect could not be attrib-
uted to systolic assistance and, importantly, was achieved in
an intact working heart, without causing diastolic constric-
tion that would otherwise inhibit preload reserve.
Reversing remodeling: unloading versus contain-
ment. Cessation or reversal of progressive chamber remod-
eling is an important aim of heart failure therapy (1,3,4,31).
Successful pharmacologic approaches have targeted neuro-
hormones, supporting the link between remodeling and
angiotensin and catecholamine toxicity. Recent surgical
approaches provide a more direct test of the importance of
chamber load and structural geometry of the failing heart.
The LVAD has been the most widely studied approach, and
it can dramatically unload the LV, leading to reverse
remodeling (9,32,33). At the cellular level, this results in
reversal of many heart failure abnormalities involving gene
expression (12,13,34), calcium homeostasis (13,35), hyper-
trophy (12), energetics (14) and adrenergic signaling (15).
This demonstrates remarkable plasticity of the failing heart
in response to profound cardiac unloading and systolic
assistance. However, such data do not identify an effect of
limiting dilation/remodeling, per se, as LVADs also restore
cardiac output and markedly reduce neurohormonal activa-
tion. Recent comparisons between RV and LV myocardial
responses support a load effect from the LVAD (36), but
this analysis remains indirect, as RV failure varies among
patients, and synergistic influences of neurohormonal deac-
tivation and normalized output on unloading cannot be
ruled out.

External containment, such as that provided by the CSD,
physically limits cardiac expansion and, in so doing, breaks
a positive feedback loop by which progressive dilation and
dysfunction are coupled. This strategy of external contain-
ment differs from interventions that directly remodel the
heart by removing myocardium (37,38) or placing stents to
alter its shape and regional load (39). Hints that contain-
ment alone might lead to reverse remodeling first came from
studies of cardiomyoplasty. Although this method com-
bined an effect of external girdling with systolic assistance
from skeletal muscle contraction, clinical data suggest that
the former mechanism was particularly potent (18). Passive
effects of the wrap were directly tested in an experimental
model, where asynchronous, nonburst stimulation was ap-
plied to maintain skeletal muscle health, yet not elicit a
contraction (19). Intriguingly, reverse remodeling and im-
proved function by this approach were nearly identical to
those seen when tetanic systolic cardiomyopathy stimulation
was also applied (40), further supporting the notion that
containment was a primary mechanism.

The CSD was developed as an artificial material alterna-
tive to a passive skeletal muscle wrap. Early reports per-
formed in an ovine model of heart failure induced by rapid
pacing found that the CSD limited progressive heart dila-
tion and mitral regurgitation (20). Similar effects were then
demonstrated in an ischemic cardiomyopathic model in
association with diminished myocyte hypertrophy and fi-
brosis (21). The present results expand these findings in
several major ways. The pressure–volume analysis identified
reverse remodeling in the absence of constrictive pathophys-
iology as hallmarks of the CSD effect. The observed
leftward shift in the ESPVR, with little net slope change, is

Figure 5. (A) Isoproterenol-stimulated adenylate cyclase activity in the failing myocardium, with or without cardiac support device (CSD) treatment. The
CSD resulted in an enhanced dose response to isoproterenol. The p value is for the CSD effect on the dose response, by two-way analysis of variance.
(B) Adenylyl cyclase activity with direct activation by forskolin revealed no difference between the groups, suggesting altered up-stream signaling as the
major source for the disparity in part A. CHF � chronic heart failure.
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very similar to those experimental and clinical results with
cardiomyoplasty (18,41). Also, in concordance with cardio-
myoplasty, the CSD did not have a significant net effect on
diastolic compliance, although it prevented progressive di-
lation.

