Exploring New Directions in the Science and Technology of IBAD Texturing

Vladimir Matias

Superconductivity Technology Center Los Alamos National Laboratory

FY2006 Funding: \$400K, 1.5 FTE

Acknowledgements

Coworkers:

- Brady J. Gibbons (staff): PLD-
- Alp Findikoglu (staff): Si work (and Woong Choi)
- Chris Sheehan (tech)
- John Rowley (tech)
- Konrad Güth (undergrad)
- Ruud Steenwelle (undergrad)

Collaborators:

- LANL
 - Terry Holesinger
 - Paul Arendt, Liliana Stan
- Sandia National Lab
 - Paul Clem
- Stanford University
 - Bob Hammond, Randy Groves

Outline

- Introduction/motivation
- Experimental technology: tools and methodology
- Scaling of texture evolution
- Speed of texture formation
- Best results on MgO texture
- New IBAD materials
- Substrate preparation
- Summary slides: performance, results, research integration, future plans

Introduction: IBAD-YSZ vs IBAD-MgO

- Ion-Beam Assisted Deposition (IBAD) for Texturing of Films
- IBAD-YSZ: Y. Iijima et al., Fujikura, 1991
- IBAD-MgO: R.H. Hammond et al., Stanford University, 1995

- Phase space for exploration is enormous: IBAD material, substrate, substrate preparation, ion energy, ion-toatom ratio, etc.
- ⇒ Combinatorial approach to research

Motivation for Basic and Applied Research

- Fundamental questions remain:
 - What are exactly the mechanisms for texture formation (esp. for nano-IBAD)?
 - Which materials can be used in texture formation?
 - Fluorite and pyrochlore structures exhibit the slow texture evolution (55°, <111>, 300 eV)
 - Rocksalt structures exhibit the fast texture evolution (45°, <110>, 800 eV)
- Applied questions:
 - What is the best alignment that can be attained?
 - Can it be further improved?
 - How fast can the texture be formed?
 - Can we engineer the crystal: tune the lattice parameter? Adjust the vicinal angle? Use arbitrary substrate?

Combinatorial approach to IBAD exploration

- High-Throughput Experimentation through a Linear Combinatorial approach
- Available to us thanks to reel-to-reel processing

A and B have different layer depositions

- Hundreds of meters of tape available through long length CC preparation: clean and polished metal tape
- In situ monitoring is key

Key enabler: smooth tape in long lengths

Electropolishing

- Clean smooth tape in 100 meter lengths
- RMS roughness ~0.5 nm on 5 x 5 µm scale

Schematic of LANL IBAD reel-to-reel system

• Flexible for R&D of various materials systems

IBAD reel-to-reel system

IBAD deposition zone setup

Water cooled copper block

TAPE

Direct recoil mass spectroscopy of bare tape

IBAD template architecture

Combi experiment type I: moving tape

Combi experiment type II: stationary tape

- Obtain uniform 10 cm long sample
- Good for control experiments to determine uniformity
- Doesn't use much tape

Combi experiment type III: moving and stationary

- Obtain a thickness profile over 10 cm length
- Predetermined thickness range
- Good for experiments on interaction with other layers

Positional characterization

Combi YBCO PLD sample made by Brady Gibbons

IBAD-MgO thickness evolution

IBAD ion-to-atom ratio

• IBAD depositions are usually characterized by the ratio of incoming ions and atoms or molecules, r

• We define ρ which is proportional to r:

Ion-to-atom ratio during IBAD texturing

- Many IBAD parameters influence final texture:
 - temperature
 - beam energy
 - nucleation surface
- Early data indicated that texture improves as the ion-to-atom ratio, r increases; r is proportional to $\rho = 1 - t_{OCM1}/t_{OCM2}$
- A.T. Findikoglu et al J. Mater. Res. **19**, 501 (2004)

IBAD-MgO texture depends on ratio *and* total deposit thickness

- Data shown for IBAD-MgO on metal tape with Y_2O_3 nucleation layer
- XRD measures the epi layer on top
- Best texture can be attained in a wide window for the ion-tomolecule ratio

IBAD-MgO texture evolution scales with total ion beam fluence

Scaling vs Deposition rate and ion beam current

- Texture evolution also scales with deposition rate
- Increased both deposition rate and ion current; similar r

How fast can one texture MgO?