The present data employing the CSD should be com-
pared with time-controlled data from the same model of
ischemic dilated cardiomyopathy, but without this device.
As previously reported, animals in this latter model display
progressive cardiac dilation and a reduced ejection fraction
(21)—strikingly different from the results with the CSD.
The observation that a purely passive wrap that does not
quickly shrink the size of the heart can eventually lead to
reverse remodeling is very intriguing. Although the exact
mechanism remains unclear, one hypothesis is that the
failing heart involves multiple interactive pathways with
concomitant changes that can be both adverse and poten-
tially ameliorative. Unchecked, the balance favors adverse
factors and results in gradual deterioration. However, simply
by limiting one of these important factors—that is, chamber
remodeling—the CSD may tip the balance to allow favor-
able signaling pathways and energy utilization to become
effective, and thereby help reverse progressive failure and
enhance adrenergic signaling.
Improved adrenergic response. Improved beta-adrenergic
signaling observed with the CSD is similar to that reported
with LVAD therapy (15). With the CSD, this change
occurred despite continued left heart loading and work, and
without direct systolic assistance that could reduce the tonic
adrenergic tone. Furthermore, the effects were obtained in
hearts that were not terminally depressed. Unlike the
LVAD, however, there was no change in beta-receptor
density (or affinity) with the CSD, despite augmented
adenylate cyclase responses to receptor stimulation and
functional changes in the whole heart. This may reflect
differences between the CSD and LVAD, which is associ-
ated with more extreme LV unloading and concomitant
systemic changes. The precise mechanism for an enhanced
beta-adrenergic response with the CSD remains unknown,
but may lie in alterations in beta-adrenergic receptor kinase,
G-protein signaling or cyclic guanosine monophosphate
metabolism and catabolism.
Containment versus constriction. The major concern re-
garding external containment devices is whether or not they
constrict diastolic filling and, thereby, preload reserve. The
pericardium of the failing heart dilates to accommodate
myocardial enlargement, but this expansion is generally
insufficient to prevent limitations of preload reserve (42).
The passive properties of the CSD are less abruptly non-
linear, compared with the pericardium, with a pressure rise
of �7 mm Hg for 20% volume expansion, and a rise of 9
mm Hg at 30% expansion. This better enables the material
to stretch to accommodate the filling volume. We found
that long-term CSD use allowed substantial systolic reserve
with early volume expansion. There was no equalization of
diastolic pressures between the right and left heart, nor an

LV pressure square-root sign characteristic of restrictive (or
constrictive) filling either before or after marked volume
loading. Recent clinical studies have found no evidence of
interference with coronary flow in either native or bypass
vessels in humans (43). The passive properties of the mature
CSD, with its fibrous in-growth, remain to be determined,
and this is likely to be somewhat stiffer than the CSD alone.
Nonetheless, the current data suggest that this combination
remains sufficiently pliable to accommodate early volume
expansion, yet still limit remodeling/expansion.
Study limitations. We did not perform pressure–volume
studies in a parallel sham-operated group, but we did repeat
studies in each animal. Previous historic control data in the
same experimental model have been reported and support
progressive dilation in the absence of the CSD. The
duration of CSD treatment was somewhat variable, partially
due to practical problems of having to transport co-
investigators and equipment from one city to another to
perform the studies. Nonetheless, we discerned no signifi-
cant differences due to this time disparity. Furthermore, the
magnitude of the initial volume change with CSD place-
ment was somewhat variable, partly due to the lack of
precise on-line measures of CSD snugness and volume
change.
Conclusions. We have shown that a purely passive external
elastic containment device can reverse remodeling in the
failing heart and improve beta-adrenergic signaling, while
preserving preload reserve. Preliminary clinical studies with
the CSD have been recently reported (27), and the approach
appears both safe and generally well tolerated. Ongoing
randomized clinical trials in the U.S. and Europe aim to
assess the efficacy of the CSD in limiting chronic remodel-
ing in human cardiomyopathy. Such studies should provide
the first tests, in humans, of the hypothesis that limiting
remodeling alone in the intact working heart can improve
long-term function and provide a useful therapy for heart
failure.
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Reversal of Chronic Molecular and Cellular Abnormalities Due to
Heart Failure by Passive Mechanical Ventricular Containment

Hani N. Sabbah, Victor G. Sharov, Ramesh C. Gupta, Sudhish Mishra, Sharad Rastogi,
Albertas I. Undrovinas, Pervaiz A. Chaudhry, Anastassia Todor, Takayuki Mishima,

Elaine J. Tanhehco, George Suzuki

Abstract—Passive mechanical containment of failing left ventricle (LV) with the Acorn Cardiac Support Device (CSD)
was shown to prevent progressive LV dilation in dogs with heart failure (HF) and increase ejection fraction. To examine
possible mechanisms for improved LV function with the CSD, we examined the effect of CSD therapy on the expression
of cardiac stretch response proteins, myocyte hypertrophy, sarcoplasmic reticulum Ca2�-ATPase activity and uptake,
and mRNA gene expression for myosin heavy chain (MHC) isoforms. HF was produced in 12 dogs by intracoronary
microembolization. Six dogs were implanted with the CSD and 6 served as concurrent controls. LV tissue from 6 normal
dogs was used for comparison. Compared with normal dogs, untreated HF dogs showed reduced cardiomyocyte
contraction and relaxation, upregulation of stretch response proteins (p21ras, c-fos, and p38 �/� mitogen-activated
protein kinase), increased myocyte hypertrophy, reduced SERCA2a activity with unchanged affinity for calcium,
reduced proportion of mRNA gene expression for �-MHC, and increased proportion of �-MHC. Therapy with the CSD
was associated with improved cardiomyocyte contraction and relaxation, downregulation of stretch response proteins,
attenuation of cardiomyocyte hypertrophy, increased affinity of the pump for calcium, and restoration of �- and �-MHC
isoforms ratio. The results suggest that preventing LV dilation and stretch with the CSD promotes downregulation of
stretch response proteins, attenuates myocyte hypertrophy and improves SR calcium cycling. These data offer possible
mechanisms for improvement of LV function after CSD therapy. (Circ Res. 2003;93:1095-1101.)

Key Words: heart failure � myocyte hypertrophy � sarcoplasmic reticulum � myosin heavy chain

Heart failure (HF) is a progressive disorder mediated
through multiple signaling pathways. Once initiated, HF

is characterized by increased neurohumoral activation and
ventricular dilation. Although such compensatory changes are
initially beneficial, over the long-term they cause adverse
structural and functional changes collectively referred to as
ventricular remodeling. Ventricular dilation also causes in-
creased mechanical stress and myocardial stretch. Upregula-
tion of stretch response proteins, such as p21ras,1 c-fos,2,3 and
p38 �/� mitogen-activated protein kinase (MAPK),4 have
been shown to induce cardiomyocyte hypertrophy.

The Acorn Cardiac Support Device (CSD) has been shown
to halt progressive left ventricular (LV) dilation and improve
ejection fraction.5–7 However, the mechanism(s) underlying
the improved cardiac function has not been elucidated. In the
present study, we tested the hypothesis that improvement in
LV systolic function in dogs with HF after long-term therapy
with the CSD results, in part, from downregulation of stretch
response proteins, attenuation of cardiomyocyte hypertro-
phy,1–4 and improvement of sarcoplasmic reticulum (SR)
calcium cycling. To further understand the mechanisms for

the improvement in LV systolic function, we also explored
the influence of this form of therapy on the expression of
cardiac �- and �-myosin heavy chain (MHC) isoforms.8,9

Materials and Methods

Animal Model
The canine model of chronic HF used in this study was previously
described in detail.10 Chronic LV dysfunction is produced by
multiple sequential intracoronary embolization with polystyrene
Latex microspheres (70 to 102 �m in diameter), which results in loss
of viable myocardium. The model manifests many of the sequelae of
HF observed in humans with HF, including marked depression of LV
systolic and diastolic function, reduced cardiac output, increased LV
filling pressures, and enhanced activity of the sympathetic nervous
system.10 Moreover, this model demonstrates progression of HF long
after the cessation of coronary microembolizations. In the present
study, 12 healthy mongrel dogs (Marshall Farms, North Rose, NY),
weighing between 21 and 31 kg, underwent serial coronary micro-
embolizations to produce HF. Embolizations were performed 1 to 3
weeks apart and were discontinued when LV ejection fraction was
between 30% and 40%. Microembolizations were performed during
cardiac catheterization under general anesthesia and sterile condi-
tions. The anesthesia regimen consisted of a combination of intra-
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venous injection of oxymorphone (0.22 mg/kg), diazepam (0.17
mg/kg), and sodium pentobarbital (150 to 250 mg) to effect.

Study Protocol
Dogs underwent a left and right heart catheterization at baseline,
before any coronary microembolizations. At 2 weeks after the last
coronary microembolization, dogs underwent another left and right
heart catheterization (pretreatment) while anesthetized. The 2-week
period was allowed to ensure that all infarctions produced by the last
microembolization were completely healed. The CSD was surgically
implanted in 6 dogs as previously described.5 The remaining 6 dogs
served as concurrent controls. All CSD-treated dogs and controls
were followed up for 3 months during which time no cardioactive
drugs were used. At the end of the follow-up period, a final left and
right heart catheterization was performed. After the final catheter-
ization, and while under general anesthesia, the chest was opened
and the heart removed and the tissue prepared for histological and
biochemical examination. LV tissue from 6 normal dogs was
prepared in an identical manner and used for comparison. The study
was approved by the Henry Ford Hospital Care of Experimental
Animals Committee and conformed to the “Position of the American
Heart Association on Research Animal Use.”

Angiographic Measurements
Single-plane left ventriculograms were obtained during left heart
catheterization with the dog placed on its right side. Ventriculograms
were recorded on 35-mm cine film at 30 frames per second during
the injection of 20 mL of contrast material (Reno-M-60, Squibb).
Correction for image magnification was made with a radiopaque
calibrated grid placed at the level of the LV. LV end-systolic and
end-diastolic volumes (ESV and EDV, respectively) were calculated
from LV silhouettes using the area-length method,11 LV EF as
previously described.10

Determination of Stretch Response Proteins
Expression of stretch response proteins, specifically p21ras, c-fos,
and p38 �/� MAPK, was determined by Western blotting using
homogenate of cardiomyocytes isolated from the LV free wall.12,13

In parallel, expression of calsequestrin (CSQ), a protein that is not
altered in HF, was also determined and used as internal control. All
stretch response proteins were normalized to CSQ. The Western blot
membranes were incubated with primary (p21 rabbit polyclonal IgG;
p38 �/� MAPK rabbit polyclonal IgG; c-fos rabbit polyclonal IgG;
all from Santa Cruz, Inc) and then with secondary (goat-anti-rabbit
HRP conjugated; Chemicon) antibody for 2 hours each. The
antibody-bound antigen was identified by chemiluminescence (Re-
naissance Western Blot Chemiluminescence Reagent, Perkin Elmer
Life Sciences Inc), followed by autoradiography. The density of
bands was quantified using a densitometer.