Superconductivity for Electric Systems Annual Peer Review • Arlington, VA • July 25-27, 2006

• Los Alamos

How fast can one texture MgO?

IBAD-MgO and IBAD-GZO comparison

Scaling results

Superconductivity for Electric Systems Annual Peer Review • Arlington, VA • July 25-27, 2006

• Los Alamos

IBAD-MgO Template from LANL

TEM: T. Holesinger

- Thick homoepi MgO (up to 0.5 micron)
- MgO lattice tilted by a few degrees

Control of tilting exhibited by changing deposition conditions

Improvement in texture with thickness

- In-plane and out-of-plane texture improves with thickness of the film and for deposition of subsequent layers
- For thick (1 µm) homoepi MgO layers Δφ can be as low as 3° and YBCO typically improves further by 1–3°; best measured YBCO 1.9° in Δφ

Some other rocksalt materials have similar texture evolution in IBAD

- Demonstrated other IBAD materials: TiN, CaO, NiO, etc.
 - Layers deposited reactively
 - Appear to have similar type of fast texture evolution as MgO

TiN previously reported also by Hühne et al, APL 2004

Rocksalt materials for IBAD texturing

- What would make a difference (for Coated Conductors)?
 - If the texture or other structural property is better
 - Lattice parameter tuning

- Desired physical property: resistivity, dielectric constant
 - Many of the nitrides are conducting

Substrate Preparation Development

- LANL developed the electropolishing process for Hastelloy C-276; achieved atomic-level smoothness
- EP process works well for a specific alloy; not easily transferable to many other alloys
- We are exploring other methods for IBAD tape finishing:
 - Sol-gel deposition to smooth and deposit first nucleation layer for IBAD simultaneously
 - Mechanical polishing of alloys

Mechanical polishing for substrate preparation

- MIPOX Nihon Micro Coating specializes in leading edge technology MIPOX \mathbf{O} for surface control
- MIPOX performs high-end mechanical polishing with sub-nanometer 0 surface smoothness
- MIPOX polished LANL's substrate alloy tapes down to < 0.5 nm RMS 0 roughness in 10 cm long samples (tape not moving)

4	100 nm	Hastelloy C-276 Unpolished	Ra 36 nm	RMS 48 nm
A AND LAND AND A	ov C-276 4-mil	Rough polish	3.5 nm	4.9 nm
13/48 A	3 nm	Med rough polish	1.8 nm	2.4 nm
A SA MAYA AN	1.29 nm 4.82 nm	Smooth polish	0.9 nm	1.3 nm
	7.02 1111	Very smooth polish	0.2 nm	0.3 nm
AFM: 5x5 μm		2 Å groc	ove	NEW 20
			-	

IBAD results on mechanically polished tapes

MIPÓX

- IBAD-MgO textured layers were grown at LANL on a series of polished samples (all under the same conditions, 250 nm epi)
- Samples mechanically polished by MIPOX with RMS roughness less than 1.5 nm had similar texture results to the LANL electropolished tapes
- There appears to be a degradation in texture above ~2 nm RMS surface roughness for the Hastelloy

IBAD-MgO Texture Results

Substrate Preparation Comparison

	Electropolishing	Mechanical Polishing	Sol-gel nucleation layer
RMS Roughness demonstrated	0.5 nm (from 20 nm)	0.3 nm (any substrate)	0.5 nm (from 2 nm)
Starting material	Hastelloy (major tweak)	Any tape (minor tweak)	Any tape
Cost	low	?	low
IBAD ready	Needs nucleation layer	Needs nucleation layer	~

Performance - 2006 Goals for IBAD

- **Goal:** Increase the speed of rate limiting step in template production by one order of magnitude
- Deposition of epi-MgO rate increased from 20 Å/sec to 500 Å/sec
 - **Goal:** Evaluate Y₂O₃ sol-gel nucleation layer further
 - Success with nucleation layers from Sandia
 - Implemented our own process using reel-to-reel

Epitaxial MgO Deposition Rate

- Increased epi-MgO rate from 2 nm/sec (last year) to 50 nm/sec with no degradation of texture
- Even much higher rates seem possible, but difficult to implement in laboratory setup

Speed of template production

For realistic manufacturing costs need about 1 km/hr cm-equivalent

	Electro- polishing	Nucl. Layer (YO)	IBAD-MgO	Epi-MgO
Demonstrated speed (LANL) km/hr	0.04	0.015	0.27	0.004
Lab capable speed (extrapolated) km/hr	0.2	0.2	1	0.015
IndustriaL scale up to 1 km/hr	 ✓ 	 	 	?