Contraction and Relaxation of Isolated Cardiomyocytes
Cardiomyocytes were isolated from the LV free wall as previously
described.14 Cardiomyocyte contraction and relaxation were rec-
orded using an edge detection algorithm.15 Contraction was evoked
by electrical field stimulation at a frequency of 1.0 Hz. Percent
cardiomyocyte shortening, peak velocity of shortening, and peak
velocity of relengthening were measured in 5 to 10 cardiomyocytes
from each dog selected at random. For each cardiomyocyte, 20
consecutive cycles were averaged to obtain a representative value,
which was then used to calculate the average measures for each dog.

Determination of Cardiomyocyte Hypertrophy
Cardiomyocyte hypertrophy was determined by assessing average
cardiomyocyte cross-sectional area from frozen LV tissue sections
using computer-assisted planimetry.5,16 The length and width of
isolated cardiomyocytes were also determined. Isolated cardiomyo-
cytes were visualized using a Labophot-2 Nikon microscope with
objective 20. The field was transferred to a computer using a digital
video camera and projected on a digital screen. The maximum length

and width of approximately 1200 rod shaped cardiomyocytes from
each dog were measured using computer-assisted planimetry.

Determination of SR Ca2� Uptake and Cardiac SR
Ca2�-ATPase (SERCA2a) Activity
Oxalate-dependent Ca2� uptake was determined in LV homogenate
as previously described.17 Briefly, an aliquot of 50 �L of 0.25
mg/mL LV homogenate was incubated at 37°C for 1 minute in 0.4
mL of Ca2� uptake buffer consisting of 50 mmol/L imidazole-HCl
(pH 7.0), 100 mmol/L KCl, 6 mmol/L MgCl2, 10 mmol/L NaN3

(included to inhibit mitochondrial Ca2� uptake), 10 mmol/L potas-
sium oxalate, 20 �mol/L ruthenium red (included to inhibit SR Ca2�

release), 0.5 mmol/L EGTA, and 0.01 to 10 �mol/L free Ca2�

(45CaCl2, 10 000 dpm/nmol). The reaction was initiated by adding an
aliquot of 50 �L of 50 mmol/L ATP, the assay was terminated 2
minutes later, radioactivity retained on filter paper was counted, and
oxalate-dependent Ca2� uptake was calculated as previously de-
scribed.17 SR Ca2� uptake, expressed as nmol 45Ca2� sequestered/min
per mg of noncollagen protein, was determined as previously
described.17 For thapsigargin-sensitive SERCA2a activity measure-
ments, membrane vesicles were prepared from LV tissue as previ-
ously described.18 SERCA2a activity was determined in the absence
and presence of thapsigargin at varying calcium concentration (0.1 to
10.0 �mol/L) as previously described18 and the activity expressed as
�mol Pi released/min per mg of noncollagen protein.

Determination of Expression of SERCA2a,
Phospholamban (PLB), and PLB Phosphorylation
To determine SR protein levels of SERCA2a and PLB, sodium-do-
decyl sulfate (SDS) extract of LV homogenate was prepared as
previously described.17,18 To freeze the phosphorylation state of the
proteins, LV tissue was homogenized in the presence of the inhibi-
tors of protein kinases (1 mmol/L EDTA, 1 mmol/L EGTA) and
protein phosphatases (2 mmol/L sodium pyrophosphate and
10 mmol/L sodium fluoride). Five micrograms or the indicated
amount of the SDS-extract was separated on 4% to 20% linear
polyacrylamide (BioRad), transferred electrophoretically on nitrocel-
lulose membrane, and the resulting membrane was incubated with
primary antibody as previously described.17,18 The accuracy of the
electrotransfer was confirmed by staining the membrane with 0.1%
amido black. Polyclonal antibodies for phosphorylated PLB at
threonine-17 (Thr17) and serine-16 (Ser16) or monoclonal antibody
for PLB was diluted to 500-fold or 2500-fold, respectively. Primary-
antibody binding protein was visualized by incubating the blot with
a second antibody, a peroxidase-conjugated anti-mouse in case of
monoclonal or anti-rabbit in case of polyclonal antibodies, and the
enhanced chemiluminescence assay was used as described by the
supplier (Dupont-NEN). In parallel, CSQ was also determined in the
LV homogenate. The intensity of the bands was quantified using a
Bio-Rad model GS-670 imaging densitometer. The density of the
phosphorylated PLB at Thr17 or Ser16 was normalized to the
amount of PLB present in LV tissue. Protein levels of PLB and
SERCA2a were normalized to CSQ. Before quantifying protein
expression levels, the protein dependency of the immunodetectable
bands for all proteins was established. In this study, a linear
correlation was observed between densitometric units and protein
content (�30 �g) for each immunodetectable protein.

Gene Expression of Cardiac �- and �-MHC
Total RNA from LV myocardium was isolated as described previ-
ously.19 Tissue samples were homogenized in RNA Stat-60 solution
(150 mg tissue/1.5 mL RNA Stat 60) followed by extraction with
chloroform, precipitation with isopropanol, and finally washing the
precipitated RNA with 75% (v/v) ethanol. The RNA obtained was
dissolved in RNase free water. The concentration of RNA was
determined by spectrophotometry. Total RNA was diluted to 0.1
mg/mL concentration and denatured at 95°C for 5 minutes followed
by rapid cooling in ice bath. Approximately 10 �g of total RNA was
primed with 0.5 �g of oligo (dT)15 primer. Total RNA was reversed
transcribed by using a cDNA synthesis kit (Promega Inc). After
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incubating the samples at 42°C for 1 hour, the reaction was
terminated at 95°C for 5 minutes. The mRNA levels of �- and
�-MHC were analyzed by amplification of cDNA by reverse
transcriptase-polymerase chain reaction12 followed by restriction
enzyme digestion and then identified by agarose gel electrophoresis
and ethidium bromide staining. Fluorescent bands corresponding to
�- and �-MHC were quantified in densitometric units, each normal-
ized to total MHC (�-MHC��-MHC) and each reported as percent
of total MHC.

Data Analysis
Within group comparisons between baseline, pretreatment, and
posttreatment angiographic measures were made using repeated
measures analysis of variance (ANOVA) with � set at 0.05. If
significance was attained, pairwise comparisons between groups was
determined using the Student-Newman-Kuels test with a value of
P�0.05 considered significant. Comparisons of biochemical mea-
sures between normal, HF controls and CSD-treated HF dogs were
based on one-way analysis of variance (ANOVA) with � set at 0.05.
If significance was attained, pairwise comparisons between groups
were determined using the Student-Newman-Kuels test with a value
of P�0.05 considered significant. All data are reported as the
mean�SEM.

Results
There were no significant differences at baseline and at
pretreatment in EDV, ESV, or EF between dogs that were
subsequently treated with the CSD and dogs assigned as
concurrent controls (Table 1). After treatment, EF signifi-
cantly decreased in untreated controls but increased signifi-
cantly in CSD-treated dogs. This was accompanied by a
significant increase in both ESV and EDV in untreated
controls and by a significant reduction in both ESV and EDV
in CSD-treated dogs (Table 1).

Cardiomyocyte Contraction and Relaxation
Results of cardiomyocyte contraction and relaxation are
shown in Table 2. Percent cardiomyocyte shortening, peak
velocity of shortening, and peak velocity of relengthening

decreased significantly in untreated HF dogs compared with
normal dogs. In contrast, in dogs treated with the CSD all
three measures were significantly higher than in untreated HF
dogs.

Stretch Response Proteins
Western blots depicting changes in p21Ras, c-fos, and p38
�/� MAPK are shown in Figure 1. The summary data for all
6 dogs in each of the three groups are shown in Table 3. All
three stretch response proteins, normalized to CSQ, increased
significantly in untreated HF dogs compared with normal
dogs. In HF dogs treated with the CSD, all three stretch
response protein levels were similar to those seen in normal
dogs (Figure 1, Table 3).

Cardiomyocyte Hypertrophy
Cardiomyocyte cross-sectional area increased significantly in
dogs with HF compared with normal dogs. This increase was
significantly attenuated by CSD treatment (Figure 2). Cardi-
omyocyte length and width were significantly greater in
untreated HF dogs compared with normal dogs; whereas
treatment with the CSD was associated with a significantly
lesser change in length and width of the cardiomyocytes
compared with untreated controls (Figure 2).

SERCA2a Activity and Ca2� Uptake
Maximal velocity (Vmax) and the affinity of SERCA2a for
calcium (K0.5) are shown in Table 3. Vmax, but not K0.5,
decreased significantly in control HF dogs compared with
normal dogs. Therapy with the CSD did not change Vmax

TABLE 1. Angiographic Measurements Obtained at Baseline (Base) Before Any
Coronary Microembolizations, Before Initiating Therapy or Follow-Up (Before),
and 3 Months After Initiating Therapy or Follow-Up (After)

Untreated HF Controls CSD-Treated

Base Before After Base Before After

LV EDV, mL 55�4 67�5† 83�8* 59�3 68�4† 61�4*

LV ESV, mL 25�3 43�3† 60�7* 28�2 45�7† 36�7*

LV EF, % 55�1 36�1† 28�2* 53�2 34�1† 42�1*

LV indicates left ventricular; EDV, end-diastolic volume; ESV, end-systolic volume; and EF, ejection
fraction.