Speed of template production

For realistic manufacturing costs need about 1 km/hr cm-equivalent

	Electro- polishing	Nucl. Layer (YO)	IBAD-MgO	Epi-MgO
Demonstrated speed (LANL) km/hr	0.04	0.015	0.54	0.05
Lab capable speed (extrapolated) km/hr	0.2	0.2	1	0.2
IndustriaL scale up to 1 km/hr	✓	~	~	~

Performance - 2006 Goals for IBAD

- **Goal:** Increase the speed of rate limiting step in template production by one order of magnitude
- Deposition of epi-MgO rate increased from 20 Å/sec to 500 Å/sec
 - **Goal:** Evaluate Y₂O₃ sol-gel nucleation layer further
- Success with nucleation layers from Sandia
 - Implemented our own process using reel-to-reel

LANL reel-to-reel sol-gel nucleation layer deposition

Process developed in collaboration with Paul Clem at Sandia

- Optimizing process for film smoothness and best IBAD texture
- Achieved: 4.8° in-plane and 1.3° out-of-plane in IBAD-MgO (250 nm epi)
 Hastellov C-276
 RMS bare
 RMS with
- RMS roughness (5x5 µm):

Hastelloy C-276	RMS bare	RMS with sol-gel Y ₂ O ₃	
Unpolished	15 nm	3 - 8 nm	
Electropolished	0.8 nm	0.4 nm	

NEW 2006

Los Alamos

Results

- IBAD processes scalable to high rates (and high throughputs)
 - Demonstrated 1 2 sec deposition time (500 m/hr)
 - Epi-MgO deposition scalable to > 50 nm/sec
- Thicker epi-MgO templates have better texture: in-plane ~3° and out-of-plane ~1°
- Demonstrated other rocksalt structure materials with similar IBAD texturing: including NiO, CaO
- IBAD templates have been applied to coated conductors with:
 - 4° in-plane texture on the MgO
 - 2° in-plane texture on the YBCO (PLD)
 - $\leq 1^{\circ}$ out-of-plane on the YBCO (PLD)
 - Over 500 A/cm-width demonstrated by PLD-YBCO (LANL), 250 A/cm (MetOx), 200 A/cm (AMSC)

Research Integration

- Substrate preparation
 - Sandia National Laboratories: sol-gel Y₂O₃
 - NREL: electrodeposited Y₂O₃
 - MIPOX: mechanically polished metal tapes
 - SuperPower and AMSC: electropolishing of metal tapes
- IBAD templates for Coated Conductor fabrication
 - This year provided meters of IBAD template tape to AMSC and MetOx; new CRADA with MetOx
 - Provided template tape internally at LANL and to Stanford University

Plans for FY2007

- Experimental technology improvements
 - Develop software automation for Design of Experiments
 - Study quantification of RHEED for texture
- Explore new materials combinations
 - Identify new IBAD Materials
 - Study new nucleation layers for IBAD
 - Study IBAD texturing on YBCO layers
- Develop IBAD templates
 - Examine further the mechanical polish with MIPOX
 - Develop sol-gel nucleation layer further with Sandia

Conclusions

- What are the mechanisms for texture formation?
 - Clues: Texture scales with cumulative radiation damage; but limited at some point
- Which materials can be used in texture formation?
 - Rocksalt materials; perhaps others?
- What is the best IBAD alignment that can be attained?
 - Empirical evidence suggests ~4°
- Can it be further improved?
 - Texture improves with thicker layers (so far achieved $1 2^{\circ}$)
- How fast can the texture be formed?
 - IBAD texture can be achieved in 1 sec (demonstrated 540 m/hr)
- Can we engineer the crystal: tune the lattice parameter? Adjust the vicinal angle? Use arbitrary substrate?
 - Yes³