†P�0.05 Base vs Before; *P�0.05 Before vs After.

TABLE 2. Contraction and Relaxation of
Isolated Cardiomyocytes

Normal Untreated HF Controls CSD-Treated

S, % 4.9�0.3 1.5�0.2* 2.8�0.3*†

Peak dS/dt, �m/sec 111�10 26�1* 48�9*†

Peak dR/dt, �m/sec 124�4 13�2* 40�6*†

S indicates percent of cardiomyocyte shortening; dS/dt, velocity of shorten-
ing; and dR/dt, velocity of relengthening.

*P�0.05 Normal vs HF; †P�0.05 CSD-Treated vs Untreated HF Controls.

Figure 1. Representative Western blot for the stretch response
proteins p21ras, c-fos, and p38 �/� MAPK. Implantation of the
CSD significantly reduced the expression of all 3 proteins (see
Table 3). NL indicates normal; HF, heart failure; and CSD, car-
diac support device–treated dogs.
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compared with control but was associated with a significant
decrease in K0.5 compared with HF controls, indicating a
higher SERCA2a affinity for calcium after CSD therapy
(Table 3). Vmax for SR Ca2� uptake but not affinity (Ka)
decreased in control HF dogs compared with normal dogs.
Vmax for Ca2� uptake did not change after CSD therapy,
whereas Ka decreased indicating an increase in the affinity
after CSD therapy (Table 3).

Expression of SERCA2a, PLB, and
PLB Phosphorylation
Western blots showing expression of SERCA2a, PLB, PLB at
Ser16 and Thr17, and CSQ are shown in Figure 3. All

proteins, with the exception of CSQ, decreased significantly
in control HF dogs compared with normal dogs. Densitomet-
ric analyses in Table 3 show that expression of SERCA2a and
PLB was not changed in CSD-treated dogs compared with
HF controls, whereas expression of phosphorylated PLB at
Ser16 and Thr17 increased with CSD therapy compared with
controls.

Expression of �- and �-MHC
Changes in the proportion of cardiac �- and �-MHC between
normal dogs, untreated HF dogs, and CSD-treated HF dogs
are shown in Table 4. In untreated HF dogs, gene expression
of LV �-MHC decreased significantly compared with expres-
sion in LV of normal dogs. Three months of chronic treat-
ment with the CSD LV expression of �-MHC was similar to
that seen in normal dogs (Table 4). In untreated HF dogs,
expression of LV �-MHC increased significantly compared
with normal dogs, whereas treatment with the CSD was
associated with LV expression of �-MHC that was similar to
that seen in normal dogs (Table 4, Figure 4).

Discussion
Heart failure is characterized by progressive LV dysfunction
and dilation. Regardless of the type of initiating injury,
compensatory mechanisms are evoked to maintain adequate
organ perfusion that includes neurohumoral activation, ven-
tricular dilation, and cardiomyocyte hypertrophy. These re-
sponses are beneficial initially, but in the long-term cause
maladaptive changes in myocardial structural and function
recognized as ventricular remodeling. Thus, sustained neuro-
humoral activation and increased LV mechanical stretch and

TABLE 3. Changes in Stretch Response Protein Levels,
Sarcoplasmic Reticulum Ca2� Uptake, and SERCA2a Activity,
and Expression of Other Sarcoplasmic Reticulum Proteins
Depicted in Densitometric Units

Normal
Untreated

HF Controls CSD-Treated

p21ras/CSQ 0.24�0.02 0.92�0.20* 0.35�0.10**

c-fos/CSQ 0.41�0.04 0.96�0.20* 0.33�0.05**

p38 �/� MAPK/CSQ 1.18�0.07 2.99�0.37* 1.25�0.10**

CSQ 4.91�0.35 5.11�0.33 5.22�0.22

Ca2� uptake

Vmax 22.5�2.0 11.6�1.0* 12.3�1.0*

Ka 0.52�0.03 0.53�0.03 0.28�0.01**

SERCA2a Activity

Vmax 0.36�0.02 0.23�0.02* 0.25�0.02*

K0.5 0.45�0.03 0.48�0.03 0.32�0.02**

SERCA2a/CSQ 2.26�0.10 1.74�0.11* 1.76�0.10*

PLB/CSQ 3.63�0.19 1.57�0.21* 2.23�0.31*

PLB-Ser16/PLB 0.28�0.01 0.18�0.03* 0.40�0.02**

PLB-Thr17/PLB 0.54�0.07 0.30�0.03* 0.88�0.02**

CSQ indicates calsequestrin; MAPK, mitogen-activated protein kinase; HF,
heart failure; Ca2�, calcium; SERCA2a, Ca2�-ATPase; PLB, phospholamban;
PLB-Ser16, phosphorylated phospholamban at serine-16; and PLB-Thr17,
phosphorylated phospholamban at threonine-17.

*P�0.05 Normal vs HF; **P�0.05 CSD-Treated vs Untreated HF Controls.

Figure 2. Bar graphs depicting changes in cardiomyocyte size.
Treatment group abbreviations same as in Figure 1. Implanta-
tion of the CSD significantly reduced cardiomyocyte hypertro-
phy. MCSA indicates myocyte cross-sectional area. *P�0.05
compared with NL; **P�0.05 compared with HF.

Figure 3. Western blot showing immunodetectable sarcoplas-
mic reticulum proteins in left ventricular myocardium of 3 normal
dogs (NL), 3 dogs with heart failure that are not treated (HF),
and 3 dogs with heart failure treated with the cardiac support
device (HF�CSD). SERCA2a indicates Ca2�-ATPase; PLB,
phospholamban; PLB-Ser16, phosphorylated phospholamban at
serine-16; PLB-Thr17, phosphorylated phospholamban at
threonine-17; and CSQ, calsequestrin.

TABLE 4. mRNA Expression of �- and �-Myosin Heavy Chain
Depicted as Percent of Total Myosin Heavy Chain

Normal
Untreated

HF Controls CSD-Treated

�-MHC 23.5�1.0 14.1�1.0* 24.6�0.6**

�-MHC 76.5�1.0 85.9�1.0* 75.4�0.6**

MHC indicates myosin heavy chain; HF, heart failure.
*P�0.05 Normal vs Untreated HF Controls; **P�0.05 CSD-Treated vs

Untreated HF Controls.
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wall stress associated with ventricular dilation represent key
mediators that precipitate progression of HF.

In recent years, attenuation of maladaptive ventricular
remodeling has become an important goal for the treatment of
HF. Numerous pharmacological interventions have been
developed to block various neurohumoral factors and, in
doing so, attenuate remodeling. Drug therapy with angioten-
sin-converting enzyme inhibitors and �-adrenergic receptor
blockers represent the current standard of care in patients
with HF and have been shown to attenuate LV remodeling
and, in the case of �-blockers, reverse the maladaptive
process, albeit partially.9,20 However, the existence of multi-
ple molecular signaling pathways that can trigger HF pro-
gression suggest that even the use of multiple pharmacolog-
ical agents may not completely block all pathways
responsible for the progression of LV remodeling. In partic-
ular, drugs may not be as effective at blocking the effects of
mechanical signals such as wall stress and myocardial stretch.
The latter can have direct consequences on biochemical and
molecular effector systems that can mediate LV
remodeling.1–4,25

It has long been accepted that certain surgical approaches
can be combined with optimal medical therapy to provide
better survival and improved quality of life in patients with
advanced HF. Functional mitral regurgitation, a common
feature of the failing heart, can be eliminated or attenuated by
repair or replacement of the mitral valve, a procedure that can
improve forward stroke output.21 Experience with LV assist
devices (LVADs) indicates that unloading the heart can
promote reduction in LV chamber size, improvement in LV
performance, and normalization of gene expression.22,23 Car-
diomyoplasty is another surgical technique, in which the
primary mode of action was originally thought to involve an
active assist during contraction. The procedure involved
wrapping a skeletal muscle around the heart and electrically
stimulating the muscle to squeeze the heart and augment
cardiac function. Even though the procedure involved exten-
sive surgery and was plagued with technical difficulties,
patients showed symptomatic improvement.24,25 However,
several experimental26,27 and clinical28 studies have suggested
that the improvement was derived primarily from the passive
girdling of the heart and not from active contraction of the
skeletal muscle. Several studies in various animal models of
HF have shown that progressive LV dilation can be prevented
or attenuated by wrapping synthetic materials around the

cardiac ventricles to elicit containment.5–7,29 These passive
mechanical devices and surgical approaches attempted to
treat HF by directly preventing progressive LV enlargement
and, in doing so, limit the adverse effects of increased wall
stress and myocardial stretch.

The CSD is one such device designed to prevent progres-
sive LV dilation and attenuate myocardial stretch and cham-
ber sphericity.5,25 Mechanical stretch has been shown to
directly and/or indirectly stimulate cardiomyocyte hypertro-
phy through upregulation of so-called stretch response pro-
teins.1–4 The resulting maladaptive hypertrophy is invariably
associated with abnormal SR calcium cycling, shifts in
myosin isoforms, and other changes associated with ventric-
ular remodeling.1–4,8,10,22,23 Thus, reducing mechanical stress
and preventing excessive myocardial stretch may downregu-
late stretch response proteins and block an important signal-
ing pathway for HF progression.

Findings from our laboratory and others have demonstrated
that long-term monotherapy with the CSD in animals with
experimentally induced HF can prevent progressive LV
dilation and improve LV ejection fraction.5–8,25 Although one
would expect that a passive mechanical device such as the
CSD can prevent progressive LV dilation, the mechanism by
which the CSD leads to improved LV systolic function is not
as clear. The present study addressed this issue by exploring
the potential biochemical and molecular alterations that
occurred as a consequence of CSD therapy.

In the present study, improvement of global LV function
with CSD therapy was associated with lesser extent of
intrinsic contractile dysfunction of cardiomyocytes compared
with no treatment at all. Therapy with the CSD was also
associated with lower tissue levels of stretch response pro-
teins specifically p21ras, c-fos, and p38 �/� MAPK com-
pared with no treatment at all. Expression of these proteins
has been shown to increase in HF.1–4 These proteins are
known to be direct stimuli for cardiomyocyte hypertrophy.1–4

Maladaptive cardiomyocyte hypertrophy plays a key role in
the progression of HF.30,31 In this study, long-term CSD
therapy resulted in attenuation of cardiomyocyte hypertrophy
as evidenced by decreased cardiomyocyte cross-sectional
area, length, and width compared with control.

Findings of this study also showed that CSD therapy was
associated with increased affinity of SERCA2a for calcium.
This increase in affinity may have been due to increased
phosphorylation of PLB. Increased affinity of SERCA2a for
calcium can lead to improved calcium cycling within the SR
particularly at low cytosolic calcium concentrations. Given
that abnormalities in Ca2� handling may, in part, underlie the
decrease in contractile function in HF, we propose that
increased affinity of the pump for calcium as seen with CSD
therapy may have contributed to the observed improvement
of LV function.

Marked differences in the phosphorylation of PLB were
observed in the present study and warrant discussion. Phos-
phorylation of PLB was decreased in HF controls compared
with normal dogs. It would be expected that phosphorylation
of PLB would be greater in HF dogs due to the increase in
plasma norepinephrine associated with the HF state. How-
ever, this increase in circulating plasma norepinephrine is

Figure 4. Ethidium bromide–agarose gel showing mRNA encod-
ing total myosin heavy chain (MHC); �-myosin heavy chain
(�MHC) and glyceraldehyde 1,3 diphosphate dehydrogenase
(GAPDH) in LV myocardium of 3 normal dogs (NL), 3 dogs with
heart failure that are not treated (HF), and 3 dogs with heart fail-
ure treated with the cardiac support device (HF�CSD).
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accompanied by downregulation of �1 adrenoceptors in the
heart and uncoupling between the receptors and their G
proteins. In addition, phosphorylation of PLB was increased
in the CSD group compared with the HF group despite the
improvement of LV function, which is normally associated
with decreased plasma norepinephrine. One possible expla-
nation is that in addition to augmented plasma norepineph-
rine, an increase in phosphatase activity has also been
documented in HF.32–36 A decrease in PLB phosphorylation
has been previously noted in our canine model of HF.32,34 It
is possible, albeit unproven, that the balance of phosphory-
lation/phosphatase activation may have favored dephosphor-
ylation in the HF dogs, while reverting to phosphorylation in
the CSD-treated animals.

Cardiomyocytes express both �- and �-��C isoforms. In
the rat heart, these two isoforms differ on the basis of ATPase
activity, with �-MHC being more active than �-MHC.37,38

Compared with cardiac �-MHC, �-MHC is associated with
faster velocity of shortening.37,38 Studies in LV tissue ob-
tained form explanted failed human hearts showed loss of
�-MHC expression with increased expression of �-MHC, a
condition that can argue in favor of diminished contractile
function. Other studies have shown that this maladaptation in
the proportion of cardiac �-MHC and �-MHC isoforms can
be reversed in animal models of HF after drug or surgical
therapy.39–41 In the present study, the proportion of cardiac
�-MHC was significantly reduced in HF dogs that were
untreated, and the proportion �-MHC was increased. Long-
term treatment with the CSD was associated with expression
of both MHC isoforms that was close to normal levels, a
condition that may have also contributed to the improvement
of LV function seen with CSD therapy.

In conclusion, results of this study suggest that the ob-
served improvement in LV function after long-term therapy
with the CSD may be due, in part, to the effects of the CSD
on limiting LV wall stress and myocardial stretch. These
changes were associated with attenuation of muscle cell
hypertrophy and improvement of SR calcium cycling. The
improvement of LV function with CSD therapy may have
also been due, in part, on its effects on the expression of
cardiac MHC isoforms.
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